
The JavaServer™
Faces Technology

Tutorial

June 15, 2003

Please send feedback to jsfguidefeedback@sun.com

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product
that is described in this document. In particular, and without limitation, these intellectual property rights
may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more addi-
tional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use,
copying, distribution, and decompilation. No part of the product or of this document may be reproduced
in any form by any means without prior written authorization of Sun and its licensors, if any.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, the Java Coffee Cup logo, JavaServer, and Java are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and
Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-
Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le
produit qui est décrit dans ce document. En particulier, et sans la limitation, ces droits de propriété intel-
lectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un
ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne
peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s'il y ena.

A moins qu'autrement spécifié, tout logiciel inclus dans l'ensemble du présent matériel technique (inclu-
ant articles, FAQ, exemples) est fourni selon les termes de la présente licence.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est pro-
tégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, le logo Java Coffee Cup, JavaServer, et Java sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

BerkeleyLicense.html
BerkeleyLicense.html

iii

Contents

Preface . vii

Who Should Use This Tutorial vii
How to Print This Tutorial viii
About the Examples viii

Prerequisites for the Examples viii
Required Software ix
Running the Examples Using the Pre-Installed XML Files ix
Building and Running the Sample Apps Manually x

Basic Requirements of a JavaServer Faces Application xi
Writing the web.xml File xii

Identifying the Servlet for Lifecycle Processing xii
Provide the Path to the Servlets xii

Including the Required JAR Files xiii
Including the Classes, Pages, and Other Resources xiii
Invoking the FacesServlet xv
Setting Up The Application Configuration File xvi

Related Information xvii

Chapter 1: Introduction to JavaServer™ Faces Technology . . 1

JavaServer Faces Technology Benefits 2
What is a JavaServer Faces Application? 3
An Example JavaServer Faces Page 4
Framework Roles 6
A Simple JavaServer Faces Application 7

Steps in the Development Process 7
Develop the Model Objects 8
Adding Managed Bean Declarations 9
Creating the Pages 10
Define Page Navigation 12

The Lifecycle of a JavaServer Faces Page 13

iv CONTENTS
Request Processing Lifecycle Scenarios 14
Standard Request Processing Lifecycle 15

Reconstitute Component Tree 16
Apply Request Values 16
Process Validations 17
Update Model Values 17
Invoke Application 18
Render Response 18

User Interface Component Model 18
The User-Interface Component Classes 19
The Component Rendering Model 20
Conversion Model 25
Event and Listener Model 26
Validation Model 27

Navigation Model 27
Managed Bean Creation 28
Application Configuration 29

Chapter 2: Using JavaServer Faces Technology 31

The cardemo Example 31
How to Build and Run the Example 33
Creating Model Objects 33

Using the managed-bean Element 34
Initializing Properties using the managed-property Element 36

Referencing an Initialization Parameter 37
Initializing Map Properties 38
Initializing Array and Collection Properties 40
Initializing Managed Bean Properties 40

Binding a Component to a Data Source 42
How Binding a Component to Data Works 43
Binding a Component to a Bean Property 45
Binding a Component to an Initial Default 46
Combining Component Data and Action Objects 47

Using the JavaServer Faces Tag Libraries 49
Declaring the JavaServer Faces Tag Libraries 50
Using the Core Tags 51

CONTENTS v
Using the HTML Tags 53
The UIForm Component 53
The UICommand Component 54
The UIGraphic Component 58
The UIInput and UIOutput Components 58
The UIPanel Component 63
The UISelectBoolean Component 68
The UISelectMany Component 69
The UISelectOne Component 71
The UISelectItem and UISelectItems Classes 72

Writing a Model Object Class 75
Writing Model Object Properties 76

UIInput and UIOutput Properties 77
UIPanel Properties 78
UISelectBoolean Properties 78
UISelectMany Properties 78
UISelectOne Properties 79
UISelectItem Properties 80
UISelectItems Properties 80

Performing Validation 81
Displaying Validation Error Messages 83
Using the Standard Validators 83

Using the Required Validator 83
Using the StringRangeValidator 84

Creating a Custom Validator 85
Implement the Validator Interface 85
Register the Error Messages 87
Register the Custom Validator 89
Create a Custom Tag or Use the validator Tag 89

Performing Data Conversions 92
Using the Standard Converters 93
Creating and Using a Custom Converter 95

Implement the Converter Interface 95
Register the Converter 98
Use the Converter in the Page 98

Handling Events 99
Implementing an Event Listener 100

Implementing a Value-Changed Listener 100
Implementing Action Listeners 102

Registering Listeners on Components 103
Registering a ValueChangedListener on a Component 104
Registering an ActionListener on a Component 104

Navigating Between Pages 105

vi CONTENTS
What is Navigation? 106
How Navigation Works 107
Configuring Navigation Rules in faces-config.xml 108
Referencing An Action From a Component 110
Using an Action Object With a Navigation Rule 111

Performing Localization 112
Localizing Static Data 113
Localizing Dynamic Data 114
Localizing Messages 115

Chapter 3: Creating Custom UI Components117

Determining if You Need a Custom Component or Renderer 118
When to Use a Custom Component 118
When to Use a Custom Renderer 119
Component, Renderer, and Tag Combinations 120

Understanding the Image Map Example 121
Why Use JavaServer Faces Technology to Implement an Image Map?
121
Understanding the Rendered HTML 122
Understanding the JSP Page 123
Simplifying the JSP Page 124
Summary of the Application Classes 126

Steps for Creating a Custom Component 126
Creating the Component Tag Handler 127
Defining the Custom Component Tag in a Tag Library Descriptor 129
Creating Custom Component Classes 130

Extending From a Standard Component 131
Performing Encoding 132
Performing Decoding 135

Delegating Rendering to a Renderer 136
Create the Renderer Class 136
Register the Renderer with a Render Kit 139
Identify the Renderer Type 140

Register the Component 140
Handling Events for Custom Components 141
Using the Custom Component in the Page 142
Conclusion 144

Preface

THE JavaServer™ Faces Technology Tutorial is a beginner’s guide to creating
Web applications using JavaServer Faces technology. JavaServer Faces technol-
ogy is a framework for building Java Web applications with server-side user
interface functionality. JavaServer Faces technology simplifies Java Web appli-
cation development by handling all of the complexities associated with manag-
ing a user interface.

This section covers all the things you need to know to make the best use of this
tutorial.

Who Should Use This Tutorial
This tutorial is intended for page authors, application developers, and component
writers interested in developing and deploying JavaServer applications with
server-side UI functionality.

In addition to explaining how to use JavaServer Faces technology to build simple
applications, this guide first goes over some of the benefits of using JavaServer
Faces technology and how JavaServer Faces applications work. The first chapter,
Introduction to JavaServer™ Faces Technology (page 1), will help you under-
stand the general JavaServer Faces concepts and architecture. The second chap-
ter, Using JavaServer Faces Technology (page 31), uses a simple, working
application to explain the main features of JavaServer Faces technology. The
third chapter, Creating Custom UI Components (page 117), explains how to cre-
ate custom components using JavaServer Faces technology.
vii

viii
How to Print This Tutorial
To print this tutorial, follow these steps:

• Ensure that Adobe Acrobat Reader is installed on your system.

• Open the PDF version of this book.

• Click the printer icon in Adobe Acrobat Reader.

About the Examples
This release includes five complete, working examples, which are located in the
example directory of your installation. Table 1–1 lists the examples and where
they are located.

This tutorial uses the cardemo and guessNumber to explain JavaServer Faces
technology. It also uses some extra code snippets not contained in cardemo or
guessNumber to explain features not demonstrated by these applications.

Prerequisites for the Examples
In addition to having good knowledge of the Java programming language, the
audience of this tutorial should have some knowledge of JavaServer Pages (JSP)
technology, including custom tag libraries, and the JavaServer Pages Standard
Tag Library (JSTL).

Table 1–1 Examples

Example Location Function

cardemo
<JWSDP_HOME>/jsf/sam-
ples/cardemo

A car store application

guessNumber
<JWSDP_HOME>/jsf/sam-
ples/guessNumber

Duke asks you to guess a number

non-jsp
<JWSDP_HOME>/jsf/sam-
ples/non-jsp

Demonstrates non-JSP rendering

components
<JWSDP_HOME>/jsf/sam-
ples/components

Showcases tabbed-panes, tree-control,
and result-set custom components

JSF.pdf

REQUIRED SOFTWARE ix
Required Software
This tutorial assumes you are using the Java WSDP as your deployment environ-
ment. To build, deploy, and run the examples you need a copy of the Java WSDP
and the Java™ 2 Platform, Standard Edition (J2SE™) SDK 1.3.1 or 1.4. You
download the Java WSDP from:

http://java.sun.com/webservices/downloads/webservicespack.html

the J2SE 1.3.1 SDK from

http://java.sun.com/j2se/1.3/

or the J2SE 1.4 SDK from

http://java.sun.com/j2se/1.4/

Add the bin directories of the Java WSDP and J2SE SDK installations to the
front of your PATH environment variable so that the Java WSDP startup scripts
for Tomcat override other installations.

Set the environment variable JWSDP_HOME to the location of your Java
WSDP installation.

Download the JavaServer Faces technology implementation from:

http://java.sun.com/j2ee/javaserverfaces/download.html

Running the Examples Using the Pre-
Installed XML Files
The Java Web Services Developer Pack ("Java WSDP"), v. 1.2 includes an XML
file for each example application in the <JWSDP_HOME>/webapps directory. This
file causes an application to be automatically deployed when you start Tomcat.
To run an example that is already deployed:

1. Set the environment variables:

a. Set JAVA_HOME to your J2SE installation directory

b. Set JWSDP_HOME to your Java WSDP 1.2 installation directory

c. Set ANT_HOME to $JWSDP_HOME/apache-ant (Solaris) or
%JWSDP_HOME%\apache-ant (Windows).

http://java.sun.com/webservices/archive.html
http://java.sun.com/j2ee/javaserverfaces/download.html
http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.4.1/

x

d. Set JSF_HOME to $JWSDP_HOME/jsf (Solaris) or %JWSDP_HOME%\jsf

(Windows)

2. On a system running the Solaris or Linux operating system, go to the
<JWSDP_HOME>/bin directory and execute the catalina.sh script to bring
up the Java WSDP. On a system running Microsoft Windows, from the
Start menu, select Programs, Java(tm) Web Services Developer Pack 1.2,
and Start Tomcat.

3. Once the server is up and running, point your browser to http://local-

host:8080, the default port at which the process is running. The page that
is displayed contains links to several sample programs and administration
tools.

4. Click on one of the links to run the corresponding example.

Building and Running the Sample Apps
Manually
It is also possible to build each of the sample apps manually. Before doing so,
you need to set the environment variables, as described in Running the Examples
Using the Pre-Installed XML Files (page ix) and edit your build.properties

file.

To edit the build.properties file:

1. Go to the <JWSDP_HOME>/jsf/samples directory.

2. Copy build.properties.sample to build.properties. This file pro-
vides build properties for all of the samples.

3. In build.properties, set tomcat.home to JWSDP_HOME.

4. Set the username and password to the username and password you config-
ured for the user who has the manager role in the Java WSDP.

To build a sample:

1. Shutdown Tomcat if it’s running by executing either catalina.sh stop if
you are running the UNIX operating system or catalina stop, if you are
running Windows.

2. Move the pre-installed XML files out of the <JWSDP_HOME>/webapps

directory.

3. Go to the directory of the example you want to build.

BASIC REQUIREMENTS OF A JAVASERVER FACES APPLICATION xi
4. At the command line, run Ant with no target:
ant

5. This will cause the sample to be built, and the WAR file for the sample to
be put into the <JWSDP_HOME>/jsf/samples directory. The existing pre-
installed XML files will cause tomcat to find your newly compiled sample.

Basic Requirements of a JavaServer
Faces Application

JavaServer Faces applications are Java server applications and must be compli-
ant with the Java Servlet specification, version 2.3 (or later) and the JavaServer
Pages specification, version 1.2 (or later). All Java server applications are pack-
aged in a WAR file. The WAR file must conform to specific requirements in
order to execute across different JavaServer Faces implementations. At a mini-
mum, a WAR file for a JavaServer Faces application must contain:

• A Web application deployment descriptor, called web.xml, to configure
resources required by a Web application.

• A specific set of JAR files containing essential classes.

• A set of application classes, JavaServer Faces pages, and other required
resources, such as image files.

• An application configuration file, which defines application resources

The web.xml, the set of JAR files, and the set of application files must be con-
tained in the WEB-INF directory of the WAR file. Usually, you will want to use
the Ant build tool to compile the classes, build the necessary files into the WAR,
and deploy the WAR file. The Ant tool is included in the Java WSDP. You con-
figure how the Ant build tool builds your WAR file with a build.xml file. Each
example in the download has its own build file. Look at one of those build files
for an example of writing a build file.

Another requirement is that all requests to a JavaServer Faces application that
reference previously saved JavaServer Faces components must go through the
FacesServlet. The FacesServlet manages the request processing lifecycle for
Web applications and initializes the resources required by the JavaServer Faces
implementation. To make sure your JavaServer Faces application complies with
this requirement, see the section, Invoking the FacesServlet (page xv).

xii
Writing the web.xml File
The web.xml file is located at the top level of the WEB-INF directory. See Config-
uring Web Applications in The Java Web Services Tutorial to see what a standard
web.xml file should contain.

The web.xml file for a JavaServer Faces application must specify certain config-
urations, which include:

• The servlet used to process JavaServer Faces requests

• The servlet mapping for the processing servlet

The following XML markup defines the required configurations specific to
JavaServer Faces technology for the cardemo application:

<web-app>
...

<!-- Faces Servlet -->
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>

javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup> 1 </load-on-startup>

</servlet>

<!-- Faces Servlet Mapping -->
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>
</web-app>

Identifying the Servlet for Lifecycle Processing
The servlet element identifies the FacesServlet, which processes the lifecycle
of the application. The load-on-startup element has a value of true, which
indicates that the FacesServlet should be loaded when the application starts up.

Provide the Path to the Servlets
The servlet-mapping element lists each servlet name defined in the servlet ele-
ment and gives the URL path to the servlet. Tomcat will map the path to the serv-
let when a request for the servlet is received.

http://java.sun.com/webservices/docs/1.0/tutorial/index.html

INCLUDING THE REQUIRED JAR FILES xiii
JSP pages do not need an alias path defined for them because Web containers
automatically map an alias path that ends in *.jsp.

Including the Required JAR Files
JavaServer Faces applications require several JAR files to run properly. If you
are not running the application on the Java WSDP, which already has these JAR
files, the WAR file for your JavaServer Faces application must include the fol-
lowing set of JAR files in the WEB-INF/lib directory:

• jsf-api.jar (contains the javax.faces.* API classes)

• jsf-ri.jar (contains the implementation classes of the JavaServer Faces
RI)

• jstl.jar (required to use JSTL tags and referenced by JavaServer Faces
reference implementation classes)

• jstl_el.jar (required for handling JSTL expression language syntax)

• standard.jar (required to use JSTL tags and referenced by JavaServer
Faces reference implementation classes)

• commons-beanutils.jar (utilities for defining and accessing JavaBeans
component properties)

• commons-digester.jar (for processing XML documents)

• commons-collections.jar (extensions of the Java 2 SDK Collections
Framework)

• commons-logging.jar (a general purpose, flexible logging facility to
allow developers to instrument their code with logging statements)

To run your application standalone, you need to:

Comment out the build.wspack property and uncomment the build.standalone
property in your build.properties file.

Comment out the jsp.jar, servlet.jar, jsf-api.jar, and jsf-ri.jar properties from the
build.properties file.

Including the Classes, Pages, and Other
Resources
All application classes and properties files should be copied into the WEB-

INF/classes directory of the WAR file during the build process. JavaServer

xiv
Faces pages should be at the top level of the WAR file. The web.xml, faces-con-
fig.xml, and extra TLD files should be in the WEB-INF directory. Other resources,
such as images can be at the top level or in a separate directory of the WAR file.

The build target of the example build file copies all of these files to a temporary
build directory. This directory contains an exact image of the binary distribution
for your JavaServer Faces application:

<target name="build" depends="prepare"
description="Compile Java files and copy static files." >
<javac srcdir="src"

destdir="${build}/${example}/WEB-INF/classes">
<include name="**/*.java" />
<classpath refid="classpath"/>

</javac>
<copy todir="${build}/${example}/WEB-INF">

<fileset dir="web/WEB-INF" >
<include name="web.xml" />
<include name="*.tld" />
<include name="*.xml" />

</fileset>
</copy>
<copy todir="${build}">

<fileset dir="web">
<include name="*.html" />
<include name="*.gif" />
<include name="*.jpg" />
<include name="*.jsp" />
<include name="*.xml" />
<include name="*.css" />

</fileset>
</copy>
<copy

todir="${build}/${example}/WEB-INF/classes/${example}" >
<fileset dir="src/${example}" >

<include name="*properties"/>
</fileset>
<fileset dir="src/${example}" >
<include name="*.xml"/>
</fileset>

</copy>
</target>

INVOKING THE FACESSERVLET xv
The build.war target packages all the files from the build directory into the
WAR file while preserving the directory structure contained in the build direc-
tory:

<target name="build.war" depends="build"
<jar jarfile="${example}.war"

basedir="${build}/${example}" />
<copy todir=".." file="{example}.war" />
<delete file="${example}.war" />

</target>

When writing a build file for your Web application, you can follow the build files
included with each example.

Invoking the FacesServlet
Before a JavaServer Faces application can launch the first JSP page, the Web
container must invoke the FacesServlet in order for the application lifecycle
process to start. The application lifecycle is described in the section, The Lifecy-
cle of a JavaServer Faces Page (page 13).

To make sure that the FacesServlet is invoked, you need to include the path to
the FacesServlet in the URL to the first JSP page. You define the path in the
url-pattern element nested inside the servlet-mapping element of the
web.xml file. In the example web.xml file above, the path to the FacesServlet

is /faces.

To include the path to the FacesServlet in the URL to the first JSP page, you
must do one of two things:

• Include an HTML page in your application that has the URL to the first
JSP page, and include the path to the FacesServlet:

• Include the path to the FacesServlet in the URL to the first page when
you enter it in your browser:

http://localhost:8080/myApp/faces/First.jsp

The second method allows you to start your application from the first JSP page,
rather than starting it from an HTML page. However, the second method

xvi
requires your user to identify the first JSP page. When you use the first method,
the user only has to enter:

http://localhost:8080/myApp

Setting Up The Application Configuration
File
The Application Configuration File is new with this release. It is an XML file,
named faces-config.xml, whose purpose is to configure resources for an applica-
tion. These resources include: navigation rules, converters, validators, render
kits, and others. For a complete description of the application configuration file,
see Application Configuration (page 29). This section explains the basic require-
ments of for using file.

The Application Configuration file must be valid against the DTD located at
http://java.sun.com/dtd/web-facesconfig_1_0.dtd. In addition, each file must
include in this order:

• The XML version number:
<?xml version="1.0"?>

• This DOCTYPE declaration at the top of the file:
<!DOCTYPE faces-config PUBLIC

“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config

1.0//EN”

“http://java.sun.com/dtd/web-facesconfig_1_0.dtd”>

• A faces-config tag enclosing all of the other declarations:
<faces-config>

...

</faces-config>

You can have more than one application configuration file, and there are three
ways that you can make these files available to the application. The JavaServer
Faces implementation finds the file or files by looking for:

• A resource named /META-INF/faces-config.xml in any of the JAR files
in the Web application’s /WEB-INF/lib directory. If a resource with this
name exists, it is loaded as a configuration resource. This method is prac-
tical for a packaged library containing some components and renderers.

RELATED INFORMATION xvii
The demo-components.jar, located in <JWSDP_HOME>jsf/samples uses
this method.

• A context init parameter, javax.faces.application.CONFIG_FILES

that specifies one or more (comma-delimited) paths to multiple configura-
tion files for your Web application. This method will most likely be used
for enterprise-scale applications that delegate the responsibility for main-
taining the file for each portion of a big application to separate groups.

• A resource named faces-config.xml in the /WEB-INF/ directory of your
application if you don’t specify a context init parameter. This is the way
most simple apps will make their configuration files available.

Related Information
For further information on the technologies discussed in this tutorial see the Web
sites listed in Table 1–2. References to individual technology homes listed in
some chapters map as follows:

Table 1–2 Related Information

Technology Web Site

JavaServer
Faces tech-
nology

http://java.sun.com/j2ee/javaserverfaces/

Java Servlets http://java.sun.com/products/servlet/

JavaServer
Pages tech-
nology

http://java.sun.com/products/jsp/

JSP Standard
Tag Library

http://java.sun.com/products/jsp/taglibraries.html#jstl

Tomcat http://jakarta.apache.org/tomcat/

Ant http://ant.apache.org

http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/
http://java.sun.com/j2ee/javaserverfaces/
http://java.sun.com/products/jsp/taglibraries.html#jstl
http://jakarta.apache.org/tomcat
http://ant.apache.org

xviii

Introduction to
JavaServer™ Faces

Technology
JAVASERVER Faces technology is a user interface framework for building Web
applications that run on a Java server and render the UI back to the client.

The main components of JavaServer Faces technology are:

• An APIs and reference implementation for: representing UI components
and managing their state; handling events, server side validation, and data
conversion; defining page navigation; supporting internationalization and
accessibility; and providing extensibility for all of these features.

• A JavaServer Pages™ (JSP™) custom tag library for expressing UI com-
ponents within a JSP page.

This well-defined programming model and UI component tag library signifi-
cantly ease the burden of building and maintaining Web applications with server-
side UIs. With minimal effort, you can:

• Wire client-generated events to server-side application code

• Map UI components on a page to server-side data

• Construct a UI with reusable and extensible components.

• Save and restore UI state beyond the life of server requests

As shown in Figure 2–1, the user interface you create with JavaServer Faces
technology (represented by myUI in the graphic) runs on the server and renders
back to the client.
1

2 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
Figure 2–1 The UI Runs on the Server

The JSP page, myform.jsp, expresses the user interface components with cus-
tom tags defined by JavaServer Faces technology framework rather than hard-
coding them with a markup language. The UI for the Web application (repre-
sented by myUI in the figure) manages the objects referenced by the JSP page.
These objects include:

• The component objects that map to the tags on the JSP page

• The event listeners, validators, and converters that are registered on the
components

• The model objects that encapsulate the data and application-specific func-
tionality of the components

JavaServer Faces Technology Benefits
One of the greatest advantages of JavaServer Faces technology is that it offers a
clean separation between behavior and presentation. Web applications built with
JSP technology partially achieve this separation. However, a JSP application
cannot map HTTP requests to component-specific event handling or manage UI
elements as stateful objects on the server. JavaServer Faces technology allows
you to build Web applications that implement finer-grained separation of behav-
ior and presentation traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a Web
application development team to focus on their piece of the development pro-
cess, and provides a simple programming model to link the pieces together. For
example, Page Authors with no programming expertise can use JavaServer Faces

Browser

JavaServer

myform.jsp

myUI

accesses page

HTTP Request

renders HTML

HTTP Response

WHAT IS A JAVASERVER FACES APPLICATION? 3
technology UI component tags to link to application code from within a Web
page without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar
UI-component and Web-tier concepts without limiting you to a particular script-
ing technology or markup language. While JavaServer Faces technology
includes a JSP custom tag library for representing components on a JSP page,
the JavaServer Faces technology APIs are layered directly on top of the JavaSer-
vlet API. This allows you to do a few things: to use another presentation technol-
ogy besides JSP, to create your own custom components directly from the
component classes, and to generate output for different client devices.

Most importantly, JavaServer Faces technology provides a rich architecture for
managing component state, processing component data, validating user input,
and handling events.

What is a JavaServer Faces
Application?

For the most part, JavaServer Faces applications are just like any other Java Web
application. They run in a Java Servlet container, and they typically contain:

• JavaBeansTM components (called model objects in JavaServer Faces tech-
nology) containing application-specific functionality and data

• Event listeners

• Pages, such as JSP pages

• Server-side helper classes, such as database-access beans

In addition to these items, a JavaServer Faces application also has:

• A custom tag library for rendering UI components on a page

• A custom tag library for representing event handlers, validators, and other
actions.

• UI components represented as stateful objects on the server

• Validators, event handlers, and navigation handlers

Every JavaServer Faces application must include a custom tag library that
defines the tags representing UI components and a custom tag library for repre-
senting other core actions, such as validators and event handlers. Both of these
tag libraries are provided by the JavaServer Faces implementation.

4 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
The component tag library eliminates the need to hard-code UI components in
HTML or another markup language, resulting in completely reusable compo-
nents. And, the core tag library makes it easy to register events, validators, and
other actions on the components.

The component tag library can be the html_basic tag library included with the
JavaServer Faces technology reference implementation, or you can define your
own tag library that renders custom components or renders output other than
HTML.

Another important advantage of JavaServer Faces applications is that the UI
components on the page are represented as stateful objects on the server. This
allows the application to manipulate the component state and wire client-gener-
ated events to server-side code.

Finally, JavaServer Faces technology allows you to convert and validate data on
individual components and report any errors before the server-side data is
updated.

This tutorial provides more detail on each of these features. First, let’s look at a
JSP page and a JavaServer Faces page side-by side.

An Example JavaServer Faces Page
To see how much easier Web development is with JavaServer Faces technology,
it helps to look at the differences between a JavaServer Faces page and a JSP
page. The following JSP page comes from the Web Applications chapter of The
Java Web Services Tutorial. This page asks you to type your name into a text
field and click the button. It then displays your name on the page.

<html>
<head><title>Hello</title></head>
<body bgcolor="white">

<h2>My name is Duke. What is yours?</h2>

<form method="get">
<input type="text" name="username" size="25">
<p></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<%
String username = request.getParameter("username");

http://java.sun.com/webservices/docs/1.0/tutorial/index.html
http://java.sun.com/webservices/docs/1.1/tutorial/doc/index.html

AN EXAMPLE JAVASERVER FACES PAGE 5
if (username != null && username.length() > 0) {
%>
<%@include file="response.jsp" %>
<%
}
%>
</body>
</html>

Even for this very simple page, you need to know how to extract the user name
from the request parameters, which requires some programming knowledge. An
average page author might not know how to do this.

Now, let’s look at the JavaServer Faces version of this page. Note that instead of
including the response in the same page, the JavaServer Faces version displays
the response on a second page. Here is the first page:

<HTML>
<HEAD> <title>Hello</title> </HEAD>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<body bgcolor="white">
<h2>My name is Duke. What is yours?</h2>
<jsp:useBean id="UserNameBean"

class="helloDuke.UserNameBean" scope="session" />
<f:use_faces>

<h:form id="helloForm" formName="helloForm" >
<h:graphic_image id="wave_img" url="/wave.med.gif" />
<h:input_text id="username"

valueRef="UserNameBean.userName"/>
<h:command_button id="submit" label="Submit"

commandName="submit" />
</h:form>

</f:use_faces>
</HTML>

Here is the second page:

<HTML>
<HEAD> <title>Hello</title> </HEAD>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<body bgcolor="white">
<h:graphic_image id="wave_img" url="/wave.med.gif" />
<f:use_faces>

<h:form id="responseform" formName="responseform">
<h:graphic_image id="wave_img" url="/wave.med.gif" />

6 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
<h2>Hi, <h:output_text id="userLabel"
valueRef="UserNameBean.userName" /> </h2>

<h:command_button id="back" label="Back"
commandName="back" /><p>

</h:form>
</f:use_faces>

</HTML>

The first difference to note is that these pages contain no Java code. Any logic
that needs to be performed is done in model objects or helper classes, not in the
pages.

The logic can be referenced from the component tags in the pages. The
h:input_text tag represents the text field that takes the user’s name. As the
valueRef attribute of the h:input_text tag specifies, the user’s name is saved
to the userName property of the model object, UserNameBean. The
h:output_text tag retrieves the user’s name from UserNameBean and displays it
on the following page.

While it’s true that you can eliminate the script by using the JSTL tags, c:set
and c:out, these tags cannot associate the data with a stateful UI component,
like the input_text and output_text tags do. This will become even more
important to you as you build more complicated applications.

By moving the code out of the pages and into model objects on the server, a Web
development team will have a much easier time maintaining and scaling the
application. With JavaServer Faces technology, the page author can easily write
the entire page and simply reference the logic—written by the developer—from
the component tags. The next section describes all of the roles of the Web devel-
opment team and which part of a JavaServer Faces application they are responsi-
ble for.

Framework Roles
Because of the division of labor enabled by the JavaServer Faces technology
design, JavaServer Faces application development and maintenance can proceed
quickly and easily. The members of a typical development team are those listed
below. In many teams, individual developers play more than one of these roles,

A SIMPLE JAVASERVER FACES APPLICATION 7
however, it is still useful to consider JavaServer Faces technology from a variety
of perspectives based on primary responsibility.

• Page Authors, who use a markup language, like HTML, to author pages
for Web applications. When using the JavaServer Faces technology frame-
work, page authors will most likely use the tag library exclusively.

• Application Developers, who program the model objects, the event han-
dlers, the validators, and the page navigation. Application developers can
also provide the extra helper classes.

• Component Writers, who have user-interface programming experience
and prefer to create custom components using a programming language.
These people can create their own components directly from the compo-
nent classes, or they can extend the standard components provided by
JavaServer Faces technology.

• Tools Vendors, who provide tools that leverage JavaServer Faces technol-
ogy to make building server-side user interfaces even easier.

The primary users of JavaServer Faces technology will be page authors and
application developers. This tutorial is written with these two customers in mind.
The next section walks through a simple application, explaining which piece of
the application the page author and the application developer develops.

The third chapter, Creating Custom UI Components (page 117) covers the
responsibilities of a component writer.

A Simple JavaServer Faces Application
This section describes the process of developing a simple JavaServer Faces
application. You’ll see what features a typical JavaServer Faces application con-
tains, and what part each role has in developing the application.

Steps in the Development Process
Developing a simple JavaServer Faces application requires performing these
tasks:

• Develop the model objects, which will hold the data

• Add managed bean declarations to the Application Configuration File

• Create the Pages using the UI component and core tags

8 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
• Define Page Navigation

These tasks can be done simultaneously or in any order. However, the people
performing the tasks will need to communicate during the development process.
For example, the page author needs to know the names of the model objects in
order to access them from the page.

The example used in this section is slightly more complicated than the example
in An Example JavaServer Faces Page (page 4). This example asks you to guess
a number between 0 and 10, inclusive. The second page tells you if you guessed
correctly. The example also checks the validity of your input.

To deploy and execute this example, follow the instructions in Running the
Examples Using the Pre-Installed XML Files (page ix).

Develop the Model Objects
Developing model objects is the responsibility of the application developer. The
page author and the application developer might need to work in tandem to make
sure that the component tags refer to the proper object properties, that the object
properties have the proper types, and take care of other such details.

Here is the UserNumberBean class that holds the data entered in the text field on
greeting.jsp:

package guessNumber;
import java.util.Random;

public class UserNumberBean {

Integer userNumber = null;
Integer randomInt = null;
String response = null;

public UserNumberBean () {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(10));
System.out.println("Duke’s Number: "+randomInt);

}

public void setUserNumber(Integer user_number) {
userNumber = user_number;
System.out.println("Set userNumber " + userNumber);

}

ADDING MANAGED BEAN DECLARATIONS 9
public Integer getUserNumber() {
System.out.println("get userNumber " + userNumber);
return userNumber;

}

public String getResponse() {
if(userNumber.compareTo(randomInt) == 0)

return "Yay! You got it!";
else

return "Sorry, "+userNumber+" is incorrect.";
}

As you can see, this bean is just like any other JavaBeans component: It has a set
of accessor methods and a private data field for each property. This means that
you can conceivably reference beans you’ve already written from your JavaSer-
ver Faces pages.

Depending on what kind of component references a particular model object
property, the model object property can be any of the basic primitive and refer-
ence types. This includes any of the Number types, String, int, double, and
float. JavaServer Faces technology will automatically convert the data to the
type specified by the model object property. See Using the HTML
Tags (page 53) and Writing a Model Object Class (page 75) for information on
which types are accepted by which component tags.

You can also apply a converter to a component to convert the components value
to a type not supported by the component. See Performing Data
Conversions (page 92) for more information on applying a converter to a compo-
nent.

In the UserNumberBean, the userNumber property has a type of Integer. The
JavaServer Faces implementation can convert the String request parameters
containing this value into an Integer before updating the model object property
when you use an input_number tag. Although this example converts to an Inte-

ger type, in general, you should use the native types rather than the wrapper
classes.

Adding Managed Bean Declarations
After developing the beans to be used in the application, you need to add decla-
rations for them in the Application Configuration file. The task of adding man-
aged bean declarations to the Application Configuration File can be done by any

10 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
member of the development team. Here is a managed bean declaration for User-
NumberBean:

<managed-bean>
<managed-bean-name>UserNumberBean</managed-bean-name>
<managed-bean-class>

guessNumber.UserNumberBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The JavaServer Faces implementation processes this file on application startup
time and initializes the UserNumberBean and stores it in session scope. The
bean is then available for all pages in the application. For those familiar with pre-
vious releases, this managed bean facility replaces usage of the jsp:useBean tag.
For more information, see the sections Managed Bean Creation (page 28) and
Application Configuration (page 29).

Creating the Pages
Authoring the pages is the page author’s responsibility. This task involves laying
out UI components on the pages, mapping the components to model object data,
and adding other core tags (such as validator tags) to the component tags.

Here is the new greeting.jsp page with the validator tags (minus the sur-
rounding HTML):

<HTML>
<HEAD> <title>Hello</title> </HEAD>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<body bgcolor="white">
<h:graphic_image id="wave_img" url="/wave.med.gif" />
<h2>Hi. My name is Duke.

I'm thinking of a number from 0 to 10.
Can you guess it?</h2>

<f:use_faces>
<h:form id="helloForm" formName="helloForm" >

<h:graphic_image id="wave_img" url="/wave.med.gif" />
<h:input_number id="userNo" numberStyle="NUMBER"

valueRef="UserNumberBean.userNumber">
<f:validate_longrange minimum="0" maximum="10" />

</h:input_number>
<h:command_button id="submit" action=”success”

CREATING THE PAGES 11
label="Submit" commandName="submit" /><p>
<h:output_errors id="errors1" for="userNo"/>

</h:form>
</f:use_faces>

This page demonstrates a few important features that you will use in most of
your JavaServer Faces applications:

• The form Tag
The form tag represents an input form, which allows the user to input some
data and submit it to the server, usually by clicking a button. The tags rep-
resenting the components that comprise the form are nested in the form

tag. These tags are h:input_number and h:command_button.

• The input_number Tag
The input_number tag represents a text field component, into which the
user enters a number. This tag has two attributes: id and valueRef. The
optional id attribute corresponds to the ID of the component object repre-
sented by this tag. The id attribute is optional. If you don’t include one, the
JavaServer Faces implementation will generate one for you. See Creating
Model Objects (page 33) for more information.
The valueRef uses a reference expression to refer to the model object
property that holds the data entered into the text field. The part of the
expression before the "." must match the name defined by the managed-
bean-name element corresponding to the proper managed-bean declara-
tion from the Application Configuration file. The part of the expression
after the "." must match the name defined by the property-name element
corresponding to the proper managed-bean declaration.

• The validate_longrange Tag
The input_number tag also contains a validate_longrange tag, which is
one of a set of standard validator tags included with JavaServer Faces tech-
nology. This validator checks if the local value of a component is within a
certain range. The value must be anything that can be converted to a long.
The validate_longrange tag has two attributes, one that specifies a min-
imum value and the other that specifies a maximum value. Here, the tag is
used to ensure that the number entered in the text field is a number from 0
to 10. See Performing Validation (page 81) for more information on per-
forming validation.

• The command_button Tag
The command_button tag represents the button used to submit the data
entered in the text field. The action attribute specifies an output that helps

12 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
the navigation mechanism to decide which page to open next. The next
section discusses this further.

• The output_errors Tag
The output_errors tag will display an error message if the data entered
in the field does not comply with the rules specified by the validator. The
error message displays wherever you place the output_errors tag on the
page. The for attribute refers to the component whose value failed valida-
tion.

Creating Model Objects (page 33) discusses the tags in more detail and includes
a table that lists all of the basic tags included with JavaServer Faces technology.

The next section discusses the navigation instructions used with this example.

Define Page Navigation
Another responsibility that the application developer has is to define page navi-
gation for the application, such as which page to go to after the user clicks a but-
ton to submit a form. The JavaServer Faces navigation model, new for this
release, is explained in Navigation Model (page 27). Navigating Between
Pages (page 105) explains how to define the navigation rules for an entire appli-
cation.

The application developer defines the navigation for the application in the appli-
cation configuration file, the same file in which managed beans are declared.

Here are the navigation rules defined for the guessNumber example:

<navigation-rule>
<from-tree-id>/greeting.jsp</from-tree-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-tree-id>/response.jsp</to-tree-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

<from-tree-id>/response.jsp</from-tree-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-tree-id>/greeting.jsp</to-tree-id>

</navigation-case>
</navigation-rule>

THE LIFECYCLE OF A JAVASERVER FACES PAGE 13
Each navigation-rule defines how to get from one page (specified in the
from-tree-id element) to the other pages of the application. The navigation-

rule elements can contain any number of navigation-case elements, each of
which defines the page to open next (defined by to-tree-id) based on a logical
outcome (defined by from-outcome).

The outcome can be defined by the action attribute of the UICommand compo-
nent that submits the form, as it is in the guessNumber example:

<h:command_button id="submit"
action="success" label="Submit" />

The outcome can also come from the return value of the invoke method of an
Action object. The invoke method performs some processing to determine the
outcome. One example is that the invoke method can check if the password the
user entered on the page matches the one on file. If it does, the invoke method
could return "success"; otherwise, it might return "failure". An outcome of "fail-
ure" might result in the logon page being reloaded. An outcome of "success"
might result in the page displaying the user’s credit card activity opening.

To learn more about how navigation works and how to define navigation rules,
see the sections Navigation Model (page 27) and Navigating Between
Pages (page 105).

The Lifecycle of a JavaServer Faces
Page

The lifecycle of a JavaServer Faces page is similar to that of a JSP page: The cli-
ent makes an HTTP request for the page, and the server responds with the page
translated to HTML. However, because of the extra features that JavaServer
Faces technology offers, the lifecycle provides some additional services by exe-
cuting some extra steps.

Which steps in the lifecycle are executed depends on whether or not the request
originated from a JavaServer Faces application and whether or not the response
is generated with the rendering phase of the JavaServer Faces lifecycle. This sec-
tion first explains the different lifecycle scenarios. It then explains each of these
lifecycle phases using the guessNumber example.

14 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
Request Processing Lifecycle Scenarios
A JavaServer Faces application supports two different kinds of responses and
two different kinds of requests:

• Faces Response: A servlet response that was created by the execution of
the Render Response (page 18) phase of the request processing lifecycle.

• Non-Faces Response: A servlet response that was not created by the exe-
cution of the Render Response phase. An example is a JSP page that does
not incorporate JavaServer Faces components.

• Faces Request: A servlet request that was sent from a previously generated
Faces Response. An example is a form submit from a JavaServer Faces
user interface component, where the request URI identifies the JavaServer
Faces component tree to use for processing the request.

• Non-Faces Request: A servlet request that was sent to an application com-
ponent, such as a servlet or JSP page, rather than directed to a JavaServer
Faces component tree.

These different requests and responses result in three possible lifecycle scenarios
that can exist for a JavaServer Faces application:

• Scenario 1: Non-Faces Request Generates Faces Response
An example of this scenario is when clicking a hyperlink on an HTML
page opens a page containing JavaServer Faces components. To render a
Faces Response from a Non-Faces Request, an application must provide a
mapping to the FacesServlet in the URL to the page containing JavaSer-
ver Faces components. The FacesServlet accepts incoming requests and
passes them to the lifecycle implementation for processing.

• Scenario 2: Faces Request Generates Non-Faces Response
Sometimes a JavaServer Faces application might need to redirect to a dif-
ferent Web application resource or generate a response that does not con-
tain any JavaServer Faces components. In these situations, the developer
must skip to the rendering phase (Render Response (page 18)) by calling
FacesContext.responseComplete. The FacesContext contains all of
the information associated with a particular Faces Request. This method
can be invoked during the Apply Request Values (page 16), Process
Validations (page 17), or Update Model Values (page 17) phases.

• Scenario 3: Faces Request Generates Faces Response
This is the most common scenario for the lifecycle of a JavaServer Faces
application. It is also the scenario represented by the standard request pro-
cessing lifecycle described in the next section. This scenario involves Jav-

STANDARD REQUEST PROCESSING LIFECYCLE 15
aServer Faces components submitting a request to a JavaServer Faces
application utilizing the FacesServlet. Because the request has been han-
dled by the JavaServer Faces implementation, no additional steps are
required by the application to generate the response. All listeners, valida-
tors and validators will automatically be invoked during the appropriate
phase of the standard lifecycle, which the next section describes.

Standard Request Processing Lifecycle
The standard request processing lifecycle represents scenario 3, described in the
previous section. Most users of JavaServer Faces technology won’t need to con-
cern themselves with the request processing lifecycle. However, knowing that
JavaServer Faces technology properly performs the processing of a page, a
developer of JavaServer Faces applications doesn’t need to worry about render-
ing problems associated with other UI framework technologies. One example
involves state changes on individual components. If the selection of a component
such as a checkbox effects the appearance of another component on the page,
JavaServer Faces technology will handle this event properly and will not allow
the page to be rendered without reflecting this change.

Figure 2–2 illustrates the steps in the JavaServer Faces request-response lifecy-
cle.

Figure 2–2 JavaServer Faces Request-Response Lifecycle

16 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
Reconstitute Component Tree
When a request for a JavaServer Faces page is made, such as when clicking on a
link or a button, the JavaServer Faces implementation begins the Reconstitute
Component Tree stage.

During this phase, the JavaServer Faces implementation builds the component
tree of the JavaServer Faces page, wires up event handlers and validators, and
saves the tree in the FacesContext. The component tree for the greeting.jsp

page of the guessNumber example might conceptually look like this:

Figure 2–3 guessNumber Component Tree

Apply Request Values
Once the component tree is built, each component in the tree extracts its new
value from the request parameters with its decode method. The value is then
stored locally on the component. If the conversion of the value fails, an error
message associated with the component is generated and queued on the Faces-

Context. This message will be displayed during the Render Response phase,
along with any validation errors resulting from the Process Validations phase.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts the events to interested listeners. See Implementing an Event
Listener (page 100) for more information on how to specify which lifecycle pro-
cessing phase the listener will process events.

In the case of the userNumber component on the greeting.jsp page, the value
is whatever the user entered in the field. Since the model object property bound
to the component has an Integer type, the JavaServer Faces implementation
converts the value from a String to an Integer.

At this point, the components are set to their new values, and messages and
events have been queued.

STANDARD REQUEST PROCESSING LIFECYCLE 17
Process Validations
During this phase, the JavaServer Faces implementation processes all validations
registered on the components in the tree. It examines the component attributes
that specify the rules for the validation and compares these rules to the local
value stored for the component. If the local value is invalid, the JavaServer Faces
implementation adds an error message to the FacesContext and the lifecycle
advances directly to the Render Response phase so that the page is rendered
again with the error messages displayed. If there were conversion errors from
Apply Request Values, the messages for these errors are displayed also.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts them to interested listeners. See Implementing an Event
Listener (page 100) for more information on how to specify in which lifecycle
processing phase a listener will process events.

In the greeting.jsp page, the JavaServer Faces implementation processes the
validator on the userNumber input_number tag. It verifies that the data the user
entered in the text field is an integer from the range 0 to 10. If the data is invalid,
or conversion errors occurred during the Apply Request Values phase, process-
ing jumps to the Render Response phase, during which the greeting.jsp page
is rendered again with the validation and conversion error messages displayed in
the component associated with the output_errors tag.

Update Model Values
Once the JavaServer Faces implementation determines that the data is valid, it
can walk the component tree and set the corresponding model object values to
the components’ local values. Only input components that have valueRef

expressions will be updated. If the local data cannot be converted to the types
specified by the model object properties, the lifecycle advances directly to Ren-
der Response so that the page is re-rendered with errors displayed, similar to
what happens with validation errors.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts them to interested listeners. See Implementing an Event
Listener (page 100) for more information on how to specify in which lifecycle
processing phase a listener will process events.

At this stage, the userNumber property of the UserNumberBean is set to the local
value of the userNumber component.

18 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
Invoke Application
During this phase, the JavaServer Faces implementation handles any application-
level events, such as submitting a form or linking to another page.

The greeting.jsp page from the guessNumber example has one application-
level event associated with the Command component. When processing this event,
a default ActionListener implementation retrieves the outcome, “success”,
from the component’s action attribute. The listener passes the outcome to the
default NavigationHandler. The NavigationHandler matches the outcome to
the proper navigation rule defined in the application’s application configuration
file to determine what page needs to be displayed next. See Navigating Between
Pages (page 105) for more information on managing page navigation. The Jav-
aServer Faces implementation then sets the response component tree to that of
the new page. Finally, the JavaServer Faces implementation transfers control to
the Render Response phase.

Render Response
During the Render Response phase, the JavaServer Faces implementation
invokes the components’ encoding functionality and renders the components
from the component tree saved in the FacesContext.

If errors were encountered during the Apply Request Values phase, Process Val-
idations phase, or Update Model Values phase, the original page is rendered dur-
ing this phase. If the pages contain output_errors tags, any queued error
messages are displayed on the page.

New components can be added to the tree if the application includes custom ren-
derers, which define how to render a component. After the content of the tree is
rendered, the tree is saved so that subsequent requests can access it and it is
available to the Reconstitute Component Tree phase. The Reconstitute Compo-
nent Tree phase accesses the tree during a subsequent request.

User Interface Component Model
JavaServer Faces UI components are configurable, reusable elements that com-
pose the user interfaces of JavaServer Faces applications. A component can be
simple, like a button, or compound, like a table, which can be composed of mul-
tiple components.

THE USER-INTERFACE COMPONENT CLASSES 19
JavaServer Faces technology provides a rich, flexible component architecture
that includes:

• A set of UIComponent classes for specifying the state and behavior of UI
components

• A rendering model that defines how to render the components in different
ways.

• An event and listener model that defines how to handle component events

• A conversion model that defines how to plug in data converters onto a com-
ponent

• A validation model that defines how to register validators onto a compo-
nent

This section briefly describes each of these pieces of the component architecture.

The User-Interface Component Classes
JavaServer Faces technology provides a set of UI component classes, which
specify all of the UI component functionality, such as holding component state,
maintaining a reference to model objects, and driving event-handling and render-
ing for a set of standard components.

These classes are completely extensible, which means that component writers
can extend the classes to create their own custom components. See Creating
Custom UI Components (page 117) for an example of a custom image map com-
ponent.

20 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
All JavaServer Faces UI component classes extend from UIComponentBase,
which defines the default state and behavior of a UIComponent. The set of UI
component classes included in this release of JavaServer Faces are:

• UICommand: Represents a control that fires actions when activated.

• UIForm: Encapsulates a group of controls that submit data to the applica-
tion. This component is analogous to the form tag in HTML.

• UIGraphic: Displays an image.

• UIInput: Takes data input from a user. This class is a subclass of UIOutput.

• UIOutput: Displays data output on a page.

• UIPanel: Displays a table.

• UIParameter: Represents substitution parameters.

• UISelectItem: Represents a single item in a set of items.

• UISelectItems: Represents an entire set of items.

• UISelectBoolean: Allows a user to set a boolean value on a control by
selecting or de-selecting it. This class is a subclass of UIInput.

• UISelectMany: Allows a user to select multiple items from a group of
items. This class is a subclass of UIInput.

• UISelectOne: Allows a user to select one item out of a group of items.This
class is a subclass of UIInput.

Most page authors and application developers will not have to use these classes
directly. They will instead include the components on a page by using the com-
ponent’s corresponding tag. Most of these component tags can be rendered in
different ways. For example, a UICommand can be rendered as a button or a
hyperlink.

The next section explains how the rendering model works and how page authors
choose how to render the components by selecting the appropriate tag.

The Component Rendering Model
The JavaServer Faces component architecture is designed such that the function-
ality of the components is defined by the component classes, whereas the com-

THE COMPONENT RENDERING MODEL 21
ponent rendering can be defined by a separate renderer. This design has several
benefits including:

• Component writers can define the behavior of a component once, but cre-
ate multiple renderers, each of which defines a different way to render the
component to the same client or to different clients.

• Page authors and application developers can change the appearance of a
component on the page by selecting the tag that represents the appropriate
component/renderer combination.

A render kit defines how component classes map to component tags appropriate
for a particular client. The JavaServer Faces implementation includes a standard
RenderKit for rendering to an HTML client.

For every UI component that a RenderKit supports, the RenderKit defines a set
of Renderer objects. Each Renderer defines a different way to render the par-
ticular component to the output defined by the RenderKit. For example, a UISe-

lectOne component has three different renderers. One of them renders the
component as a set of radio buttons. Another renders the component as a combo
box. The third one renders the component as a list box.

Each JSP custom tag in the standard HTML RenderKit is composed of the com-
ponent functionality, defined in the UIComponent class, and the rendering
attributes, defined by the Renderer. For example, the two tags in Table 2–1 both
represent a UICommand component, rendered in two different ways:

The command part of the tags corresponds to the UICommand class, specifying
the functionality, which is to fire an action. The button and hyperlink parts of the

Table 2–1 UICommand tags

Tag Rendered as

command_button

command_hyperlink

22 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
tags each correspond to a separate Renderer, which defines how the component
is rendered.

The JavaServer Faces reference implementation provides a custom tag library
for rendering components in HTML. It supports all of the component tags listed
in Table 2–2. To learn how to use the tags in an example, see Creating Model
Objects (page 33).

Table 2–2 The Component Tags

Tag Functions Rendered as Appearance

command_button
Submits a form to
the application.

An HTML
<input type=type>
element, where the type
value can be submit,
reset, or image

A button

command_hyperli
nk

Links to another
page or location on
a page.

An HTML <a href> ele-
ment

A Hyperlink

form

Represents an input
form. The inner tags
of the form receive
the data that will be
submitted with the
form.

An HTML <form>
element

No appearance

graphic_image Displays an image.
An HTML
element

An image

input_date
Allows a user to
enter a date.

An HTML
<input type= text>
element

A text string, formatted
with a java.text.
DateFormat date
instance

input_datetime
Allows a user to
enter a date and
time.

An HTML
<input type=text>
element

A text string, formatted
with a java.text.
SimpleDateFormat
datetime instance

input_hidden

Allows a page
author to include a
hidden variable in a
page.

An HTML
<input type=hidden>
element

No appearance

THE COMPONENT RENDERING MODEL 23
input_number
Allows a user to
enter a number.

An HTML
<input type=text>
element

A text string, formatted
with a java.text.
NumberFormat
instance

input_secret

Allows a user to
input a string with-
out the actual string
appearing in the
field.

An HTML <input
type=password> ele-
ment

A text field, which dis-
plays a row of charac-
ters instead of the
actual string entered

input_text
Allows a user to
input a string.

An HTML <input
type=text> element

A text field

input_textarea
Allows a user to
enter a multi-line
string.

An HTML <textarea>
element

A multi-row text field

input_time
Allows a user to
enter a time.

An HTML <input
type=text> element

A text string, formatted
with a java.text.
DateFormat time
instance

output_date
Displays a format-
ted date.

plain text

A text string, formatted
with a java.text.
DateFormat time
instance

output_datetime
Displays a format-
ted date and time.

plain text

A text string, formatted
with a java.text.
SimpleDateFormat
datetime instance

output_errors
Displays error mes-
sages.

plain text plain text

output_label

Displays a nested
component as a
label for a specified
input field.

An
HTML <label> element

plain text

output_message
Displays a local-
ized message.

plain text plain text

Table 2–2 The Component Tags (Continued)

Tag Functions Rendered as Appearance

24 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
output_number
Displays a format-
ted number.

plain text

A text string, formatted
with a java.text.
NumberFormat
instance

output_text
Displays a line of
text.

plain text plain text

output_time
Displays a format-
ted time.

plain text

A text string, formatted
with a java.text.
DateFormat time
instance

panel_data
Iterates over a col-
lection of data.

A set of rows in a table

panel_grid Displays a table.
An HTML <table> ele-
ment with <tr> and <td>
elements

A table

panel_group
Groups a set of
components under
one parent.

A row in a table

panel_list

Displays a table of
data that comes
from a collection,
array, iterator, or
map.

An HTML <table> ele-
ment with <tr> and <td>
elements

A table

selectboolean
_checkbox

Allows a user to
change the value of
a boolean choice.

An HTML <input
type=checkbox> ele-
ment.

A checkbox

selectitem

Represents one item
in a list of items in a
UISelectOne
component.

An HTML <option> ele-
ment

No appearance

selectitems

Represents a list of
items in a UISe-
lectOne compo-
nent.

A list of HTML
<option> elements

No appearance

Table 2–2 The Component Tags (Continued)

Tag Functions Rendered as Appearance

CONVERSION MODEL 25
Conversion Model
A JavaServer Faces application can optionally associate a component with
server-side model object data. This model object is a JavaBeans component that
encapsulates the data on a set of components. An application gets and sets the
model object data for a component by calling the appropriate model object prop-
erties for that component.

selectmany
_checkboxlist

Displays a set of
checkboxes, from
which the user can
select multiple val-
ues.

A set of HTML <input>
elements of type checkbox

A set of checkboxes

selectmany
_listbox

Allows a user to
select multiple
items from a set of
items, all displayed
at once.

A set of HTML
<select> elements

A list box

selectmany_menu

Allows a user to
select multiple
items from a set of
items.

A set of HTML
<select> elements

A scrollable combo
box

selectone
_listbox

Allows a user to
select one item
from a set of items,
all displayed at
once.

A set of HTML
<select> elements A list box

selectone_menu
Allows a user to
select one item
from a set of items.

An HTML <select> ele-
ment

A scrollable combo
box

selectone_radio
Allows a user to
select one item
from a set of items.

An HTML <input
type=radio> element

A set of radio buttons

Table 2–2 The Component Tags (Continued)

Tag Functions Rendered as Appearance

26 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
When a component is bound to a model object, the application has two views of
the component’s data: the model view and the presentation view, which repre-
sents the data in a manner that can be viewed and modified by the user.

A JavaServer Faces application must ensure that the component’s data can be
converted between the model view and the presentation view. This conversion is
usually performed automatically by the component’s renderer.

In some situations, you might want to convert a component’s data to a type not
supported by the component’s renderer. To facilitate this, JavaServer Faces tech-
nology includes a set of standard Converter implementations and also allows
you to create your own custom Converter implementations. If you register the
Converter implementation on a component, the Converter implementation
converts the component’s data between the two views. See Performing Data
Conversions (page 92) for more details on the converter model, how to use the
standard converters, and how to create and use your own custom converter.

Event and Listener Model
One goal of the JavaServer Faces specification is to leverage existing models and
paradigms so that developers can quickly become familiar with using JavaServer
Faces in their web applications. In this spirit, the JavaServer Faces event and lis-
tener model leverages the JavaBeans event model design, which is familiar to
GUI developers and Web Application Developers.

Like the JavaBeans component architecture, JavaServer Faces technology
defines Listener and Event classes that an application can use to handle events
generated by UI components. An Event object identifies the component that gen-
erated the event and stores information about the event. To be notified of an
event, an application must provide an implementation of the Listener class and
register it on the component that generates the event. When the user activates a
component, such as clicking a button, an event is fired. This causes the JavaSer-
ver Faces implementation to invoke the listener method that processes the event.

JavaServer Faces supports two kinds of events: value-changed events and action
events.

A value-changed event occurs when the user changes a component value. An
example is selecting a checkbox, which results in the component’s value chang-
ing to true. The component types that generate these types of events are the
UIInput, UISelectOne, UISelectMany, and UISelectBoolean components.
Value-changed events are only fired if no validation errors were detected.

VALIDATION MODEL 27
An action event occurs when the user clicks a button or a hyperlink. The UICom-

mand component generates this event.

For more information on handling these different kinds of events, see Handling
Events (page 99).

Validation Model
JavaServer Faces technology supports a mechanism for validating a component’s
local data during the Process Validations (page 17) phase, before model object
data is updated.

Like the conversion model, the validation model defines a set of standard classes
for performing common data validation checks. The jsf-core tag library also
defines a set of tags that correspond to the standard Validator implementations.

Most of the tags have a set of attributes for configuring the validator’s properties,
such as the minimum and maximum allowable values for the component’s data.
The page author registers the validator on a component by nesting the validator’s
tag within the component’s tag.

Also like the conversion model, the validation model allows you to create your
own Validator implementation and corresponding tag to perform custom vali-
dation. See Performing Validation (page 81) for more information on the stan-
dard Validator implementations and how to create custom Validator

implementation and validator tags.

Navigation Model
Virtually all web applications are made up of a set of pages. One of the primary
concerns of a web application developer is managing the navigation between
these pages.

The new JavaServer Faces navigation model makes it easy to define page naviga-
tion and to handle any additional processing needed to choose the sequence in
which pages are loaded. In many cases, no code is required to define navigation.
Instead, navigation can be completely defined in the application configuration
resource file (see section Application Configuration (page 29)) using a small set
of XML elements. The only situation in which you need to provide some code is
if additional processing is required to determine which page to access next.

28 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY
To load the next page in a web application, the user usually clicks a button. As
explained in the section Define Page Navigation (page 12), a button click gener-
ates an action event. The JavaServer Faces implementation provides a new,
default action event listener to handle this event. This listener determines the
outcome of the action, such as success or failure. This outcome can be defined as
a string property of the component that generated the event or as the result of
extra processing performed in an Action object associated with the component.
After the outcome is determined, the listener passes it to the NavigationHan-

dler instance associated with the application. Based on which outcome is
returned, the NavigationHandler selects the appropriate page by consulting the
application configuration file.

For more information on how to perform page navigation, see section Navigat-
ing Between Pages (page 105).

Managed Bean Creation
Another critical function of web applications is proper management of
resources. This includes separating the definition of UI component objects from
data objects and storing and managing these object instances in the proper scope.
Previous releases of JavaServer Faces technology enabled you to create model
objects that encapsulated data and business logic separately from UI component
objects and store them in a particular scope. This release fully specifies how
these objects are created and managed.

This release introduces new APIs for:

• Evaluating an expression that refers to a model object, a model object
property, or other primitive or data structure. This is done with the Value-
Binding API.

• Retrieving the object from scope. This is done with the VariableRe-

solver API.

• Creating an object and storing it in scope if it is not already there. This is
done with the default VariableResolver, called the Managed Bean Facil-
ity, which is configured with the application configuration file, described
in the next section.

APPLICATION CONFIGURATION 29
Application Configuration
Previous sections of this chapter have discussed the various resources available
to a JavaServer Faces application. These include: converters, validators, compo-
nents, model objects, actions, navigation handlers, and others. In previous
releases, these resources had to be configured programmatically. An Applica-

tionHandler was required to define page navigation, and a ServletContex-

tListener was required to register converters, validators, renderers, render kits,
and messages.

This release introduces a portable configuration resource format (as an XML
document) for configuring resources required at application startup time. This
new feature eliminates the need for an ApplicatonHandler and a ServletCon-

textListener. This tutorial explains in separate sections how to configure
resources in the XML document. See section Setting Up The Application Con-
figuration File (page xvi) for information on requirements for setting up the
application configuration file. See section Creating Model Objects (page 33) for
an explanation of how to use the faces-config.xml file to create model objects.
See section Navigating Between Pages (page 105) for information on how to
define page navigation in the faces-config.xml file. See sections Performing
Validation (page 81) and Performing Data Conversions (page 92) for how to reg-
ister custom validators and converters. See sections Register the
Component (page 140) and Register the Renderer with a Render Kit (page 139)
for information on how to register components and renderers to an application.

Once these resources were created, the information for some of these resources
used to be stored in and accessed from the FacesContext, which represents con-
textual information for a given request. These resources are typically available
during the life of the application. Therefore, information for these resources is
more appropriately retrieved from a single object that is instantiated for each
application. This release of JavaServer Faces introduces the Application class,
which is automatically created for each application.

The Application class acts as a centralized factory for resources such as con-
verters and message resources that are defined in the faces-config.xml file. When
an application needs to access some information about one of the resources
defined in the faces-config.xml file, it first retrieves an Application instance
from an ApplicationFactory and retrieves the resource instance from the
Application.

30 INTRODUCTION TO JAVASERVER™ FACES TECHNOLOGY

Using JavaServer
Faces Technology

This section shows you how to use JavaServer Faces technology in a Web appli-
cation by demonstrating simple JavaServer Faces features using a working
example. This example emulates on online car dealership, with features such as
price updating, car option packaging, a custom converter, a custom validator, and
an image map custom component.

The cardemo Example
Table 3–1 lists all of the files used in this example, except for the image and
properties files.

Table 3–1 Example Files

File Function

ImageMap.jsp The first page that allows you to select a locale

Storefront.jsp Shows the cars available

more.jsp Allows you to choose the options for a particular car

buy.jsp Shows the options currently chosen for a particular car

Customer.jsp
Allows you to enter your personal information so that you can
order the car

Thanks.jsp The final page that thanks you for ordering the car

error.jsp A page that displays an error message
31

32 USING JAVASERVER FACES TECHNOLOGY
The cardemo also uses a set of model objects, custom components, renderers,
and tags, as shown in Table 3–2. These files are located in the examples/compo-

nents directory of your download.

CarActionLis-
tener.java

The ActionListener that handles the car packaging depen-
dencies on more.jsp

CreditCardCon-
verter.java

Defines a custom Converter

FormatValida-
tor.java

Defines a custom Validator

CurrentOptionSer-
verBean.java

Represents the model for the currently-chosen car

CustomerBean.java Represents the model for the customer information

ImageMapE-
ventHandler.java

Handles the ActionEvent caused by clicking on the image
map

PackageVal-
ueChanged.java

Handles the event of selecting options on more.jsp and
updates the price of the car

Table 3–2 Model Objects and Custom Components, Renderers, and Tags Used by
cardemo

File Function

AreaRenderer
This Renderer performs the delegated rendering for the UIArea
component

AreaTag The tag handler that implements the area custom tag

ImageArea
The model object that stores the shape and coordinates of the hot
spots

MapTag The tag handler that implements the map custom tag

UIArea
The class that defines the UIArea component, corresponding to the
area custom tag

Table 3–1 Example Files (Continued)

File Function

HOW TO BUILD AND RUN THE EXAMPLE 33
Figure 3–1 illustrates the page flow for the cardemo application

.

Figure 3–1 Page Flow for cardemo

How to Build and Run the Example
If you just want to run the example, simply follow the instructions in Running
the Examples Using the Pre-Installed XML Files (page ix).

The example/cardemo directory also contains a build.xml that you can use to
build and run the example in case you would like to make changes to any of the
source files. Follow the directions in Building and Running the Sample Apps
Manually (page x) to build and run the example.

Creating Model Objects
Previous releases of JavaServer Faces technology required the page author to
create a model object by declaring it from the page using the jsp:useBean tag.
This technique had its disadvantages, one of which was that if a user accessed

UIMap
The class that defines the UIMap component, corresponding to the
map custom tag

Table 3–2 Model Objects and Custom Components, Renderers, and Tags Used by
cardemo (Continued)

File Function

34 USING JAVASERVER FACES TECHNOLOGY
the pages of an application out of order, the bean might not have been created
before a particular page was referring to it.

The new way to create model objects and store them in scope is with the Man-
aged Bean Creation facility. This facility is configured in the application config-
uration resource file (see section Application Configuration (page 29)using
managed-bean XML elements to define each bean. This file is processed at
application startup time, which means that the objects declared in it are available
to the entire application before any of the pages are accessed.

The Managed Bean Creation facility has many advantages over the jsp:useBean
tag, including:

• You can create model objects in one centralized file that is available to the
entire application, rather than conditionally instantiating model objects
throughout the application.

• You can make changes to the model object without any additional code

• When a managed bean is created, you can customize the bean’s property
values directly from within the configuration file.

• Using value-ref elements, you can set the property of one managed bean
to be the result of evaluating another value reference expression.

• Managed beans can be created programmatically as well as from a JSP
page. You’d do this by creating a ValueBinding for the value reference
expression and then calling getValue on it.

This section will show you how to initialize model objects using the Managed
Bean Creation Facility. The section Writing a Model Object Class (page 75)
explains how to write a model object class.

Using the managed-bean Element
You create a model object using a managed-bean element. The managed-bean

element represents an instance of a bean class that must exist in the application.
At runtime, the JavaServer Faces implementation processes the managed-bean

element and instantiates the bean as specified by the element configuration.

USING THE MANAGED-BEAN ELEMENT 35
Most of the model objects used with cardemo are still created with jsp:use-

Bean. The Storefront.jsp page uses the useBean tag to declare the Curren-

tOptionServer model object:

<jsp:useBean id="CurrentOptionServer"
class="cardemo.CurrentOptionServer" scope="session"

<jsp:setProperty name="CurrentOptionServer"
property="carImage" value="current.gif"/>

</jsp:useBean>

To instantiate this bean using the Managed Bean Creation facility, you would
add this managed-bean element configuration to the application configuration
file:

<managed-bean>
<managed-bean-name> CurrentOptionServer </managed-bean-name>
<managed-bean-class>

cardemo.CurrentOptionServer
</managed-bean-class>
<managed-bean-scope> session </managed-bean-scope>
<managed-property>

<property-name>carImage</property-name>
<value>current.gif</value>

</managed-property>
</managed-bean>

The managed-bean-name element defines the key under which the bean will be
stored in a scope. For a component to map to this bean, the component tag’s
valueRef must match the managed-bean-name up to the first period. For exam-
ple, this valueRef refers maps to the carImage property:

valueRef="CurrentOptionServer.carImage"

The part before the "." matches the managed-bean-name of CurrentOption-

Server. The section Using the HTML Tags (page 53) has more examples of
using valueRef to bind components to bean properties.

The managed-bean-class element defines the fully-qualified name of the Java-
Bean-compliant class used to instantiate the bean. It is the application devel-
oper’s responsibility to ensure that the class complies with the configuration of
the bean in the application configuration resources file. For example, the prop-
erty definitions must match those configured for the bean.

The managed-bean-scope element defines the scope in which the bean will be
stored. The four acceptable scopes are: none, request, session or application. If

36 USING JAVASERVER FACES TECHNOLOGY
you define the bean with a none scope, the bean is instantiated anew each time it
is referenced, and so it does not get saved in any scope. One reason to use a
scope of none is when a managed bean references another managed-bean. The
second bean should be in none scope if it is only supposed to be created when it
is referenced. See section Initializing Managed Bean Properties (page 40) for an
example of initializing a managed-bean property.

The managed-bean element can contain zero or more managed-property ele-
ments, each corresponding to a property defined in the bean class. These ele-
ments are used to initialize the values of the bean properties. In the example
above, the carImage property is initialized with the value current.gif. The
next section explains in more detail how to use the managed-property element.

Initializing Properties using the
managed-property Element
A managed-property element must contain a property-name element, which
must match the name of the corresponding property in the bean. A managed-

property element must also contain one of a set of elements (listed in Table 3–3
on page 36) that defines the value of the property. This value must be of the same
type as that defined for the property in the corresponding bean. Which element
you use to define the value depends on the type of the property defined in the
bean. Table 3–3 on page 36 lists all of the elements used to initialize a value.

The section Using the managed-bean Element (page 34) includes an example of
initializing String properties using the value subelement. You also use the value

Table 3–3 subelements of managed-property that define property values

element value that it defines

map-entries defines the values of a map

null-value explicitly sets the property to null.

value defines a single value, such as a String or int

values defines an aggregate value, such as an array or List

value-ref references another object

INITIALIZING PROPERTIES USING THE MANAGED-PROPERTY ELEMENT 37
subelement to initialize primitive and other reference types. The rest of this
section describes how to use the value subelement and other subelements to ini-
tialize properties of type java.util.Map, array and Collection.

Referencing an Initialization Parameter
Another powerful feature of the Managed Bean Facility is the ability to reference
implicit objects from a managed bean property.

Suppose that you have a page that accepts data from a customer, including the
customer’s address. Suppose also that most of your customers live in a particular
zip code. You can make the zip code component render with this zip code by
saving it in an implicit object and referencing it when the page is rendered.

You can save the zip code as an initial default value in the context initParam
implicit object by setting the context-param element in your web.xml file:

<context-param>
<param-name>defaultZipCode</param-name>
<param-value>94018</param-name>

</context-param>

Next, you write a managed-bean declaration with a property that references the
parameter:

<managed-bean>
<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>CustomerBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>

<property-name>zipCode</property-name>
<value-ref>initParam.defaultZipCode</value-ref>

</managed-property>
...

</managed-bean>

To access the zip code at the time the page is rendered, refer to the property from
the zip component tag’s valueRef attribute:

<h:input_text id=zip valueRef="customer.zipCode"

Retrieving values from other implicit objects are done in a similar way. See
Table 3–6 on page 44 for a list of implicit objects.

38 USING JAVASERVER FACES TECHNOLOGY
Initializing Map Properties
The map-entries element is used to initialize the values of a bean property with
a type of java.util.Map. Here is the definition of map-entries from the DTD
that defines the application configuration file:

<!ELEMENT map-entries (key-class?, value-class?, map-entry*) >

As this definition shows, a map-entries element contains an optional key-

class element, an optional value-class element and zero or more map-entry

elements.

Here is the definition of map-entry from the DTD:

<!ELEMENT map-entry (key, (null-value|value|value-ref)) >

According to this definition, each of the map-entry elements must contain a key

element and either a null-value, value, or value-ref element. Here is an
example that uses the map-entries element:

<managed-bean>
...
<managed-property>

<property-name>cars</property-name>
<map-entries>

<map-entry>
<key>Jalopy</key>
<value>50000.00</value>

</map-entry>
<map-entry>

<key>Roadster</key>
<value-ref>

sportsCars.roadster
</value-ref>

</map-entry>
</map-entries>

</managed-property>
</managed-bean>

The map that is created from this map-entries tag contains two entries. By
default, the keys and values are all converted to java.lang.String. If you want

INITIALIZING PROPERTIES USING THE MANAGED-PROPERTY ELEMENT 39
to specify a different type for the keys in the map, embed the key-class element
just inside the map-entries element:

<map-entries>
<key-class>java.math.BigDecimal</key-class>
...

</map-entries>

This declaration will convert all of the keys into java.math.BigDecimal. Of
course, you need to make sure that the keys can be converted to the type that you
specify. The key from the example in this section cannot be converted to a
java.math.BigDecimal because it is a String.

If you also want to specify a different type for all of the values in the map,
include the value-class element after the key-class element:

<map-entries>
<key-class>int</key-class>
<value-class>java.math.BigDecimal</value-class>
...

</map-entries>

Note that this tag only sets the type of all the value subelements.

The first map-entry in the example above includes a value subelement. The
value subelement defines a single value, which will be converted to the type
specified in the bean according to the rules defined in the JavaServer Pages Spec-
ification, 2.0.

The second map-entry defines a value-ref element, which references a prop-
erty on another bean. Referencing another bean from within a bean property is
useful for building a system out of fine-grained objects. For example, a request-
scoped form-handling object might have a pointer to an application-scoped data-
base mapping object, and together the two can perform a form handling task.
Note that including a reference to another bean will initialize the bean if it does
not exist already.

It is also possible to assign the entire map with a value-ref element that specifies
a map-typed expression, instead of using a map-entries element.

40 USING JAVASERVER FACES TECHNOLOGY
Initializing Array and Collection Properties
The values element is used to initialize the values of an array or Collection
property. Each individual value of the array or Collection is initialized using a
value, null-value, or value-ref element. Here is an example:

<managed-bean>
...
<managed-property>

<property-name>cars</property-name>
<values>

<value-type>java.lang.Integer</value>
<value>Jalopy</value>
<value-ref>myCarsBean.luxuryCar</value-ref>
<null-value/>

</values>
</managed-property>

</managed-bean>

This example initializes an array or a Collection. The type of the correspond-
ing property in the bean determines which data structure is created. The values

element defines the list of values in the array or Collection. The value ele-
ment specifies a single value in the array or Collection. The value-ref ele-
ment references a property in another bean. The null-value element will cause
the property’s set method to be called with an argument of null. A null prop-
erty cannot be specified for a property whose data type is a Java primitive, such
as int, or boolean.

Initializing Managed Bean Properties
Sometimes you might want to create a bean that also references other managed
beans so that you can construct a graph or a tree of beans. For example, suppose
that you want to create a bean representing a customer’s information, including
the mailing address and street address, each of which are also beans. The follow-
ing managed-bean declarations create a CustomerBean instance that has two
AddressBean properties, one representing the mailing address and the other rep-
resenting the street address. This declaration results in a tree of beans with Cus-
tomerBean as its root and the two CustomerBean objects as children.

<managed-bean>
<managed-bean-name>customer</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.CustomerBean

INITIALIZING PROPERTIES USING THE MANAGED-PROPERTY ELEMENT 41
</managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>

<property-name>mailingAddress</property-name>
<value-ref>addressBean</value-ref>

</managed-property>
<managed-property>

<property-name>streetAddress</property-name>
<value-ref>addressBean</value-ref>

</managed-property>
<managed-property>

<property-name>customerType</property-name>
<value>New</value>

</managed-property>
</managed-bean>
<managed-bean>

<managed-bean-name>addressBean</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.AddressBean
</managed-bean-class>
<managed-bean-scope> none </managed-bean-scope>
<managed-property>

<property-name>street</property-name>
</null-value>

<managed-property>
...

</managed-bean>

The first CustomerBean declaration (with the managed-bean-name of customer)
creates a CustomerBean in request scope. This bean has two properties, called
mailingAddress and shippingAddress. These properties use the value-ref

element to reference a bean, named CustomerBean.

The second managed bean declaration defines an AddressBean, but does not cre-
ate it because its managed-bean-scope element defines a scope of none. Recall
that a scope of none means that the bean is only created when something else
references it. Since both the mailingAddress and streetAddress properties
both reference addressBean using the value-ref element, two instances of
AddressBean are created when CustomerBean is created.

When you create an object that points to other objects, do not try to point to an
object with a shorter life span because it might be impossible to recover that
scope’s resources when it goes away. A session-scoped object, for example, can-
not point to a request-scoped object. And objects with "none" scope have no
effective life span managed by the framework, so they can only point to other

42 USING JAVASERVER FACES TECHNOLOGY
"none" scoped objects. Table 3–4 on page 42 outlines all of the allowed connec-
tions:

Cycles are not permitted in forming these connections, in order to avoid issues
involving order of initialization that would require a more complex implementa-
tion strategy.

Binding a Component to a Data
Source

The UIInput and UIOutput components (and all components that extend these
components) support storing a local value and referring to a value in another
location with the optional valueRef attribute, which has replaced the modelRef-

erence attribute of previous releases. Like the modelReference attribute, the
valueRef attribute is used to bind a component’s data to data stored in another
location.

Also like the modelReference attribute, the valueRef attribute can be used to
bind a component’s data to a JavaBeans component or one of its properties.
What’s different about the valueRef attribute is that it also allows you to map
the component’s data to any primitive (such as int), structure (such as an array),
or collection (such as a list), independent of a JavaBeans component.

In addition to the valueRef attribute, this release also introduces the actionRef

attribute, which binds an Action to a component. As explained in section Navi-
gating Between Pages (page 105), an Action performs some logic and returns an
outcome, which tells the navigation model what page to access next.

Table 3–4

An object of this scope May point to a object of this scope

none none

application none, application

session none, application, session

request none, application, session, request

HOW BINDING A COMPONENT TO DATA WORKS 43
This section explains how the binding of a component to data works, and how to
use valueRef to bind a component to a bean property and primitive, and how to
combine the component data with an Action.

How Binding a Component to Data
Works
Many of the standard components support storing local data, which is repre-
sented by the component’s value property. They also support referencing data
stored elsewhere, represented by the component’s valueRef property.

Here is an example of using a value property to set an integer value:

value=”9”

Here is an example of using a valueRef property to refer to the bean property
that stores the same integer:

valueRef=”order.quantity”

During the Apply Request Values phase of the standard request processing life-
cycle, the component’s local data is updated with the values from the current
request. During this phase and the Process Validations phase, local values from
the current request are checked against the converters and validators registered
on the components

During the Update Model Values phase, the JavaServer Faces implementation
copies the component’s local data to the model data if the component has a valu-
eRef property that points to a model object property.

During the Render Response phase, model data referred to by the component’s
valueRef property is accessed and rendered to the page.

44 USING JAVASERVER FACES TECHNOLOGY
The valueRef property uses an expression language syntax to reference the data
bound to a component. Table 3–5 on page 44 shows a few examples of valid
valueRef expressions.

The new ValueBinding API evaluates the valueRef expression that refers to a
model object, a model object property, or other primitive or data structure.

A ValueBinding uses a VariableResolver to retrieve a value. The Vari-

ableResolver searches the scopes and implicit objects to retrieve the value.
Implicit objects map parameters to values. For example, the integer literal, quan-
tity, from Table 3–5 on page 44 is initialized as a property initialized from a con-
text init parameter. The implicit objects that a VariableResolver searches are
listed in Table 3–6 on page 44.

Table 3–5 Example valueRef Expressions

Value valueRef Expression

A property initialized from a context
init parameter

initParam.quantity

A bean property CarBean.engineOption

Value in an array engines[3]

Value in a collection CarPriceMap[“jalopy”]

Property of an object in an array of
objects

cars[3].carPrice

Table 3–6 Implicit Objects

Implicit object What it is

applicationScope A Map of the application scope attribute values, keyed by attribute name.

cookie
A Map of the cookie values for the current request, keyed by cookie
name.

facesContext The FacesContext instance for the current request.

BINDING A COMPONENT TO A BEAN PROPERTY 45
A VariableResolver also creates and stores objects in scope. The default Vari-
ableResolver resolves standard implicit variables and is the Managed Bean
Facility, discussed in section Creating Model Objects (page 33). The Managed
Bean Facility is configured with the application configuration resource file,
faces-config.xml.

It’s also possible to create a custom VariableResolver. There are many situa-
tions in which you would want to create a VariableResolver. One situation is if
you don’t want the web application to search a particular scope, or you want it to
search only some of the scopes for performance purposes.

Binding a Component to a Bean
Property
To bind a component to a bean or its property, you must first specify the name of
the bean or property as the value of the valueRef attribute. You configured this
bean in the application configuration file, as explained in section Creating Model

header
A Map of HTTP header values for the current request, keyed by header
name.

headerValues
A Map of String arrays containing all of the header values for HTTP
headers in the current request, keyed by header name.

initParam A Map of the context initialization parameters for this web application.

param
A Map of the request parameters for this request, keyed by parameter
name.

paramValues
A Map of String arrays containing all of the parameter values for request
parameters in the current request, keyed by parameter name.

requestScope A Map of the request attributes for this request, keyed by attribute name.

sessionScope A Map of the session attributes for this request, keyed by attribute name.

tree
The root UIComponent in the current component tree stored in the Faces-
Request for this request.

Table 3–6 Implicit Objects

Implicit object What it is

46 USING JAVASERVER FACES TECHNOLOGY
Objects (page 33). If you are binding the component to a bean or its property, the
component tag’s valueRef expression must match the corresponding message-

bean-name element up to the first "." in the expression. Likewise, the part of the
valueRef expression after the "." must match the name specified in the corre-
sponding property-name element in the application configuration file. For
example, consider this bean configuration:

<managed-bean>
<managed-bean-name>CarBean</managed-bean-name>
<managed-property>

<property-name>carName</property-name>
<value>Jalopy</value>

</managed-property>
...

</managed-bean>

This example configures a bean called CarBean, which has a property called
carName of type String. If there is already a matching instance of this bean in the
specified scope, the JavaServer Faces implementation does not create it.

To bind a component to this bean property, you refer to the property using a ref-
erence expression from the valueRef attribute of the component’s tag:

<h:output_text valueRef="CarBean.carName” />

See section Creating Model Objects (page 33) for information on how to config-
ure beans in the application configuration file.

Writing Model Object Properties (page 76) explains in more detail how to write
the model object properties for each of the component types.

Binding a Component to an Initial
Default
As explained in How Binding a Component to Data Works (page 43), the valu-

eRef property can refer to a value mapped in an implicit object.

Suppose that you have a set of pages that all display a version number in a
UIOutput component. You can save this number in an implicit object. This way,
all of the pages can reference it, rather than each page including it. To save ver-

COMBINING COMPONENT DATA AND ACTION OBJECTS 47
sionNo as an initial default value in the context initParam implicit object set the
context-param element in your web.xml file:

<context-param>
<param-name>versionNo</param-name>
<param-value>1.05</param-name>

</context-param>

To access the version number at the time the page is rendered, refer to the param-
eter from the version component tag’s valueRef attribute:

<h:output_text id=version valueRef="initParam.versionNo"

Storing values to and retrieving values from other implicit objects are done in a
similar way.

Combining Component Data and
Action Objects
An Action is an object that performs application-specific processing when an
ActionEvent occurs as a result of clicking a button or a hyperlink. The JavaSer-
ver Faces implementation automatically registers a default ActionListener to
handle the Action Event.

The processing an Action object performs occurs in its invoke method, which
returns a logical outcome as a result of the processing. For example, the invoke

method can return “failure” after checking if a password a user enters does not
match the password on file.

This outcome is returned to the default NavigationHandler by way of the
default ActionListener implementation. The NavigationHandler selects the
page to be accessed next by matching the outcome against those defined in a set
of navigation rules specified in the application configuration file.

As the section Using an Action Object With a Navigation Rule (page 111)
explains, the component that generated the ActionEvent maps to the Action

object with its actionRef property. This property references a bean property that
returns the Action object.

It is common practice to include the bean property and the Action implementa-
tion to which it refers within the same bean class. Additionally, this bean class
should represent the model data for the entire form from which the ActionEvent

48 USING JAVASERVER FACES TECHNOLOGY
originated. This is so that the Action object’s invoke method has access to the
form data and the bean’s methods.

To illustrate how convenient it is to combine the form data and the Action

object, consider the situation in which a user uses a form to log in to a Web site.
This form’s data is represented by LogonBean, which is configured in the appli-
cation configuration file:

<managed-bean>
<managed-bean-name>logonForm</managed-bean-name>
<managed-bean-class>foo.LogonForm</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

This declaration creates the LogonForm bean in request scope for each individual
request if the bean is not already in request scope. For more information on cre-
ating beans, see Creating Model Objects (page 33).

To logon, the user enters her username and password in the form. The following
tags from the login.jsp page accept the username and password input:

<h:input_text id="username" size="16"
valueRef="logonForm.username" />

<h:input_secret id="password" size="16"
valueRef="logonForm.password"/>

The valueRef properties of these UIInput components refer to LogonForm bean
properties. The data for these properties are updated when the user enters the
username and password and submits the form by clicking the SUBMIT button.
The button is rendered with this command_button tag:

<h:command_button id="submit" type="SUBMIT"
label="Log On" actionRef="logonForm.logon" />

The actionRef property refers to the getLogon method of the LoginForm bean:

public Action getLogon() {
return new Action() {

public String invoke() {
return (logon());

}
};

}

USING THE JAVASERVER FACES TAG LIBRARIES 49
This method returns an Action (implemented here as an anonymous inner class),
whose invoke method returns an outcome. This outcome is determined by the
processing performed in the bean’s logon method:

protected String logon() {
// If the username is not found in the database, or the

password does not match that stored for the username
Add an error message to the FacesContext
Return null to reload the current page.

// else if the username and password are correct
Save the username in the current session
Return the outcome, “success”

}

The logon method must access the username and password that is stored in the
username and password bean properties so that it can check them against the
username and password stored in the database.

Using the JavaServer Faces Tag
Libraries

JavaServer Faces technology provides two tag libraries: the html_basic tag
library and the jsf-core tag library. The html_basic tag library defines tags for
representing common HTML user interface components. The jsf-core tag
library defines all of the other tags, including tags for registering listeners and
validators on components. The tags in jsf-core are independent of any render-
ing technology and can therefore be used with any render kit. Using these tag
libraries is similar to using any other custom tag library. This section assumes
that you are familiar with the basics of custom tag libraries. If you are not, con-
sult the The Java Web Services Tutorial.

http://java.sun.com/webservices/docs/1.0/tutorial/index.html

50 USING JAVASERVER FACES TECHNOLOGY
Declaring the JavaServer Faces Tag
Libraries
To use the JavaServer Faces tag libraries, you need to include these taglib

directives at the top of each page that will contain the tags defined by these tag
libraries:

<%@ taglib uri=”http://java.sun.com/jsf/html/” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core/” prefix=”f” %>

The uri attribute value uniquely identifies the tag library. The prefix attribute
value is used to distinguish tags belonging to the tag library. For example, the
form tag must be referenced in the page with the h prefix, like this:

<h:form ...>

When you reference any of the JavaServer Faces tags from within a JSP page,
you must enclose all of them in the use_faces tag, which is defined in the
jsf_core library:

<f:use_faces>
... other faces tags, possibly mixed with other content ...

</f:use_faces>

You can enclose other content within the use_faces tag, including HTML and
other JSP tags, but all JavaServer Faces tags must be enclosed within the
use_faces tag.

USING THE CORE TAGS 51
Using the Core Tags
The tags defined by the jsf-core TLD represent a set of tags for performing
core actions that are independent of a particular render kit. The jsf-core tags
are listed in Table 3–7.

Table 3–7 The jsf-core Tags

Tags Functions

Event
Handling
Tags

action_listener
Registers an action listener on a parent com-
ponent

valuechanged_listener
Registers a value-changed listener on a par-
ent component

Attribute
Configuration
Tag

attribute
Adds configurable attributes to a parent
components

Facet Tag facet
Signifies a nested component that has a spe-
cial relationship to its enclosing tag

Parameter
Substitution
Tag

parameter
Substitutes parameters into a MessageFor-
mat instance and to add query string
name/value pairs to a URL.

Container
For Form
Tags

use_faces
Encloses all JavaServer Faces tags on this
page.

52 USING JAVASERVER FACES TECHNOLOGY
These tags are used in conjunction with component tags and are therefore
explained in other sections of this tutorial. Table 3–8 lists which sections explain
how to use which jsf-core tags.

Validator Tags

validate_doublerange
Registers a DoubleRangeValidator on a
component

validate_length
Registers a LengthValidator on a com-
ponent

validate_longrange
Registers a LongRangeValidator on a
component

validate_required
Registers a RequiredValidator on a
component

validate_stringrange
Registers a StringRangeValidator on a
component

validator
Registers a custom Validator on a com-
ponent

Table 3–8 Where the jsf-core Tags are Explained

Tags Where Explained

Event-Handling Tags Handling Events (page 99)

attribute Tag Using the Standard Converters (page 93)

facet Tag Using the panel_grid Tag (page 64)

parameter Tag
Submitting ActionEvents (page 55),
Linking to a URL (page 57), and
Using the output_message Tag (page 63)

use_faces Tag Declaring the JavaServer Faces Tag Libraries (page 50)

Validator Tags Performing Validation (page 81)

Table 3–7 The jsf-core Tags (Continued)

Tags Functions

USING THE HTML TAGS 53
Using the HTML Tags
The tags defined by html_basic represent HTML form controls and other basic
HTML elements. These controls display data or accept data from the user. This
data is collected as part of a form and is submitted to the server, usually when the
user clicks a button. This section explains how to use each of the component tags
shown in Table 2–2, and is organized according to the UIComponent classes from
which the tags are derived.

This section does not explain every tag attribute, only the most commonly-used
ones. Please refer to html_basic.tld file in the lib directory of your download
for a complete list of tags and their attributes.

In general, most of the component tags have these attributes in common:

• id: uniquely identifies the component

• valueRef: identifies the data source mapped to the component

• key: identifies a key in a resource bundle.

• bundle: identifies a resource bundle

In this release, the id attribute is not required for a component tag except in these
situations:

• Another component or a server-side class must refer to the component

• The component tag is impacted by a JSTL conditional or iterator tag (for
more information, see The Java Web Services Tutorial).

If you don’t include an id attribute, the JavaServer Faces implementation auto-
matically generates a component ID.

UIOutput and subclasses of UIOutput have a valueRef attribute, which is
always optional, except in the case of SelectItems. Using the value-ref attribute
to bind to a data source is explained more in section Using the Core
Tags (page 51).

The UIForm Component
A UIForm component is an input form with child components representing data
that is either presented to the user or submitted with the form. The form tag

http://java.sun.com/webservices/docs/1.0/tutorial/doc/JSTL5.html

54 USING JAVASERVER FACES TECHNOLOGY
encloses all of the controls that display or collect data from the user. Here is the
form tag from the ImageMap.jsp page:

<h:form formName="imageMapForm"
... other faces tags and other content...
</h:form>

The formName attribute is passed to the application, where it is used to select the
appropriate business logic.

The form tag can also include HTML markup to layout the controls on the page.
The form tag itself does not perform any layout; its purpose is to collect data and
to declare attributes that can be used by other components in the form.

The UICommand Component
The UICommand component performs an action when it is activated. The most
common example of such a component is the button. This release supports
Button and Hyperlink as UICommand component renderers.

Using the command_button Tag
Most pages in the cardemo example use the command_button tag. When the but-
ton is clicked, the data from the current page is processed, and the next page is
opened. Here is the buyButton command_button tag from buy.jsp:

<h:command_button key="buy" bundle="carDemoBundle"
commandName="customer" action="success" />

Clicking the button will cause Customer.jsp to open. This page allows you to
fill in your name and shipping information.

The key attribute references the localized message for the button’s label. The
bundle attribute references the ResourceBundle that contains a set of localized
messages. For more information on localizing JavaServer Faces applications, see
Performing Localization (page 112).

The commandName attribute refers to the name of the command generated by the
event of clicking the button. The commandName is used by the ActionEventLis-

tener to determine how to process the command. See Handling
Events (page 99) for more information on how to implement event listeners to
process the event generated by button components.

USING THE HTML TAGS 55
The action attribute represents a literal outcome value returned when the button
is clicked. The outcome is passed to the default NavigationHandler, which
matches the outcome against a set of navigation rules defined in the application
configuration file.

A command_button tag can have an actionRef attribute as an alternative to the
action attribute. The actionRef attribute is a value reference expression that
points to an Action, whose invoke method performs some processing and returns
the logical outcome.

See section Navigating Between Pages (page 105) for information on how to use
the action and actionRef attributes.

The cardemo application uses the commandName and the action attributes
together. This is because it uses the outcome from the action attribute to navi-
gate between pages, but it also uses the commandName attribute to point to a lis-
tener that performs some other processing. In practice, this extra processing
should be performed by the Action object, and the actionRef attribute should
be used to point to the Action object. The commandName attribute and its associ-
ated listener should only be used to process UI changes that don’t result in a
page being loaded.

Using the command_hyperlink Tag
The command_hyperlink tag represents an HTML hyperlink and is rendered as
an HTML <a> element. The command_hyperlink tag can be used for two pur-
poses:

• To submit ActionEvents to the application. See Handling
Events (page 99) and Navigating Between Pages (page 105) for more
information.

• To link to a particular URL

Submitting ActionEvents
Like the command_button tag, the command_hyperlink tag can be used to sub-
mit ActionEvents. To submit a ActionEvent for the purpose of navigating
between pages, the tag needs one of these attributes:

• action, which indicates a logical outcome for determining the next page
to be accessed

• actionRef, which refers to the bean property that returns an Action in
response to the event of clicking the hyperlink

56 USING JAVASERVER FACES TECHNOLOGY
The action attribute represents a literal outcome value returned when the hyper-
link is clicked. The outcome is passed to the default NavigationHandler, which
matches the outcome against a set of navigation rules defined in the application
configuration file.

The actionRef attribute is a value reference expression that points to an Action,
whose invoke method performs some processing and returns the logical out-
come.

See section Navigating Between Pages (page 105) for information on how to use
the action and actionRef attributes.

To submit an ActionEvent for the purpose of making UI changes, the tag needs
both of these attributes:

• commandName: the logical name of the command

• commandClass: the name of the listener that handles the event

The commandName attribute refers to the name of the command generated by the
event of clicking the hyperlink. The commandName is used by the Action-

EventListener to determine how to process the command. See Handling
Events (page 99) for more information on how to implement event listeners to
process the event generated by button components.

The commandName attribute and its associated listener should only be used to pro-
cess UI changes that don’t result in a page being loaded. See Registering Listen-
ers on Components (page 103) for more information on using the commandName

attribute.

In addition to these attributes, the tag also needs a label attribute, which is the
text that the user clicks to generate the event and either:

A command_hyperlink tag can contain parameter tags that will cause an
HTML <input type=hidden> element to be rendered. This input tag repre-
sents a hidden control that stores the name and value specified in the parameter

tags between client/server exchanges so that the server-side classes can retrieve
the value. The following two tags show command_hyperlink tags that submit
ActionEvents. The first tag does not use parameters; the second tag does use
parameters.

<h:command_hyperlink id="commandParamLink" commandName="login"
commandClass="LoginListener" label="link text"/>

<h:command_hyperlink id="commandParamLink" commandName="login"
commandClass="LoginListener" label="Login">
<f:parameter id="Param1" name="name"

USING THE HTML TAGS 57
valueRef=”LoginBean.name”/>
<f:parameter id="Param2" name="value"

valueRef="LoginBean.password"/>
</h:command_hyperlink>

The first tag renders this HTML:

<a href="#"
onmousedown="document.forms[0].commandParamLink.value='login';
document.forms[0].submit()" class="hyperlinkClass">

link text
<input type="hidden" name="commandParamLink"/>

The second tag renders this HTML, assuming that LoginBean.name is duke and
LoginBean.password is redNose:

<a href="#"
onmousedown="document.forms[0].commandParamLink.value='login';
document.forms[0].submit()" class="hyperlinkClass">

link text
<input type="hidden" name="commandParamLink"/>
<input type="hidden" name="name" value="duke"/>
<input type="hidden" name="value" value="redNose"/>

Note: Notice that the command_hyperlink tag that submits ActionEvents will
render JavaScript. If you use this tag, make sure your browser is JavaScript-enabled.

Linking to a URL
To use command_hyperlink to link to a URL, your command_hyperlink tag
must specify the href attribute, indicating the page to which to link.

A command_hyperlink that links to a URL can also contain parameter tags.
The parameter tags for this kind of command_link tag allow the page author to
add query strings to the URL. The following two tags show command_hyperlink

tags that link to a URL. The first tag does not use parameters; the second tag
does use parameters.

<h:command_hyperlink id="hrefLink" href="welcome.html"
image="duke.gif"/>

<h:command_hyperlink id="hrefParamLink" href="welcome.html"
image="duke.gif">
<f:parameter id="Param1" name="name"

58 USING JAVASERVER FACES TECHNOLOGY
valueRef=”LoginBean.name”/>
<f:parameter id="Param2" name="value"

valueRef="LoginBean.password"/>
</h:command_hyperlink>

The first tag renders this HTML:

The second tag renders this HTML, assuming that LoginBean.name is duke and
LoginBean.password is redNose:

The UIGraphic Component
The UIGraphic component displays an image. The cardemo application has
many examples of graphic_image tags. Here is the graphic_image tag used
with the image map on ImageMap.jsp:

<h:graphic_image id="mapImage" url="/world.jpg"
usemap="#worldMap" />

The url attribute specifies the path to the image. It also corresponds to the local
value of the UIGraphic component so that the URL can be retrieved with the
currentValue method or indirectly from a model object. The URL of the exam-
ple tag begins with a “/”, which adds the relative context path of the Web appli-
cation to the beginning of the path to the image.

The usemap attribute refers to the image map defined by the custom UIMap com-
ponent on the same page. See Creating Custom UI Components (page 117) for
more information on the image map.

The UIInput and UIOutput Components
The UIInput component displays a value to a user and allows the user to modify
this data. The most common example is a text field. The UIOutput component
displays data that cannot be modified. The most common example is a label.

Both UIInput and UIOutput components can be rendered in several different
ways. Since the components have some common functionality, they share many
of the same renderers.

USING THE HTML TAGS 59
Table 3–9 lists the common renderers of UIInput and UIOutput. Recall from
The Component Rendering Model (page 20) that the tags are composed of the
component and the renderer. For example, the input_text tag refers to a UIIn-

put component that is rendered with the Text Renderer.

Table 3–9 UIInput and UIOutput Renderers

Renderer Tag Function

Date

input_date
Accepts a java.util.Date formatted with a
java.text.Date instance

output_date
Displays a java.util.Date formatted with a
java.text.Date instance

DateTime

input_datetime
Accepts a java.util.Date formatted with a
java.text.DateTime instance

output_datetime
Displays a java.util.Date formatted with a
java.text.DateTime instance

Number

input_number
Accepts a numeric data type (java.lang.Number
or primitive), formatted with a java.text.Num-
berFormat

output_number
Accepts a numeric data type (java.lang.Number
or primitive), formatted with a java.text.Num-
berFormat

Text
input_text Accepts a text string of one line.

output_text Displays a text string of one line.

Time

input_time
Accepts a java.util.Date, formatted with a
java.text.DateFormat time instance

output_time
Displays a java.util.Date, formatted with a
java.text.DateFormat time instance

60 USING JAVASERVER FACES TECHNOLOGY
In addition to the renderers listed in Table 3–9, UIInput and UIOutput each sup-
port other renderers that the other component does not support. These are listed
in Table 3–10.

All of the tags listed in Table 3–9—except for the input_text and output_text

tags—display or accept data of a particular format specified in the java.text or
java.util packages. You can also apply the Date, DateTime, Number, and Time

renderers associated with these tags to convert data associated with the
input_text, output_text, input_hidden, and input_secret tags. See Per-
forming Data Conversions (page 92) for more information on using these ren-
derers as converters.

The rest of this section explains how to use selected tags listed in the two tables
above. These tags are: input_datetime, output_datetime, output_label,
output_message, input_secret, output_text, and input_text.

The output_errors tag is explained in Performing Validation (page 81). The
tags associated with the Date, Number, and Time renderers are defined in a simi-
lar way to those tags associated with the DateTime renderer. The input_hidden

and input_textarea tags are similar to the input_text tag. Refer to the

Table 3–10 Additional UIInput and UIOutput Renderers

Component Renderer Tag Function

UIInput

Hidden input_hidden
Allows a page author to include a
hidden variable in a page

Secret input_secret
Accepts one line of text with no
spaces and displays it as a set of
asterisks as it is typed

TextArea input_textarea Accepts multiple lines of text

UIOutput

Errors output_errors

Displays error messages for an
entire page or error messages asso-
ciated with a specified client identi-
fier

Label output_label
Displays a nested component as a
label for a specified input field

Message output_message Displays a localized message

USING THE HTML TAGS 61
html_basic TLD in your download to see what attributes are supported for
these extra tags.

Using the input_datetime and output_datetime Tags
The DateTime renderer can render both UIInput and UIOutput components.
The input_datetime tag displays and accepts data in a
java.text.SimpleDateFormat. The output_datetime tag displays data in a
java.text.SimpleDateFormat. This section shows you how to use the
output_datetime tag. The input_datetime tag is written in a similar way.

The output_datetime and input_datetime tags have the following attributes
and values for formatting data:

• dateStyle: short(default), medium, long, full

• timeStyle: short(default), medium, long, full

• timezone: short(default), long

• formatPattern: a String specifying the format of the data

See java.text.SimpleDateFormat and java.util.TimeZone for information
on specifying the style of dateStyle, timeStyle, and timezone. You can use
the first three attributes in the same tag simultaneously or separately. Or, you can
simply use formatPattern to specify a String pattern to format the data. The
following tag is an example of using the formatPattern attribute:

<h:output_datetime
formatPattern="EEEEEEEE, MMM d, yyyy hh:mm:ss a z"
valueRef="LoginBean.date"/>

One example of a date and time that this tag can display is:

Saturday, Feb 22, 2003 18:10:15 pm PDT

You can also display the same date and time with this tag:

<h: output_datetime dateStyle=”full” timeStyle=”long”
valueRef=”LoginBean.date” />

The application developer is responsible for ensuring that the LoginBean.date

property is the proper type to handle these formats.

The tags corresponding to the Date, Number, and Time renderers are written in a
similar way. See the html_basic TLD in the lib directory of your installation
to look up the attributes supported by the tags corresponding to these renderers.

62 USING JAVASERVER FACES TECHNOLOGY
Using the output_text and input_text Tags
The Text renderer can render both UIInput and UIOutput components. The
input_text tag displays and accepts a single-line string. The output_text tag
displays a single-line string. This section shows you how to use the input_text

tag. The output_text tag is written in a similar way.

The following attributes, supported by both output_text and input_text, are
likely to be the most commonly used:

• id: Identifies the component associated with this tag

• valueRef: Identifies the model object property bound to the component

• converter: Identifies one of the renderers that will be used to convert the
component’s local data to the model object property data specified in the
valueRef attribute. See Performing Data Conversions (page 92) for more
information on how to use this attribute.

• value: Allows the page author to specify the local value of the component.

The output_text tag also supports the key and bundle attributes, which are
used to fetch the localized version of the component’s local value. See Perform-
ing Localization (page 112) for more information on how to use these attributes.

Here is an example of an input_text tag from the Customer.jsp page:

<h:input_text valueRef="CustomerBean.firstName" />

The valueRef value refers to the firstName property on the CustomerBean

model object. After the user submits the form, the value of the firstName prop-
erty in CustomerBean will be set to the text entered in this field.

Using the output_label Tag
The output_label tag is used to attach a label to a specified input field for
accessibility purposes. Here is an example of an output_label tag:

<h:output_label for="firstName">
<h:output_text id="firstNameLabel" value="First Name"/>

</h:output_label>
...
<h:input_text id="firstName" />

The for attribute maps to the id of the input field to which the label is attached.
The output_text tag nested inside the output_label tag represents the actual

USING THE HTML TAGS 63
label. The value attribute on the output_text tag indicates the label that is dis-
played next to the input field.

Using the output_message Tag
The output_message tag allows a page author to display concatenated messages
as a MessageFormat pattern. Here is an example of an output_message tag:

<h:output_message
value="Goodbye, {0}. Thanks for ordering your {1} " >
<f:parameter id="param1" valueRef="LoginBean.name"/>
<f:parameter id="param2" valueRef="OrderBean.item” />

</h:output_message>

The value attribute specifies the MessageFormat pattern. The parameter tags
specify the substitution parameters for the message. The valueRef for param1
maps to the user’s name in the LoginBean. This value replaces {0} in the mes-
sage. The valueRef for param2 maps to the item the user ordered in the
OrderBean. This value replaces {1} in the message. Make sure you put the
parameter tags in the proper order so that the data is inserted in the correct place
in the message.

Instead of using valueRef, a page author can hardcode the data to be substituted
in the message by using the value attribute on the parameter tag.

Using the input_secret Tag
The input_secret tag renders an <input type=”password”> HTML tag.
When the user types a string in this field, a row of asterisks is displayed instead
of the string the user types. Here is an example of an input_secret tag:

<h:input_secret redisplay=”false”
valueRef=”LoginBean.password” />

In this example, the redisplay attribute is set to false. This will prevent the
password from being displayed in a query string or in the source file of the
resulting HTML page.

The UIPanel Component
The UIPanel class extends UIOutput. A UIPanel component is used as a layout
container for its children. When using the renderers from the HTML render kit, a

64 USING JAVASERVER FACES TECHNOLOGY
UIPanel is rendered as an HTML table. Table 3–11 lists all of the renderers and
tags corresponding to the UIPanel component.

The panel_grid and panel_list tags are used to represent entire tables. The
panel_data tags and panel_group tags are used to represent rows in the tables.
To represent individual cells in the rows, the output_text tag is usually used,
but any output component tag can be used to represent a cell.

A panel_data tag can only be used in a panel_list. A panel_group can be
used in both panel_grid tags and panel_list tags. The next two sections show
you how to create tables with panel_grid and panel_list, and how to use the
panel_data and panel_group tags to generate rows for the tables.

Using the panel_grid Tag
The panel_grid tag has a set of attributes that specify CSS stylesheet classes:
the columnClasses, footerClass, headerClass, panelClass, and
rowClasses. These stylesheet attributes are not required.

Table 3–11 UIPanel Renderers and Tags

Renderer Tag
Renderer
Attributes Function

Data panel_data var
Iterates over a collection of data,
rendered as a set of rows

Grid panel_grid

columnClasses,
columns, foot-
erClass, head-
erClass,
panelClass,
rowClasses

Displays a table

Group panel_group
Groups a set of components under
one parent

List panel_list

columnClasses,
footerClass,
headerClass,
panelClass,
rowClasses

Displays a table of data that comes
from a Collection, array,
Iterator, or Map

USING THE HTML TAGS 65
The panel_grid tag also has a columns attribute. The columns attribute is
required if you want your table to have more than one column because the
columns attribute tells the renderer how to group the data in the table.

If a headerClass is specified, the panel_grid must have a header as its first
child. Similarly, if a footerClass is specified, the panel_grid must have a
footer as its last child.

The cardemo application includes one panel_grid tag on the buy.jsp page:

<h:panel_grid id="choicesPanel" columns="2"
footerClass="subtitle" headerClass="subtitlebig"
panelClass="medium"
columnClasses="subtitle,medium">
<f:facet name="header">

<h:panel_group>
<h:output_text key="buyTitle" bundle="carDemoBundle"/>

</h:panel_group>
</f:facet>
<h:output_text key="Engine" bundle="carDemoBundle" />
<h:output_text

valueRef=
"CurrentOptionServer.currentEngineOption"/>

...
<h:output_text key="gpsLabel" bundle="carDemoBundle" />
<h:output_text valueRef="CurrentOptionServer.gps" />
<f:facet name="footer">

<h:panel_group>
<h:output_text key="yourPriceLabel"

bundle="carDemoBundle" />
<h:output_text

valueRef="CurrentOptionServer.packagePrice" />
</h:panel_group>

</f:facet>
</h:panel_grid>

This panel_grid is rendered to a table that lists all of the options that the user
chose on the previous page, more.jsp. This panel_grid uses stylesheet classes
to format the table. The CSS classes are defined in the stylesheet.css file in

66 USING JAVASERVER FACES TECHNOLOGY
the example/cardemo/web directory of your download. The subtitlebig defi-
nition is:

.subtitlebig {
font-family: Arial, Helvetica, sans-serif;
font-size: 14px;
color: #93B629;
padding-top: 10;
padding-bottom: 10;

}

Since the panel_grid tag specifies a headerClass and a footerClass, the
panel_grid must contain a header and footer. Usually, a facet tag is used to
represent headers and footers. This is because header and footer data is usually
static.

A facet is used to represent a component that is independent of the parent-child
relationship of the page’s component tree. Since header and footer data is static,
the elements representing headers and footers should not be updated like the rest
of the components in the tree.

This panel_grid uses a facet tag for both the headers and footers. Facets can
only have one child, and so a panel_group tag is needed to group more than one
element within a facet. In the case of the header facet, a panel_group tag is
not really needed. This tag could be written like this:

<f:facet name="header">
<h:output_text key="buyTitle" bundle="carDemoBundle"/>

</f:facet>

The panel_group tag is needed within the footer facet tag because the footer
requires two cells of data, represented by the two output_text tags within the
panel_group tag:

<f:facet name="footer">
<h:panel_group>

<h:output_text key="yourPriceLabel"
bundle="carDemoBundle" />

<h:output_text
valueRef="CurrentOptionServer.packagePrice" />

</h:panel_group>
</f:facet>

A panel_group tag can also be used to encapsulate a nested tree of components
so that the parent thinks of it as a single component.

USING THE HTML TAGS 67
In between the header and footer facet tags, are the output_text tags, each of
which represents a cell of data in the table:

<h:output_text key="Engine" bundle="carDemoBundle" />
<h:output_text

valueRef=
"CurrentOptionServer.currentEngineOption"/>

...
<h:output_text key="gpsLabel" bundle="carDemoBundle" />
<h:output_text valueRef="CurrentOptionServer.gps" />

Again, the data represented by the output_text tags is grouped into rows
according to the value of the columns attribute of the output_text tag. The
columns attribute in the example is set to “2”. So from the list of output_text
tags representing the table data, the data from the odd output_text tags is ren-
dered in the first column and the data from the even output_text tags is ren-
dered in the second column.

Using the panel_list Tag
The panel_list tag has the same set of stylesheet attributes as panel_grid, but
it does not have a columns attribute. The number of columns in the table equals
the number of output_text (or other component tag) elements within the
panel_data tag, which is nested inside the panel_list tag. The panel_data

tag iterates over a Collection, array, Iterator, or Map of model objects. Each
output_text tag nested in a panel_data tag maps to a particular property of
each of the model objects in the list. Here is an example of a panel_list tag:

<h:panel_list id="Accounts" >
<f:facet name="header">

<h:panel_group>
<h:output_text id="acctHead" value="Account Id"/>
<h:output_text id="nameHead" value="Customer Name"/>
<h:output_text id="symbolHead" value="Symbol"/>
<h:output_text id="tlSlsHead" value="Total Sales"/>

</h:panel_group>
</f:facet>
<h:panel_data id="tblData" var="customer"

valueRef="CustomerBean">
<h:output_text id="acctId"

valueRef="customer.acctId"/>
<h:output_text id="name" valueRef="customer.name"/>
<h:output_text id="symbol"

valueRef="customer.symbol"/>

68 USING JAVASERVER FACES TECHNOLOGY
<h:output_text id="tlSls"
valueRef="customer.totalSales"/>

</h:panel_data>
</h:panel_list>

This example uses a facet tag, and a set of output_text tags nested inside a
panel_group tag to represent a header row. See the previous section for a
description of using facets and panel_group tags.

The component represented by the panel_data tag maps to a bean that is a Col-

lection, array, Iterator, or Map of beans. The valueRef attribute refers to this
bean, called CustomerBean. The var attribute refers to the current bean in the
CustomerBean list. In this example, the current bean is called customer. Each
component represented by an output_text tag maps to a property on the cus-

tomer bean.

The panel_data tag’s purpose is to iterate over the model objects and allow the
output_text tags to render the data from each bean in the list. Each iteration
over the list of beans will produce one row of data.

One example table that can be produced by this panel_list tag is:

The UISelectBoolean Component
The UISelectBoolean class defines components that have a boolean value. The
selectboolean_checkbox tag is the only tag that JavaServer Faces technology
provides for representing boolean state. The more.jsp page has a set of

Table 3–12 Example Accounts Table

Account Id Customer Name Symbol Total Sales

123456 Sun Microsystems, Inc. SUNW 2345.60

789101 ABC Company ABC 458.21

USING THE HTML TAGS 69
selectboolean_checkbox tags. Here is the one representing the
cruisecontrol component:

<h:selectboolean_checkbox id="cruisecontrol"
title="Cruise Control"
valueRef="CurrentOptionServer.cruiseControlSelected" >
<f:valuechanged_listener

type="cardemo.PackageValueChanged"/>
</h:selectboolean_checkbox>

The id attribute value refers to the component object. The label attribute value
is what is displayed next to the checkbox. The valueRef attribute refers to the
model object property associated with the component. The property that a
selectboolean_checkbox tag maps to should be of type boolean, since a
checkbox represents a boolean value.

The UISelectMany Component
The UISelectMany class defines components that allow the user to select zero or
more values from a set of values. This component can be rendered as a check-
boxlist, a listbox, or a menu. This section explains the
selectmany_checkboxlist and selectmany_menu tags. The
selectmany_listbox tag is similar to the selectmany_menu tag, except
selectmany_listbox does not have a size attribute since a listbox displays all
items at once.

Using the selectmany_checkboxlist Tag
The selectmany_checkboxlist tag renders a set of checkboxes, one for each
value that can be selected. The cardemo does not have an example of a
selectmany_checkboxlist tag, but this tag can be used to render the check-
boxes on the more.jsp page:

<h:selectmany_checkboxlist
valueRef="CurrentOptionServer.currentOptions">
<h:selectitem itemLabel="Sunroof"

valueRef="CurrentOptionServer.sunRoofSelected">
<f:valuechanged_listener

type="cardemo.PackageValueChanged" />
</h:selectitem>
<h:selectitem itemLabel="Cruise Control"

valueRef=
"CurrentOptionServer.cruiseControlSelected" >

70 USING JAVASERVER FACES TECHNOLOGY
<f:valuechanged_listener
type="cardemo.PackageValueChanged" />

</h:selectitem>
</h:selectmany_checkboxlist>

The valueRef attribute identifies the model object property, currentOptions,
for the current set of options. This property holds the values of the currently
selected items from the set of checkboxes.

The selectmany_checkboxlist tag must also contain a tag or set of tags repre-
senting the set of checkboxes. To represent a set of items, you use the selec-

titems tag. To represent each item individually, use a selectitem tag for each
item. The UISelectItem and UISelectItems Classes (page 72) section explains
these two tags in more detail.

Using the selectmany_menu Tag
The selectmany_menu tag represents a component that contains a list of items,
from which a user can choose one or more items. The menu is also commonly
known as a drop-down list or a combo box. The tag representing the entire list is
the selectmany_menu tag. Here is an example of a selectmany_menu tag:

<h:selectmany_menu id="fruitOptions"
valueRef="FruitOptionBean.chosenFruits">
<h:selectitems

valueRef="FruitOptionBean.allFruits"/>
</h:selectmany_menu>

The attributes of the selectmany_menu tag are the same as those of the
selectmany_checkboxlist tag. Again, the valueRef of the selectmany_menu

tag maps to the property that holds the currently selected items’ values. A
selectmany_menu tag can also have a size attribute, whose value specifies how
many items will display at one time in the menu. When the size attribute is set,
the menu will render with a scrollbar for scrolling through the displayed items.

Like the selectmany_checkboxlist tag, the selectmany_menu tag must con-
tain either a selectitems tag or a set of selectitem tags for representing the
items in the list. The valueRef attribute of the selectitems tag in the example
maps to the property that holds all of the items in the menu. The UISelectItem
and UISelectItems Classes (page 72) explains these two tags.

USING THE HTML TAGS 71
The UISelectOne Component
The UISelectOne class defines components that allow the user to select one
value from a set of values. This component can be rendered as a listbox, a radio
button, or a menu. The cardemo example uses the selectone_radio and
selectone_menu tags. The selectone_listbox tag is similar to the
selectone_menu tag, except selectone_listbox does not have a size attribute
since a listbox displays all items at once. This section explains how to use the
selectone_radio and selectone_menu tags.

Using the selectone_radio Tag
The selectone_radio tag renders a set of radio buttons, one for each value that
can be selected. Here is a selectone_radio tag from more.jsp that allows you
to select a brake option:

<h:selectone_radio id="currentBrake"
valueRef="CurrentOptionServer.currentBrakeOption">
<f:valuechanged_listener

type="cardemo.PackageValueChanged"/>
<h:selectitems

valueRef="CurrentOptionServer.brakeOption"/>
</h:selectone_radio>

The id attribute of the selectone_radio tag uniquely identifies the radio group.
The id is only required if another component, model object, or listener must refer
to this component; otherwise, the JavaServer Faces implementation will generate
a component id for you.

The valueRef attribute identifies the model object property for brakeOption,
which is currentBrakeOption. This property holds the value of the currently
selected item from the set of radio buttons. The currentBrakeOption property
can be any of the types supported by JavaServer Faces technology.

The selectone_radio tag must also contain a tag or set of tags representing the
list of items contained in the radio group. To represent a set of tags, you use the
selectitems tag. To represent each item individually, use a selectitem tag for
each item. The UISelectItem and UISelectItems Classes (page 72) explains these
two tags in more detail.

Using the selectone_menu Tag
The selectone_menu tag represents a component that contains a list of items,
from which a user can choose one item. The menu is also commonly known as a

72 USING JAVASERVER FACES TECHNOLOGY
drop-down list or a combo box. An option list is a little different from a radio
group because all selectable items are contained in one component; whereas a
radio group consists of a set of distinct components. The tag representing the
entire list is the selectone_menu tag. Here is the selectone_menu tag from the
more.jsp page:

<h:selectone_menu id="currentEngine"
valueRef="CurrentOptionServer.currentEngineOption">
<f:valuechanged_listener

type="cardemo.PackageValueChanged" />
<h:selectitems

valueRef="CurrentOptionServer.engineOption"/>
</h:selectone_menu>

The attributes of the selectone_menu tag are the same as those of the
selectone_radio tag. Again, the valueRef of the selectone_menu tag maps to
the property that holds the currently selected item’s value. A selectone_menu

tag can also have a size attribute, whose value specifies how many items will dis-
play at one time in the menu. When the size attribute is set, the menu will ren-
der with a scrollbar for scrolling through the displayed items.

Like the selectone_radio tag, the selectone_menu tag must contain either a
selectitems tag or a set of selectitem tags for representing the items in the
list. The UISelectItem and UISelectItems Classes (page 72) section explains
these two tags.

The UISelectItem and UISelectItems Classes
The UISelectItem and the UISelectItems classes represent components that
can be nested inside a UISelectOne or a UISelectMany component. The UISe-

lectItem is associated with a SelectItem instance, which contains the value,
label, and description of a single item in the UISelectOne or UISelectMany

component. The UISelectItems class represents a set of SelectItem instances,
containing the values, labels, and descriptions of the entire list of items.

The selectitem tag represents a UISelectItem component. The selectitems

tag represents a UISelectItems component. You can use either a set of selec-
titem tags or a single selectitems tag within your selectone or selectmany
tags.

USING THE HTML TAGS 73
The advantages of using selectitems are

• You can represent the items using different data structures, including
Array, Map, List, and Collection. The data structure is composed of
SelectItem instances.

• You can dynamically generate a list of values at runtime.

The advantages of using selectitem are:

• The page author can define the items in the list from the page.

• You have less code to write in the model object for the selectitem prop-
erties.

For more information on writing model object properties for the UISelectItems
components, see Writing Model Object Properties (page 76). The rest of this
section shows you how to use the selectitems and selectitem tags.

The selectitems Tag
Here is the selectone_menu tag from The UISelectOne Component (page 71):

<h:selectone_menu id="currentEngine"
valueRef="CurrentOptionServer.currentEngineOption">
<f:valuechanged_listener

type="cardemo.PackageValueChanged" />
<h:selectitems

valueRef="CurrentOptionServer.engineOption"/>
</h:selectone_menu>

The id attribute of the selectitems tag refers to the UISelectItems component
object.

The valueRef attribute binds the selectitems tag to the engineOption prop-
erty of CurrentOptionServer.

In the CurrentOptionServer, the engineOption property has a type of ArrayL-
ist:

engineOption = new ArrayList(engines.length);

74 USING JAVASERVER FACES TECHNOLOGY
UISelectItems is a collection of SelectItem instances. You can see this by not-
ing how the engineOption ArrayList is populated:

for (i = 0; i < engines.length; i++) {
engineOption.add(new SelectItem(engines[i], engines[i],

engines[i]));
}

The arguments to the SelectItem are:

• An Object representing the value of the item

• A String representing the label that displays in the UISelectOne compo-
nent on the page

• A String representing the description of the item

UISelectItems Properties (page 80) describes in more detail how to write a
model object property for a UISelectItems component

The selectitem Tag
The cardemo application contains a few examples of selectitem tags, but let’s
see how the engineOption tag would look if you used selectitem instead of
selectitems:

<h:selectone_menu id="engineOption"
valueRef="CurrentOptionServer.currentEngineOption">

<h:selectitem
itemValue=”v4” itemLabel=”v4”/>

<h:selectitem
itemValue=”v6” itemLabel=”v6”/>

<h:selectitem
itemValue=”v8” itemLabel=”v8”/>

</h:selectone_menu>

The selectone_menu tag is exactly the same and maps to the same property,
representing the currently selected item.

The itemValue attribute represents the default value of the SelectItem

instance. The itemLabel attribute represents the String that appears in the
dropdown list component on the page.

You can also use a valueRef attribute instead of the itemValue attribute to rep-
resent the value of the item.

WRITING A MODEL OBJECT CLASS 75
Writing a Model Object Class
A model object is a JavaBeans component that encapsulates the data on a set of
components. It might also perform the application-specific functionality associ-
ated with the component data. For example, a model object might perform a cur-
rency conversion using a value that the user enters into UIInput component and
then output the conversion to an UIOutput component. The model object follows
JavaBeans component conventions in that it must contain an empty constructor
and a set of properties for setting and getting the data, like this:

...
String myBeanProperty = null;
...
public MyBean() {}
String getMyBeanProperty{

return myBeanProperty;
}
void setMyBeanProperty(String beanProperty){

myBeanProperty = beanProperty;
}

You can bind most of the component classes to model object properties, but you
are not required to do so.

In order to bind a component to a model object property, the type of the property
must match the type of the component object to which it is bound. In other
words, if a model object property is bound to a UISelectBoolean component,
the property should accept and return a boolean value. The rest of this section
explains how to write properties that can be bound to the component classes
described in Using the HTML Tags (page 53).

76 USING JAVASERVER FACES TECHNOLOGY
Writing Model Object Properties
Table 3–13 lists all the component classes described in Using the HTML
Tags (page 53) and the acceptable types of their values.

Make sure to use the valueRef attribute in the tags of the components mapped to
properties. Also, be sure to use the proper names of the properties. For example,

Table 3–13 Acceptable Component Types

Component Renderer Types

UIInput/
UIOutput

Date java.util.Date

DateTime java.util.Date

Number java.lang.Number

Time java.util.Date

Text
java.lang.String
With a standard converter: Date and Number

UIInput

Hidden
java.lang.String
With a standard converter: Date and Number

Secret
java.lang.String
With a standard converter: Date and Number

UIOutput Message java.lang.String

UIPanel Data
array,java.util.Collection,
java.util.Iterator, java.util.Map

UISelectBoolean Checkbox boolean

UISelectItem java.lang.String

UISelectItems
java.lang.String, Collection, Array,
Map

UISelectMany
CheckboxList,
Listbox, Menu

Collection, Array

UISelectOne
Listbox, Menu,
Radio

java.lang.String,int, double, long

WRITING MODEL OBJECT PROPERTIES 77
if a valueRef tag has a value of CurrentOptionServer.currentOption, the
corresponding String property should be:

String currentOption = null;
String getCurrentOption(){...}
void setCurrentOption(String option){...}

For more information on JavaBeans conventions, see JavaBeans Components in
JSP Pages in The Java Web Services Tutorial.

UIInput and UIOutput Properties
Properties for UIInput and UIOutput objects accept the same types and are the
most flexible in terms of the number of types they accept, as shown in Table 3–
13.

Most of the UIInput and UIOutput properties in the cardemo application are of
type String. The zip UIInput component is mapped to an int property in Cus-

tomerBean.java because the zip component is rendered with the Number ren-
derer:

<h:input_number id="zip" formatPattern="#####"
valueRef="CustomerBean.zip" size="5">
...

</h:input_number>

Here is the property mapped to the zip component tag:

int zip = 0;
...
public void setZip(int zipCode) {

zip = zipCode;
}
public int getZip() {

return zip;
}

The components represented by the input_text, output_text, input_hidden,
and input_secret tags can also be bound to the Date, Number and custom types
in addition to java.lang.String when a Converter is applied to the compo-
nent. See Performing Data Conversions (page 92) for more information.

http://java.sun.com/webservices/docs/1.0/tutorial/doc/JSPBeans.html

78 USING JAVASERVER FACES TECHNOLOGY
UIPanel Properties
Only UIPanel components rendered with a Data renderer can be mapped to a
model object. These UIPanel components must be mapped to a JavaBean com-
ponent of type array, java.util.Collection, java.util.Iterator, or
java.util.Map. Here is a bean that maps to the panel_data component from
Using the panel_list Tag (page 67):

public class ListBean extends java.util.ArrayList{
public ListBean() {

add(new CustomerBean("123456", "Sun Microsystems, Inc.",
"SUNW", 2345.60));

add(new CustomerBean("789101", "ABC Company, Inc.",
"ABC", 458.21));

}
}

UISelectBoolean Properties
Properties that hold this component’s data must be of boolean type. Here is the
property for the sunRoof UISelectBoolean component:

protected boolean sunRoof = false;
...

public void setSunRoof(boolean roof) {
sunRoof = roof;

}
public boolean getSunRoof() {

return sunRoof;
}

UISelectMany Properties
Since a UISelectMany component allows a user to select one or more items from
a list of items, this component must map to a model object property of type
java.util.Collection or array. This model object property represents the set
of currently selected items from the list of available items.

WRITING MODEL OBJECT PROPERTIES 79
Here is the model object property that maps to the valueRef of the
selectmany_checkboxlist from Using the selectmany_checkboxlist
Tag (page 69):

protected ArrayList currentOptions = null;

public Object[] getCurrentOptions() {
return currentOptions.toArray();

}
public void setCurrentOptions(Object []newCurrentOptions) {

int len = 0;
if (null == newCurrentOptions ||

(len = newCurrentOptions.length) == 0) {
return;

}
currentOptions.clear();
currentOptions = new ArrayList(len);
for (int i = 0; i < len; i++) {

currentOptions.add(newCurrentOptions[i]);
}

}

Note that the setCurrentOptions(Object) method must clear the Collection

and rebuild it with the new set of values that the user selected.

As explained in The UISelectMany Component (page 69), the UISelectItem

and UISelectItems components are used to represent all the values in a
UISelectMany component. See UISelectItem Properties (page 80) and UISelec-
tItems Properties (page 80) for information on how to write the model object
properties for the UISelectItem and UISelectItems components.

UISelectOne Properties
The UISelectOne properties accept the same types as UIInput and UIOutput

properties. This is because a UISelectOne component represents the single
selected item from a set of items. This item could be a String, int, long, or
double. Here is the property corresponding to the engineOption UISelectOne

component from more.jsp:

protected Object currentEngineOption = engines[0];
...
public void setCurrentEngineOption(Object eng) {

currentEngineOption = eng;
}

80 USING JAVASERVER FACES TECHNOLOGY
public Object getCurrentEngineOption() {
return currentEngineOption;

}

Note that currentEngineOption is one of the objects in an array of objects, rep-
resenting the list of items in the UISelectOne component.

As explained in The UISelectOne Component (page 71), the UISelectItem and
UISelectItems components are used to represent all the values in a
UISelectOne component. See UISelectItem Properties (page 80) and UISelec-
tItems Properties (page 80) for information on how to write the model object
properties for the UISelectItem and UISelectItems components.

UISelectItem Properties
A UISelectItem component represents one value in a set of values in a
UISelectMany or UISelectOne component. A UISelectItem property must be
mapped to property of type SelectItem. A SelectItem object is composed of:
an Object representing the value, and two Strings representing the label and
description of the SelectItem.

Here is an example model object property for a SelectItem component:

SelectItem itemOne = null;

SelectItem getItemOne(){
return SelectItem(String value, String label, String

description);
}

void setItemOne(SelectItem item) {
itemOne = item;

}

UISelectItems Properties
The UISelectItems properties are the most difficult to write and require the
most code. The UISelectItems components are used as children of UISelect-
Many and UISelectOne components. Each UISelectItems component is com-
posed of a set of SelectItem instances. In your model object, you must define a
set of SelectItem objects, set their values, and populate the UISelectItems

object with the SelectItem objects. The following code snippet from Curren-

PERFORMING VALIDATION 81
tOptionServer shows how to create the engineOption UISelectItems prop-
erty.

import javax.faces.component.SelectItem;
...
protected ArrayList engineOption;
...
public CurrentOptionServer() {

protected String engines[] = {
"V4", "V6", "V8"

};
engineOption = new ArrayList(engines.length);
...
for (i = 0; i < engines.length; i++) {

engineOption.add(new SelectItem(engines[i],
engines[i], engines[i]));

}
}
...
public void setEngineOption(Collection eng) {

engineOption = new ArrayList(eng);
}
public Collection getEngineOption() {

return engineOption;
}

The code first initializes engineOption as an ArrayList. The for loop creates a
set of SelectItem objects with values, labels and descriptions for each of the
engine types. Finally, the code includes the obligatory setEngineOption and
getEngineOption accessor methods.

Performing Validation
JavaServer Faces technology provides a set of standard classes and associated
tags that page authors and application developers can use to validate a compo-

82 USING JAVASERVER FACES TECHNOLOGY
nent’s data. Table 3–14 lists all of the standard validator classes and the tags that
allow you to use the validators from the page.

All of these validator classes implement the Validator interface. Component
writers and application developers can also implement this interface to define
their own set of constraints for a component’s value.

This section shows you how to use the standard Validator implementations,
how to write your own custom validator by implementing the Validator inter-
face, and how to display error messages resulting from validation failures.

Table 3–14 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validate_doublerange

Checks if the local value of a
component is within a certain
range. The value must be float-
ing-point or convertible to float-
ing-point.

LengthValidator validate_length

Checks if the length of a compo-
nent’s local value is within a cer-
tain range. The value must be a
java.lang.String.

LongRangeValidator validate_longrange

Checks if the local value of a
component is within a certain
range. The value must be any-
thing that can be converted to a
long.

RequiredValidator validate_required

Checks if the local value of a
component is not null. In addi-
tion, if the local value is a
String, ensures that it is not
empty.

StringRangeValidator validate_stringrange

Checks if the local value of a
component is within a certain
range. The value must be a
java.lang.String.

DISPLAYING VALIDATION ERROR MESSAGES 83
Displaying Validation Error Messages
A page author can output error messages resulting from both standard and cus-
tom validation failures using the output_errors tag. Here is an example of an
output_errors tag:

<h:output_errors for="ccno" />

The output_errors tag causes validation error messages to be displayed wher-
ever the tag is located on the page. The for attribute of the tag must match the id
of the component whose data requires validation checking. This means that you
must provide an ID for the component by specifying a value for the component
tag’s id attribute. If the for attribute is specified, the errors resulting from all
failed validations on the page will display wherever the tag is located on the
page. The next two sections show examples of using the output_errors tag
with the validation tags.

Using the Standard Validators
When using the standard Validator implementations, you don’t need to write
any code to perform validation. You simply nest the standard validator tag of
your choice inside a tag that represents a component of type UIInput (or a sub-
class of UIInput) and provide the necessary constraints, if the tag requires it.
Validation can only be performed on components whose classes extend UIInput

since these components accept values that can be validated.

The Customer.jsp page of the cardemo application uses two of the standard
validators: StringRangeValidator and RequiredValidator. This section
explains how to use these validators. The other standard validators are used in a
similar way.

Using the Required Validator
The zip input_text tag on Customer.jsp uses a RequiredValidator, which
checks if the value of the component is null or is an empty String. If your com-
ponent must have a non-null value or a String value at least one character in
length, you should register this validator on the component. If you don’t register
a RequiredValidator, any other validators you have registered on the compo-
nent will not be executed. This is because the other validators can only validate a

84 USING JAVASERVER FACES TECHNOLOGY
non-null value or a String value of at least one character. Here is the zip

input_text tag from Customer.jsp:

<h:input_text id=”zip” valueRef=”CustomerBean.zip” size=”10”>
<f:validate_required />
<cd:format_validator

formatPatterns=”99999|99999-9999|### ###” />
</h:input_text>
<h:output_errors for=”zip” />

The zip component tag contains a custom validator tag besides the
validate_required tag. This custom validator is discussed in section Creating
a Custom Validator (page 85). In order for other validators to be processed, the
validate_required tag is needed to first check if the value is null or a String

value of at least one character. However, you can register the validator tags in
any order; you don’t have to register the RequiredValidator first.

Because of the output_errors tag, an error will display on the page if the value
is null or an empty String. When the user enters a value in response to seeing
the error message, the other validators can check the validity of the value.

Using the StringRangeValidator
The middleInitial component on the Customer.jsp page uses a StringRan-

geValidator, which checks if the user only enters an alphabetic character in the
middleInitial component. Here is the middleInitial input_text tag from
Customer.jsp:

<h:input_text id="middleInitial" size="1"
maxLength="1" valueRef=”CustomerBean.middleInitial” >
<f:validate_stringrange minimum="A" maximum="z"/>

</h:input_text>
<h:output_errors clientId="middleInitial"/>

The middleInitial tag uses the size attribute and the maxLength attribute.
These attributes restrict the input to one character.

The validator tag uses a StringRangeValidator whose attributes restrict the
value entered to a single alphabetic character from the range A to Z, ignoring
case.

CREATING A CUSTOM VALIDATOR 85
Creating a Custom Validator
If the standard validators don’t perform the validation checking you need, you
can easily create a custom validator for this purpose. To create and use a custom
validator, you need to:

1. Implement the Validator interface

2. Register the error messages

3. Register the Validator class

4. Create a custom tag or use the validator tag

The cardemo application uses a general-purpose custom validator that validates
input data against a format pattern that is specified in the custom validator tag.
This validator is used with the Credit Card Number field and the Zip code field.
Here is the custom validator tag used with the Zip code field:

<cd:format_validator
formatPatterns="99999|99999-9999|### ###" />

According to this validator, the data entered in the Zip code field must be either:

• A 5-digit number

• A 9-digit number, with a hyphen between the 5th and 6th digits

• A 6-character string, consisting of numbers or letters, with a space between
the 3rd and 4th character

The rest of this section describe how this validator is implemented, how it works,
and how to use it in a page.

Implement the Validator Interface
All custom validators must implement the Validator interface. This implemen-
tation must contain a constructor, a set of accessor methods for any attributes on
the tag, and a validate method, which overrides the validate method of the
Validator interface.

The FormatValidator class implements Validator and validates the data on
the Credit Card Number field and the Zip code field. This class defines accessor
methods for setting the attribute formatPatterns, which specifies the accept-
able format patterns for input into the fields.

86 USING JAVASERVER FACES TECHNOLOGY
In addition to the constructor and the accessor methods, the class overrides Val-
idator.validate and provides a method called getMessageResources, which
gets the custom error messages to be displayed when the String is invalid.

All custom Validator implementations must override the validate method,
which takes the FacesContext and the component whose data needs to be vali-
dated. This method performs the actual validation of the data. Here is the vali-
date method from FormatValidator:

public void validate(FacesContext context, UIComponent
component) {

if ((context == null) || (component == null)) {
throw new NullPointerException();

}
if (!(component instanceof UIOutput)) {

return;
}
if (formatPatternsList == null) {

component.setValid(true);
return;

}
String value =

(((UIOutput)component).getValue()).toString();
Iterator patternIt = formatPatternsList.iterator();
while (patternIt.hasNext()) {

valid = isFormatValid(((String)patternIt.next()), value);
if (valid) {

break;
}

}
if (valid) {

component.setValid(true);
} else {

component.setValid(false);
Message errMsg =

getMessageResources().getMessage(context,
FORMAT_INVALID_MESSAGE_ID,
(new Object[] {formatPatterns}));

context.addMessage(component, errMsg);
}

}

This method gets the local value of the component and converts it to a String. It
then iterates over the formatPatternsList list, which is the list of acceptable
patterns as specified in the formatPatterns attribute of the validator tag. While

CREATING A CUSTOM VALIDATOR 87
iterating over the list, this method checks the pattern of the local value against
the patterns in the list. If the value’s pattern matches one of the acceptable pat-
terns, this method stops iterating over the list and marks the components value as
valid by calling the component’s setValid method with the value true. If the pat-
tern of the local value does not match any pattern in the list, this method: marks
the component’s local value invalid by calling component.setValid(false),
generates an error message, and queues the error message to the FacesContext

so that the message is displayed on the page during the Render Response phase.

The FormatValidator class also provides the getMessageResources method,
which returns the error message to display when the data is invalid:

public synchronized MessageResources getMessageResources() {
MessageResources carResources = null;
ApplicationFactory aFactory = (ApplicationFactory)

FactoryFinder.getFactory(
FactoryFinder.APPLICATION_FACTORY);

Application application =
aFactory.getApplication();

carResources =
application.getMessageResources("carDemoResources");

return (carResources);
}

This method first gets an ApplicationFactory, which returns Application

instances. The Application instance supports the
getMessageResources(String) method, which returns the MessageResources

instance identified by carResources. This MessageResources instance is regis-
tered in the application configuration file. This is explained in the next section.

Register the Error Messages
If you create custom error messages, you need to make them available at applica-
tion startup time. You do this by registering them with the application configura-
tion file, faces-config.xml.

Note: This technique for registering messages is not utilized in the version of car-
demo shipped with this release. The cardemo application will be updated to use this
technique in future releases.

88 USING JAVASERVER FACES TECHNOLOGY
Here is the part of the file that registers the error messages:

<message-resources>
<message-resources-id>

carDemoResources
</message-resources-id>
<message>

<message-id>cardemo.Format_Invalid</message-id>
<summary xml:lang="en">

Input must match one of the following patterns
{0}

</summary>
<summary xml:lang="de">

Eingang muß eins der folgenden Muster
zusammenbringen {0}

</summary>
<summary xml:lang="es">

La entrada debe emparejar uno de los
patrones siguientes {0}

</summary>
<summary lang="fr">

L’entrée doit assortir un des modèles
suivants {0}

</summary>
</message>

</message-resources>

The message-resources element represents a set of localizable messages, which
are all related to a unique message-resources-id. This message-resources-id is
the identifier under which the MessageResources class must be registered. It cor-
responds to a static message ID in the FormatValidator class:

public static final String FORMAT_INVALID_MESSAGE_ID =
"cardemo.Format_Invalid";

The message element can contain any number of summary elements, each of
which defines the localized messages. The lang attribute specifies the language
code.

This is all it takes to register message resources. Prior to this release, you had to
write an implementation of the MessageResources class, create separate XML
files for each locale, and add code to a ServletContextListener implementation.
Now, all you need are a few simple lines in the faces-config.xml file to register
message resources.

CREATING A CUSTOM VALIDATOR 89
Register the Custom Validator
Just as the message resources need to be made available at application startup
time, so does the custom validator. You register the custom validator in the faces-
config.xml file with the validator XML tag:

<validator>
<description>FormatValidator Description</description>
<validator-id>FormatValidator</validator-id>
<validator-class>cardemo.FormatValidator</validator-class>
<attribute>

<description>
List of format patterns separated by ’|’

</description>
<attribute-name>formatPatterns</attribute-name>
<attribute-class>java.lang.String</attribute-class>

</attribute>
</validator>

The validator-id and validator-class are required subelements. The validator-id
represents the identifier under which the Validator class should be registered.
This ID is used by the tag class corresponding to the custom validator tag.

The validator-class element represents the fully-qualified class name of the Vali-
dator class.

The attribute element identifies an attribute associated with the Validator. It has
required attribute-name and attribute-class subelements. The attribute-name ele-
ment refers to the name of the attribute as it appears in the validator tag. The
attribute-class element identifies the Java type of the value associated with the
attribute.

Create a Custom Tag or Use the validator Tag
There are two ways to register a Validator instance on a component from the
page:

• Specify which validator class to use with the validator tag. The
Validator implementation defines its own properties

• Create a custom tag that provides attributes for configuring the properties
of the validator from the page

If you want to configure the attributes in the Validator implementation rather
than from the page, the page author only needs to nest a f:validator tag inside

90 USING JAVASERVER FACES TECHNOLOGY
the tag of the component whose data needs to be validated and set the validator
tag’s type attribute to the name of the Validator implementation:

<h:input_text id="zip" valueRef="CustomerBean.zip"
size="10" ... >

<f:validator type=”cardemo.FormatValidator” />
...

</h:input_text>

If you want to use a custom tag, you need to: write a tag handler to create and
register the Validator instance on the component, write a TLD to define the tag
and its attributes, and add the custom tag to the page.

Writing the Tag Handler
The tag handler associated with a custom validator tag must extend the
ValidatorTag class. This class is the base class for all custom tag handlers that
create Validator instances and register them on a UI component. The
FormatValidatorTag is the class that registers the FomatValidator instance.

The CreditCardValidator tag handler class:

• Sets the ID of the Validator by calling
super.setId("FormatValidator").

• Provides a set of accessor methods for each attribute defined on the tag.

• Implements createValidator method of the ValidatorTag class. This
method creates an instance of the Validator and sets the range of values
accepted by the validator.

 Here is the createValidator method from FormatValidator:

protected Validator createValidator() throws JspException {
FormatValidator result = null;
result = (FormatValidator) super.createValidator();
Assert.assert_it(null != result);
result.setFormatPatterns(formatPatterns);
return result;

}

This method first calls super.createValidator to get a new Validator and
casts it to FormatValidator.

Next, the tag handler sets the Validator instance’s attribute values to those sup-
plied as tag attributes in the page. The handler gets the attribute values from the
page via the accessor methods that correspond to the attributes.

CREATING A CUSTOM VALIDATOR 91
Writing the Tag Library Descriptor
To define a tag, you need to declare it in a tag library descriptor (TLD), which is
an XML document that describes a tag library. A TLD contains information
about a library and each tag contained in the library.

The custom validator tag for the Credit Card Number and Zip Code fields is
defined in the cardemo.tld, located in ../cardemo/web/WEB-INF directory of
your download bundle. It contains only one tag definition, for
format_validator:

<tag>
<name>format_validator</name>
<tag-class>cardemo.FormatValidatorTag</tag-class>
<attribute>

<name>formatPatterns</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

The name element defines the name of the tag as it must be used in the page. The
tag-class element defines the tag handler class. The attribute elements define
each of the tag’s attributes. For more information on defining tags in a TLD,
please consult the Defining Tags section of The Java Web Services Tutorial.

Adding the Custom Tag to the Page
To use the custom validator in the JSP page, you need to declare the custom tag
library that defines the custom tag corresponding to the custom component.

To declare the custom tag library, include a taglib directive at the top of each
page that will contain the custom validator tags included in the tag library. Here
is the taglib directive that declares the cardemo tag library:

<%@ taglib uri="/WEB-INF/cardemo.tld" prefix="cd" %>

The uri attribute value uniquely identifies the tag library. The prefix attribute
value is used to distinguish tags belonging to the tag library. Here is the
format_validator tag from the zip tag on Customer.jsp:

<cd:format_validator
formatPatterns="99999|99999-9999|## ###" />

http://java.sun.com/webservices/docs/1.0/tutorial/doc/JSPTags5.html

92 USING JAVASERVER FACES TECHNOLOGY
To register this validator on the zip component (corresponding to the Zip Code-
field) you need to nest the format_validator tag within the zip component tag:

<h:input_text id="zip" valueRef="CustomerBean.zip" size="10" >
...
<cd:format_validator

formatPatterns=”99999|99999-9999|### ###" />
</h:input_text>
<h:output_errors for="zip" />

The output_errors tag following the zip input_text tag will cause the error
messages to display next to the component on the page. The for refers to the
component whose value is being validated.

This way, a page author can use the same custom validator for any similar com-
ponent by simply nesting the custom validator tag within the component tag.

Performing Data Conversions
A typical Web application must deal with two different viewpoints of the under-
lying data being manipulated by the user interface:

• The model view, in which data is represented as native Java types, such as
java.util.Date or java.util.Number.

• The presentation view, in which data is represented in a manner that can be
read or modified by the user. For example, a java.util.Date might be
represented as a text string in the format mm/dd/yy or as a set of three text
strings.

The JavaServer Faces implementation automatically converts component data
between these two views through the component’s renderer. For example, a
UIInput component is automatically converted to a Number when it is rendered
with the Number renderer. Similarly, a UIInput component that is rendered with
the Date renderer is automatically converted to a Date.

The page author selects the component/renderer combination by choosing the
appropriate tag: input_number for a UIInput/Number combination and
input_date for a UIInput/Date combination. It is the application developer’s
responsibility to ensure that the model object property associated with the com-
ponent is of the same type as that generated by the renderer.

Sometimes you might want to convert a component’s data to a type not sup-
ported by the component’s renderer, or you might want to convert the format of

USING THE STANDARD CONVERTERS 93
the data. To facilitate this, JavaServer Faces technology allows you to register a
Converter implementation on certain component/renderer combinations. These
combinations are: UIInput/Text, UIInput/Secret, UIInput/Hidden, and
UIOutput/Text.

Note: In a future release, the mechanism of using component/renderer combina-
tions to perform conversions might be removed. Instead, the page author would reg-
ister a converter on a component associated with an input_text, input_secret,
input_hidden, or output_text tag to perform conversions.

The Converter converts the data between the two views. You can either use the
standard converters supplied with the JavaServer Faces implementation or create
your own custom Converter. This section describes how to use the standard
Converter implementations and explains an example of a custom Converter.

Using the Standard Converters
The JavaServer Faces implementation provides a set of Converter implementa-
tions that you can use to convert your component data to a type not supported by
its renderer. The page author can apply a Converter to a component’s value by
setting the component tag’s converter attribute to the identifier of the
Converter. In addition, the page author can customize the behavior of the
Converter with an attribute tag, which specifies the format of the converted
value. The following tag is an example of applying a Number converter to a com-
ponent and specifying the format of the Number:

<h:input_text id="salePrice"
valueRef="LoginBean.sale"
converter="Number">
<f:attribute name="numberStyle" value="currency"/>

</h:input_text>

As shown in the tag above, the salePrice component’s value is converted to a
Number with a currency format. Table 3–15 lists all of the standard Converter

94 USING JAVASERVER FACES TECHNOLOGY
identifiers, the attributes you can use to customize the behavior of the converter,
and the acceptable values for the format of the data.

Table 3–15 Standard Converter Implementations

Converter
Identifier

Configuration
Attributes Pattern Defined by

Valid Values for
Attributes

Boolean none

Date

dateStyle java.text.DateFormat
short, medium,
long, full.
Default: short

timezone java.util.TimeZone
See
java.util.Time-
Zone

DateFormat

formatPattern java.text.DateFormat
See the Formatting
lesson in The Java
Tutorial

timezone java.util.TimeZone
See
java.util.Time-
Zone

DateTime

dateStyle java.text.DateFormat
short, medium,
long, full
Default: short

timeStyle java.text.DateFormat
short, medium,
long, full.
Default: short

timezone java.util.TimeZone
See
java.util.Time-
Zone

Number numberStyle
java.text.NumberFor-
mat

currency, inte-
ger,
number,
percent
Default: integer

NumberFor-
mat

formatPattern
java.text.NumberFor-
mat

See the Formatting les-
son in The Java Tuto-
rial.

http://java.sun.com/docs/books/tutorial/i18n/format/index.html
http://java.sun.com/docs/books/tutorial/i18n/format/index.html

CREATING AND USING A CUSTOM CONVERTER 95
Creating and Using a Custom Converter
If the standard Converter implementations don’t perform the kind of data con-
version you need to perform, you can easily create a custom Converter imple-
mentation for this purpose. To create and use a custom Converter, you need to
perform these steps:

1. Implement the Converter interface

2. Register the Converter with application

3. Use the Converter in the page

The cardemo application uses a custom Converter, called CreditCardCon-

verter, to convert the data entered in the Credit Card Number field. It strips
blanks and dashes from the text string and formats the text string so that a blank
space separates every four characters. This section explains how this converter
works.

Implement the Converter Interface
All custom converters must implement the Converter interface. This implemen-
tation—at a minimum—must define how to convert data both ways between the
two views of the data.

To define how the data is converted from the presentation view to the model
view, the Converter implementation must implement the getAsObject(Faces-

Time

timeStyle java.text.DateFormat
short, medium,
long, full.
Default: short

timezone java.util.TimeZone
See
java.util.Time-
Zone

Table 3–15 Standard Converter Implementations (Continued)

Converter
Identifier

Configuration
Attributes Pattern Defined by

Valid Values for
Attributes

96 USING JAVASERVER FACES TECHNOLOGY
Context, UIComponent, String) method from the Converter interface. Here
is the implementation of this method from CreditCardConverter:

public Object getAsObject(FacesContext context,
UIComponent component, String newValue)

throws ConverterException {
String convertedValue = null;
if (newValue == null) {

return newValue;
}
convertedValue = newValue.trim();
if (((convertedValue.indexOf("-")) != -1) ||

((convertedValue.indexOf(" ")) != -1)) {
char[] input = convertedValue.toCharArray();
StringBuffer buffer = new StringBuffer(50);
for (int i = 0; i < input.length; ++i) {

if (input[i] == '-' || input[i] == ' ') {
continue;

} else {
buffer.append(input[i]);

}
}
convertedValue = buffer.toString();

}
return convertedValue;

}

During the Apply Request Values phase, when the components’ decode methods
are processed, the JavaServer Faces implementation looks up the component’s
local value in the request and calls the getAsObject method. When calling this
method, the JavaServer Faces implementation passes in the current FacesCon-
text, the component whose data needs conversion, and the local value as a
String. The method then writes the local value to a character array, trims the
dashes and blanks, adds the rest of the characters to a String, and returns the
String.

To define how the data is converted from the model view to the presentation
view, the Converter implementation must implement the getAsString(Faces-

Context, UIComponent, Object) method from the Converter interface. Here
is the implementation of this method from CreditCardConverter:

public String getAsString(FacesContext context,
UIComponent component,Object value)

throws ConverterException {
String inputVal = null;
if (value == null) {

CREATING AND USING A CUSTOM CONVERTER 97
return null;
}
try {

inputVal = (String)value;
} catch (ClassCastException ce) {

throw new ConverterException(Util.getExceptionMessage(
Util.CONVERSION_ERROR_MESSAGE_ID));

}
char[] input = inputVal.toCharArray();
StringBuffer buffer = new StringBuffer(50);
for (int i = 0; i < input.length; ++i) {

if ((i % 4) == 0 && i != 0) {
if (input[i] != ' ' || input[i] != '-'){

buffer.append(" ");
} else if (input[i] == '-') {

buffer.append(" ");
}

}
buffer.append(input[i]);

}
String convertedValue = buffer.toString();
return convertedValue;

}

During the Render Response phase, in which the components’ encode methods
are called, the JavaServer Faces implementation calls the getAsString method
in order to generate the appropriate output. When the JavaServer Faces imple-
mentation calls this method, it passes in the current FacesContext, the UICom-

ponent whose value needs to be converted, and the model object value to be
converted. Since this Converter does a String-to-String conversion, this
method can cast the model object value to a String. It then reads the String to a
character array and loops through the array, adding a space after every four char-
acters.

98 USING JAVASERVER FACES TECHNOLOGY
Register the Converter
When you create a custom Converter, you need to register it with the applica-
tion. Here is the converter declaration from faces_config.xml:

<converter>
<description>CreditCard Converter</description>
<converter-id>creditcard</converter-id>
<converter-class>

cardemo.CreditCardConverter
</converter-class>

</converter>

The converter element represents a Converter implementation. The converter
element contains required converter-id and converter-class elements.

The converter-id element identifies an ID that is used by the converter attribute
of a UI component tag to apply the converter to the component’s data.

The converter-class element identifies the Converter implementation.

Use the Converter in the Page
To apply the data conversion performed by your Converter to a particular com-
ponent’s value, you need to set the converter attribute of the component’s tag to
the Converter implementation’s identifier. You provided this identifier when
you registered the Converter with the application, as explained in the previous
section.

The identifier for the CreditCardConverter is creditcard. The CreditCard-

Converter is attached to the ccno component, as shown in this tag from the
Customer.jsp page:

<h:input_text id="ccno" size="16"
converter="creditcard" >
...

</h:input_text>

By setting the converter attribute of a component’s tag to the identifier of a
Converter, you cause that component’s local value to be automatically con-
verted according to the rules specified in the Converter.

HANDLING EVENTS 99
This way, a page author can use the same custom Converter for any similar
component by simply supplying the Converter implementation’s identifier to
the converter attribute of the component’s tag.

Handling Events
As explained in Event and Listener Model (page 26), the JavaServer Faces event
and listener model is similar to the JavaBeans event model in that it has strongly
typed event classes and listener interfaces. JavaServer Faces technology supports
two different kinds of component events: action events and value-changed
events.

Action events occur when the user activates a component represented by
UICommand. These components include buttons and hyperlinks. These events are
represented by the javax.faces.event.ActionEvent class. An implementation
of the javax.faces.event.ActionListener handles action events.

Value-changed events result in a change to the local value of a component repre-
sented by UIInput or one of its subclasses. One example of a value-changed
event is that generated by entering a value in a text field. These events are repre-
sented by the javax.faces.event.ValueChangedEvent class. An implementa-
tion of the javax.faces.event.ValueChangedListener handles value-
changed events.

Both action events and value-changed events can be processed at any stage dur-
ing the request processing lifecycle. Both ActionListener and
ValueChangedListener extend from the common FacesListener interface.

To cause your application to react to action events or value-changed events emit-
ted by a standard component, you need to:

• Implement an event listener to handle the event

• Register the event listener on the component

When emitting events from custom components, you need to manually queue the
event on the FacesContext. Handling Events for Custom
Components (page 141) explains how to do this. The UIInput and UICommand

components automatically queue events on the FacesContext.

The rest of this section explains how to implement a ValueChangedListener

and an ActionListener and how to register the listeners on components.

100 USING JAVASERVER FACES TECHNOLOGY
Implementing an Event Listener
For each kind of event generated by components in your application, you need to
implement a corresponding listener interface. Listeners that handle the action
events in an application must implement
javax.faces.event.ActionListener. Similarly, listeners that handle the
value-changed events must implement
javax.faces.event.ValueChangedListener. The cardemo application
includes implementations of both of these listeners.

Note: You should not create an ActionListener to handle an event that results in
navigating to a page. You should write an Action class to handle events associated
with navigation. SeeNavigating Between Pages (page 105) for more information.
ActionListeners should only be used to handle UI changes, such as tree expan-
sion.

By virtue of extending from FacesListener, both listener implementations must
implement the getPhaseId method. This method returns an identifier from
javax.event.PhaseId that refers to a phase in the request processing lifecycle.
The listener must not process the event until after this phase has passed. For
example, a listener implementation that updates a component’s model object
value in response to a value-changed event should return a PhaseId of
PhaseId.PROCESS_VALIDATIONS so that the local values pass validation checks
before the model object is updated. The phases during which events can be han-
dled are Apply Request Events, Process Validations, and Update Model Values.
If your listener implementation returns a PhaseID of PhaseId.ANY_PHASE then
the listener will process events during the Apply Request Values phase if possi-
ble.

Implementing a Value-Changed Listener
In addition to the getPhaseId method, a ValueChangedListener implementa-
tion must include a processValueChanged(ValueChangedEvent) method.

The processValueChanged(ValueChangedEvent) method processes the speci-
fied ValueChangedEvent and is invoked by the JavaServer Faces implementa-
tion when the ValueChangedEvent occurs. The ValueChangedEvent instance
stores the old and the new values of the component that fired the event.

The cardemo application has a new feature that updates the price of the chosen
car after an extra option is selected for the car. When the user selects an option, a

IMPLEMENTING AN EVENT LISTENER 101
ValueChangedEvent is generated, and the processValueChanged method of the
PackageValueChanged listener implementation is invoked. Here is the pro-

cessValueChanged method from PackageValueChanged:

public void processValueChanged(ValueChangedEvent vEvent) {
try {

String componentId =
vEvent.getComponent().getComponentId();

FacesContext context = FacesContext.getCurrentInstance();
String currentPrice;
int cPrice = 0;
currentPrice =

(String)context.getModelValue(
"CurrentOptionServer.carCurrentPrice");

cPrice = Integer.parseInt(currentPrice);
if ((componentId.equals("currentEngine")) ||

(componentId.equals("currentBrake")) ||
(componentId.equals("currentSuspension")) ||
(componentId.equals("currentSpeaker")) ||
(componentId.equals("currentAudio")) ||
(componentId.equals("currentTransmission"))) {

cPrice = cPrice -
(this.getPriceFor((String)vEvent.getOldValue()));

cPrice = cPrice +
(this.getPriceFor((String)vEvent.getNewValue()));

} else {
Boolean optionSet = (Boolean)vEvent.getNewValue();
cPrice =

calculatePrice(componentId, optionSet, cPrice);
}
currentPrice = Integer.toString(cPrice);
context.setModelValue(

"CurrentOptionServer.carCurrentPrice", currentPrice);
} catch (NumberFormatException ignored) {}

}

This method first gets the ID of the component that fired the event from
ValueChangeEvent. Next, it gets the current price of the car from the
CurrentOptionServer bean.

The if statement checks if the component that fired the event is one of the
SelectItems components. If it is, it subtracts the old value of the selected option
from the current price and adds the new value of the selected option to the cur-
rent price. The getPriceFor(String) method contains the prices for each
option.

102 USING JAVASERVER FACES TECHNOLOGY
If the component that fired the event is a SelectBoolean, the new value is
retrieved from the event. The calculatePrice(String, Boolean, int)

method checks if the value is true. If it is, the price returned from
getPriceFor(String) for the selected option is added to the current price; oth-
erwise it is subtracted from the current price.

Finally the method updates the current price in the CurrentOptionServer bean.

Implementing Action Listeners
In addition to the getPhaseId method, a ActionListener implementation must
include a processAction(ActionEvent) method.

The processAction(ActionEvent) processes the specified ActionEvent and is
invoked by the JavaServer Faces implementation when the ActionEvent occurs.
The ActionEvent instance stores the value of commandName, which identifies the
command or action that should be executed when the component associated with
the commandName is activated.

The cardemo application has a another new feature that allows a user to select a
package, which contains a set of options for their chosen car. These packages are
called Custom, Deluxe, Performance, and Standard.

The user selects a package by clicking on one of the buttons representing a pack-
age. When the user clicks one of the buttons, an ActionEvent is generated, and
the processAction(ActionEvent) method of the CarActionListener listener
implementation is invoked. Here is a piece of the
processAction(ActionEvent) method from CarActionListener:

public void processAction(ActionEvent event) {
String actionCommand = event.getActionCommand();
ResourceBundle rb =

ResourceBundle.getBundle("cardemo/Resources",
(FacesContext.getCurrentInstance().getLocale()));

if (actionCommand.equals("custom")) {
processCustom(event, rb);

} else if (actionCommand.equals("standard")) {
processStandard(event, rb);

...
} else if (actionCommand.equals("recalculate")) {

FacesContext context = FacesContext.getCurrentInstance();
String currentPackage =

(String)context.getModelValue(
CurrentOptionServer.currentPackage");

if (currentPackage.equals("custom")) {

REGISTERING LISTENERS ON COMPONENTS 103
processCustom(event, rb);
} else if (currentPackage.equals("standard")) {

processStandard(event, rb);
}
...

}else if (actionCommand.equals("buy")) {
FacesContext context = FacesContext.getCurrentInstance();
context.setModelValue("CurrentOptionServer.packagePrice",
context.getModelValue(

"CurrentOptionServer.carCurrentPrice"));
}

}

This method gets the commandName from the specified ActionEvent. Each of the
UICommand components on more.jsp has its own unique commandName, but more
than one component is allowed to use the same commandName. If one of the pack-
age buttons is clicked, this method calls another method to process the event
according to the specified commandName. For example,
processStandard(ActionEvent, ResourceBundle) sets each component’s
model value in CurrentOptionServer according to the options included in the
Standard package. Since the engine options allowed in the Standard package are
only V4 and V6, the processStandard(ActionEvent, ResourceBundle)

method sets the engineOption property to an array containing V4 and V6.

If the Recalculate button is clicked, this method gets the value of
currentPackage from the CurrentOptionServer bean. This value corresponds
to the commandName associated with one of the package buttons. The method
then calls the appropriate method to process the event associated with the current
package.

If the Buy button is clicked, this method updates the packagePrice property of
CurrentOptionServer with the current price.

Registering Listeners on Components
A page author can register a listener implementation on a component by nesting
either a valuechanged_listener tag or an action_listener tag within the
component’s tag on the page.

Custom components and renderers also have the option of registering listeners
themselves, rather than requiring the page author to be aware of registering lis-
teners. See Handling Events for Custom Components (page 141) for more infor-
mation.

104 USING JAVASERVER FACES TECHNOLOGY
This section explains how to register the PackageValueChanged listener and the
CarActionListener implementations on components.

Registering a ValueChangedListener on a
Component
A page author can register a ValueChangedListener on a UIInput component
or a component that extends from UIInput by nesting a
valuechanged_listener tag within the component’s tag on the page. Several
components on the more.jsp page have the PackageValueChanged listener reg-
istered on them. One of these components is currentEngine:

<h:selectone_menu id="currentEngine"
valueRef="CurrentOptionServer.currentEngineOption">
<f:valuechanged_listener

type="cardemo.PackageValueChanged" />
<h:selectitems

valueRef="CurrentOptionServer.engineOption"/>
</h:selectone_menu>

The type attribute of the valuechanged_listener tag specifies the fully-quali-
fied class name of the ValueChangedListener implementation.

After this component tag is processed and local values have been validated, the
component instance represented by this tag will automatically queue the
ValueChangeEvent associated with the specified ValueChangedListener to the
FacesContext. This listener processes the event after the phase specified by the
getPhaseID method of the listener implementation.

Registering an ActionListener on a
Component
A page author can register an ActionListener on a UICommand component by
nesting an action_listener tag within the component’s tag on the page. Sev-
eral components on the more.jsp page have the CarActionListener listener
implementation registered on them, as shown by the custom tag:

<h:command_button id="custom" commandName="custom"
commandClass="package-selected"
key="Custom" bundle="carDemoBundle">
<f:action_listener type="cardemo.CarActionListener" />

</h:command_button>

NAVIGATING BETWEEN PAGES 105
The component tag must specify a commandName that specifies what action
should be performed when the component is activated. The ActionEvent is con-
structed with the component ID and the commandName. More than one compo-
nent in a component tree can have the same commandName if the same command
is executed for those components.

The type attribute of the action_listener tag specifies the fully-qualified class
name of the ActionListener implementation.

When the component associated with this tag is activated, the component’s
decode method (or its associated Renderer) automatically queues the
ActionEvent associated with the specified ActionListener to the
FacesContext. This listener processes the event after the phase specified by the
getPhaseID method of the listener implementation.

Navigating Between Pages
As explained in section Navigation Model (page 27), this release of JavaServer
Faces technology includes a new navigation model that eliminates the need to
define navigation rules programmatically with an ApplicationHandler.

Now you define page navigation rules in a centralized XML file called the appli-
cation configuration resource file. See Application Configuration (page 29) for
more information on this file.

Any additional processing associated with navigation that you might have
included in an ApplicationHandler you now include in an Action class. An
Action object is referenced by the UICommand component that triggers naviga-
tion. The Action object returns a logical outcome based on the results of its pro-
cessing. This outcome describes what happened during the processing. The
Action that was invoked and the outcome that is returned are two criteria a navi-
gation rule uses for choosing which page to navigate to.

This rest of this section explains:

• What navigation is

• How an application navigates between pages

• How to define navigation rules in the application configuration file

• How to include any processing associated with page navigation in an
Action class

• How to reference an Action class from a component tag

106 USING JAVASERVER FACES TECHNOLOGY
What is Navigation?
Navigation is a set of rules for choosing a page to be displayed. The selection of
the next page is determined by:

• The page that is currently displayed

• The Action that was invoked by a UICommand component’s actionRef

property

• An outcome string that was returned by the Action or passed from the
component.

A single navigation rule defines how to navigate from one particular page to any
number of other pages in an application. The JavaServer Faces implementation
chooses the proper navigation rule according to what page is currently displayed.

Once the proper navigation rule is selected, the choice of which page to access
next from the current page depends on the Action that was invoked and the out-
come that was returned.

The UICommand component either specifies an outcome from its action property
or refers to an Action object with its actionRef property. The Action object
performs some processing and returns a particular outcome string.

The outcome can be anything the developer chooses, but Table 3–16 on page 106
lists some outcomes commonly used in Web applications.

Usually, the Action class performs some processing on the form data of the cur-
rent page. For example, the Action class might check if the username and pass-
word entered in the form match the username and password on file. If they
match, the Action returns the outcome “success”. Otherwise, it returns the out-

Table 3–16 Common cutcome strings

Outcome What it means

“success” Everything worked. Go on to the next page

“error” Something is wrong. Go on to an error page

“logon” The user needs to log on first. Go on to the logon page.

“no results” The search did not find anything. Go to the search page again.

HOW NAVIGATION WORKS 107
come “failure”. As this example demonstrates, both the Action and the outcome
are necessary to determine the proper page to access.

Here is a navigation rule that could be used with the example Action class pro-
cessing described in the previous paragraph:

<navigation-rule>
<from-tree-id>logon.jsp</from-tree-id>
<navigation-case>

<from-action-ref>LogonForm.logon</from-action-ref>
<from-outcome>success</from-outcome>
<to-tree-id>/storefront.jsp</to-tree-id>

</navigation-case>
<navigation-case>

<from-action-ref>LogonForm.logon</from-action-ref>
<from-outcome>failure</from-outcome>
<to-tree-id>/logon.jsp</to-tree-id>
</navigation-case>

</navigation-rule>

This navigation rule defines the possible ways to navigate from logon.jsp. Each
navigation-case element defines one possible navigation path from
logon.jsp. The first navigation-case says that if LogonForm.logon returns an
outcome of “success”, storefront.jsp will be accessed. The second naviga-

tion-case says that logon.jsp will be re-rendered if LogonForm.logon returns
“failure”.

For a complete description of how to define navigation rules, see Configuring
Navigation Rules in faces-config.xml (page 108).

The next section describes what happens behind the scenes when navigation
occurs.

How Navigation Works
As section The Lifecycle of a JavaServer Faces Page (page 13) explains, a Jav-
aServer Faces page is represented by a component tree, which is comprised of all
of the components on a page. To load another page, the JavaServer Faces imple-
mentation accesses a component tree identifier and stores the tree in the Faces-

Context. The new navigation model determines how this tree is selected.

Any UICommand components in the tree are automatically registered with the
default ActionListenerImpl. When one of the components is activated--such

108 USING JAVASERVER FACES TECHNOLOGY
as by a button click--an ActionEvent is emitted. If the Invoke Application phase
is reached, the default ActionListenerImpl handles this event.

The ActionListenerImpl retrieves an outcome--such as “success” or “failure”-
-from the component generating the event. The UICommand component either lit-
erally specifies an outcome with its action property or refers to a JavaBean
component property of type Action with its actionRef property. The invoke

method of the Action object performs some processing and returns a particular
outcome string.

After receiving the outcome string, the ActionListenerImpl passes it to the
default NavigationHandler. Based on the outcome, the currently displayed
page, and the Action object that was invoked, the NavigationHandler selects
the appropriate component tree by consulting the application configuration file
(faces-config.xml).

The next section explains how to define navigation rules for your application in
the faces-config.xml file.

Configuring Navigation Rules in faces-
config.xml
An application’s navigation configuration consists of a set of navigation rules.
Each rule is defined by the navigation-rule element in the faces-config.xml

file. See Setting Up The Application Configuration File (page xvi) for informa-
tion on how to set up the faces-config.xml file for use in your application.

Here are two example navigation rules:

<navigation-rule>
<from-tree-id>/more.jsp</from-tree-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-tree-id>/buy.jsp</to-tree-id>

</navigation-case>
<navigation-case>

<from-outcome>out of stock</from-outcome>
<from-action-ref>

CarOptionServer.carBuyAction
</from-action-ref>
<to-tree-id>/outofstock.jsp</to-tree-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

CONFIGURING NAVIGATION RULES IN FACES-CONFIG.XML 109
<navigation-case>
<from-outcome>error</from-outcome>
<to-tree-id>/error.jsp</to-tree-id>

</navigation-case>
</navigation-case>

The first navigation rule in this example says that the application will navigate
from more.jsp to:

• buy.jsp if the item ordered is in stock.

• outofstock.jsp if the item is out of stock.

The second navigation rule says that the application will navigate from any page
to error.jsp if the application encountered an error.

Each navigation-rule element corresponds to one component tree identifier,
defined by the optional from-tree-id element. This means that each rule
defines all the possible ways to navigate from one particular page in the applica-
tion. If there is no from-tree-id element, the navigation rules defined in the
navigation-rule element apply to all the pages in the application. The from-

tree-id element also allows wildcard matching patterns. For example, this
from-tree-id element says the navigation rule applies to all the pages in the
cars directory:

<from-tree-id>/cars/*</from-tree-id>

As shown in the example navigation rule, a navigation-rule element can con-
tain zero or more navigation-case elements. The navigation-case element
defines a set of matching criteria. When these criteria are satisfied, the applica-
tion will navigate to the page defined by the to-tree-id element contained in
the same navigation-case element.

The navigation criteria are defined by optional from-outcome and from-

action-ref elements.

The from-outcome element defines a logical outcome, such as “success”. The
from-action-ref element refers to a bean property that returns an Action

object. The Action object’s invoke method performs some logic to determine
the outcome and returns the outcome.

The navigation-case elements are checked against the outcome and the
Action parameters in this order:

• Cases specifying both a from-outcome value and a from-action-ref

value. Both of these elements can be used if the Action’s invoke method

110 USING JAVASERVER FACES TECHNOLOGY
returns different outcomes depending on the result of the processing it per-
forms.

• Cases specifying only a from-outcome value. The from-outcome element
must match either the outcome defined by the action attribute of the
UICommand component or the outcome returned by the Action object
referred to by the UICommand component.

• Cases specifying only a from-action-ref value. This value must match
the Action instance returned by the UICommand component.

Once any of these cases are matched, the component tree defined by the to-

tree-id element will be selected for rendering.

The section Referencing An Action From a Component (page 110) explains how
to write the tag corresponding to the UICommand component to return an out-
come.

Referencing An Action From a
Component
The command_button and command_hyperlink tags have two attributes used to
specify an outcome, which is matched against the from-outcome elements in the
faces-config.xml file in order to select the next page to be rendered:

• action: This attribute defines a literal outcome value

• actionRef: This attribute identifies a bean property that returns an
Action, whose invoke method is executed when this button is clicked.
This invoke method returns an outcome string.

This command_button tag could be used with the example navigation rule from
the previous section:

<h:command_button id="buy2" key="buy" bundle="carDemoBundle"
commandName="buy" actionRef="CarServer.carBuyAction">

The actionRef attribute refers to CarOptionServer.carBuyAction, a bean
property that returns an Action object, whose invoke method returns the logical
outcome.

USING AN ACTION OBJECT WITH A NAVIGATION RULE 111
If the outcome matches an outcome defined by a from-outcome element in
faces-config.xml, the component tree specified in that navigation case is
selected for rendering if:

• No from-action-ref is also defined for that navigation case

• There is a from-action-ref also defined for that navigation case, and the
Action it identifies matches the Action identified by the command com-
ponent’s actionRef attribute.

Suppose that the buy2 command_button tag used the action attribute instead of
the actionRef attribute:

<h:command_button id="buy2" key="buy" bundle="carDemoBundle"
commandName="buy" action="out-of-stock">

If this outcome matches an outcome defined by a from-outcome element in the
faces-config.xml file, the component tree corresponding to this navigation
case is selected for rendering, regardless of whether or not the same navigation
case also contains a from-action-ref element.

The next section explains how to write the bean and the Action class.

Using an Action Object With a
Navigation Rule
It’s common for applications to have a choice of pages to navigate to from a
given page. You usually need to have some application-specific processing that
determines which page to access in a certain situation. The processing code goes
into the invoke method of an Action object. Here is the Action bean property
and the Action implementation used with the examples in the previous two sec-
tions:

import javax.faces.application.Action;
...
public class CurrentOptionServer extends Object{
...

public Action getCarBuyAction() {

112 USING JAVASERVER FACES TECHNOLOGY
if (carBuyAction == null) {
carBuyAction = new CarBuyAction();

return carBuyAction;
}

class CarBuyAction extends Action {
public String invoke() {

if (carId == 1 && currentPackageName.equals("Custom") &&
currentPackage.getSunRoofSelected()) {

currentPackage.setSunRoofSelected(false);
return "out of stock";

} else {
return "success"

}
}

}

The CarBuyAction.invoke method checks if the first car is chosen, the Custom
package is chosen and the sunroof option is selected. If this is true, the sunroof

checkbox component value is set to false, and the method returns the outcome,
“out of stock”. Otherwise, the outcome, “success” is returned.

As shown in the example in section Configuring Navigation Rules in faces-
config.xml (page 108), when the NavigationHandler receives the “out-of-stock”
outcome, it selects the /outofstock.jsp component tree.

As shown in the example code in this section, it’s a good idea to include your
Action class inside the same bean class that defines the property returning an
instance of the Action. This is because the Action class will often need to
access the bean’s data to determine what outcome to return. Section Combining
Component Data and Action Objects (page 47) discusses this concept in more
detail.

Performing Localization
For this release, all data and messages in the cardemo application have been
completely localized for French, German, Latin-American Spanish, and Ameri-
can English.

The image map on the first page allows you to select your preferred locale. See
Creating Custom UI Components (page 117) for information on how the image
map custom component was created.

LOCALIZING STATIC DATA 113
This section explains how to localize static and dynamic data and messages for
JavaServer Faces applications. If you are not familiar with the basics of localiz-
ing Web applications, see Internationalizing and Localizing Web Applications in
The Java Web Services Tutorial.

Localizing Static Data
Static data can be localized using the JSTL Internationalization tags by follow-
ing these steps:

1. After you declare the html_basic and jsf-core tag libraries in your Jav-
aServer Faces page, add a declaration for the JSTL fmt tag library:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

2. Create a Properties file containing the localized messages.

3. Add an fmt:setBundle tag:

<fmt:setBundle
basename="cardemo.Resources"
scope="session" var="cardemoBundle"/>

The basename attribute value refers to the Properties file, located in the
cardemo package. Make sure the basename attribute specifies the fully
qualified classname of your Resources file. This file contains the localized
messages.

The scope attribute indicates the scope—either application, session, or
page—for which this bundle can be used.

The var attribute is an alias to the Resources file. This alias can be used
by other tags in the page in order to access the localized messages.

4. Add a key attribute to a component tag to access the particular localized
message and add the bundle attribute to refer to the file containing the
localized message. The bundle attribute must exactly match the var

attribute in the fmt:setBundle tag. Here is an example from more.jsp:

<h:output_text
key="OptionsPackages" bundle="carDemoBundle" />

http://java.sun.com/webservices/docs/1.0/tutorial/doc/WebApp12.html

114 USING JAVASERVER FACES TECHNOLOGY
For more information on using the JSTL Internationalization functionality,
please refer to the JavaServer Pages Standard Tag Library topic in The Java Web
Services Tutorial.

Localizing Dynamic Data
The cardemo application has some data that is set dynamically in JavaBean
classes. Because of this, the beans must load this localized data themselves; the
data can’t be loaded from the page.

One example of dynamically-loaded data includes the data associated with a
UISelectOne component. Another example is the car description that appears on
the more.jsp page. This description corresponds to the car the user chose from
the Storefront.jsp page. Since the chosen car is not known to the application
prior to startup time, the localized description cannot be loaded from the page.
Instead, the CurrentOptionServer bean must load the localized car description.

In the CurrentOptionServer bean, the localized car title and description is
loaded with the setCarId(int) method, which is called when the user selects a
car from Storefront.jsp. Here is a piece of the setCarId(int) method:

public void setCarId(int id) {
try {

ResourceBundle rb;
switch (id) {

case 1:
// load car 1 data
String optionsOne = "cardemo/CarOptions1";
rb = ResourceBundle.getBundle(

optionsOne,
(FacesContext.getCurrentInstance().getLocale()));

setCarImage("/200x168_Jalopy.jpg");
break;

...
this.setCarTitle((String)rb.getObject("CarTitle"));
this.setCarDesc((String)rb.getObject("CarDesc"));
this.setCarBasePrice((String)rb.getObject("CarBasePrice"));
this.setCarCurrentPrice((String)rb.getObject(

"CarCurrentPrice"));
loadOptions();

}

This method loads the localized data for the chosen car from the
ResourceBundle associated with the car by calling

http://java.sun.com/webservices/docs/1.0/tutorial/index.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html

LOCALIZING MESSAGES 115
ResourceBundle.getBundle, passing in the path to the resource file and the
current locale, which is retrieved from the FacesContext. This method then
calls the appropriate setter methods of the CurrentOptionServer, passing the
locale-specific object representing the localized data associated with the given
key.

The localized data for the UISelectOne components is loaded with the
loadOptions method, which is called when the CurrentOptionServer is ini-
tialized and at the end of the setCarId(int) method. Here is a piece of the
loadOptions method:

public void loadOptions() {
ResourceBundle rb =

ResourceBundle.getBundle("cardemo/Resources",
(FacesContext.getCurrentInstance().getLocale()));

brakes = new String[2];
brakes[0] = (String)rb.getObject("Disc");
brakes[1] = (String)rb.getObject("Drum");
...
brakeOption = new ArrayList(brakes.length);
...
for (i = 0; i < brakes.length; i++) {

brakeOption.add(new SelectItem(brakes[i], brakes[i],
brakes[i]));

}

Just like in setCarId(int), the loadOptions method loads the localized data
from the ResourceBundle. As shown in the code snippet, the localized data for
the brakes component is loaded into an array. This array is used to create a
Collection of SelectItem instances.

Localizing Messages
The JavaServer Faces API provides a set of classes for associating a set of local-
ized messages with a component. The Message class corresponds to a single
message. A set of Message instances compose a MessageResources, which is
analogous to a ResourceBundle. A MessageResourceFactory creates and
returns MessageResources instances.

MessageResources instances will most commonly comprise a list of validation
error messages. Performing Validation (page 81) includes an example of regis-
tering and using a MessageResources for validation error messages.

116 USING JAVASERVER FACES TECHNOLOGY
To make a MessageResources bundle available to an application, you need to
register the MessageResources instance with the application. This is explained
in Register the Error Messages (page 87).

After registering the MessageResources, you can access the messages from
your application (as explained in Implement the Validator Interface, page 85) by:

1. Calling the getMessageResources(String) method, passing in the
MessageResources identifier

2. Calling getMessage on the MessageResources instance, passing in the
FacesContext, the message identifier, and the substitution parameters.
The substitution parameters are usually used to embed the Validator

properties’ values in the message. For example, the custom validator
described in Implement the Validator Interface (page 85) will substitute
the format pattern for the {0} in this error message:

Input must match one of the following patterns {0}

Creating Custom UI
Components

If you’ve read through the first two chapters of this tutorial, you’ve noticed that
JavaServer Faces technology offers a rich set of standard, reusable UI compo-
nents that enable you to quickly and easily construct UIs for Web applications.
But often you need a component with some additional functionality or a com-
pletely new component, like a client-side image map. Although JavaServer
Faces technology doesn’t furnish these components in its implementation, its
component architecture allows you to extend the standard components to
enhance their functionality or create your own unique components.

In addition to extending the functionality of standard components, you might
also want to change their appearance on the page or render them to a different
client. Enabled by the flexible JavaServer Faces architecture, you can separate
the definition of the component behavior from its rendering by delegating the
rendering to a separate renderer. This way, you can define the behavior of a cus-
tom component once, but create multiple renderers, each of which defines a dif-
ferent way to render the component.

In addition to providing a means to easily create custom components and render-
ers, the JavaServer Faces design also makes it easy to reference them from the
page through JSP custom tag library technology.

This chapter uses an image map custom component to explain all you need to
know to create simple custom components, custom renderers, and associated
custom tags, and to take care of all the other details associated with using the
components and renderers in an application.
117

118 CREATING CUSTOM UI COMPONENTS
Determining if You Need a Custom
Component or Renderer

The JavaServer Faces implementation already supports a rich set of components
and associated renderers, which are enough for most simple applications. This
section will help you decide if you need a custom component or custom renderer
or if you can use a standard component and renderer.

When to Use a Custom Component
A component class defines the state and behavior of a UI component. This
behavior includes: converting the value of a component to the appropriate
markup, queuing events on components, performing validation, and other func-
tionality.

Situations in which you need to create a custom component include:

• If you need to add new behavior to a standard component, such as gener-
ating an additional type of event.

• If you need to aggregate components to create a new component that has
its own unique behavior. The new component must be a custom compo-
nent. One example is a datechooser component consisting of three drop-
down lists.

• If you need a component that is supported by an HTML client, but is not
currently implemented by JavaServer Faces technology. The current
release does not contain standard components for complex HTML compo-
nents, like frames; however, because of the extensibility of the component
architecture, you can easily create components like this.

• If you need to render to a non-HTML client, which requires extra compo-
nents not supported by HTML. Eventually, the standard HTML render kit
will provide support for all standard HTML components. However, if you
are rendering to a different client—such as a phone—you might need to
create custom components to represent the controls uniquely supported by
the client. For example, the MIDP component architecture includes sup-
port for tickers and progress bars, which are not available on an HTML cli-
ent. In this case, you might also need a custom renderer along with the
component; or, you might just need a custom renderer.

WHEN TO USE A CUSTOM RENDERER 119
You do not need to create a custom component if:

• You need to simply manipulate data on the component or add application-
specific functionality to it. In this situation, you should create a model
object for this purpose and bind it to the standard component rather than
create a custom component. See Writing a Model Object Class (page 75)
for more information on creating a model object.

• You need to convert a component’s data to a type not supported by its ren-
derer. See Performing Data Conversions (page 92) for more information
about converting a component’s data.

• You need to perform validation on the component data. Both standard val-
idators and custom validators can be added to a component by using the
validator tags from the page. See Performing Validation (page 81) for
more information about validating a component’s data.

• You need to register event listeners on components. The EA3 release elim-
inated the need to create a custom component in order to register an event
listener on it. Now you can register event listeners on components with the
valuechanged_event and action_listener tags. See Handling
Events (page 99) for more information on using these tags.

When to Use a Custom Renderer
If you are creating a custom component, you need to ensure—among other
things—that your component class performs these operations:

• Decoding: converting the incoming request parameters to the local value
of the component.

• Encoding: converting the current local value of the component into the cor-
responding markup that represents it in the response.

The JavaServer Faces specification supports two programming models for han-
dling encoding and decoding:

• Direct implementation: The component class itself implements the decod-
ing and encoding.

• Delegated implementation: The component class delegates the implemen-
tation of encoding and decoding to a separate renderer

By delegating the operations to the renderer, you have the option of associating
your custom component with different renderers so that you can represent the
component in different ways on the page. If you don’t plan to render a particular

120 CREATING CUSTOM UI COMPONENTS
component in different ways, it’s simpler to let the component class handle the
rendering.

If you aren’t sure if you will need the flexibility offered by separate renderers,
but want to use the simpler direct implementation approach, you can actually use
both models. Your component class can include some default rendering code, but
it can delegate rendering to a renderer if there is one.

Component, Renderer, and Tag
Combinations
When you decide to create a custom component, you will usually create a cus-
tom renderer to go with it. You will also need a custom tag to associate the com-
ponent with the renderer and to reference the component from the page.

In rare situations, however, you might use a custom renderer with a standard
component rather than a custom component. Or, you might use a custom tag
without a renderer or a component. This section gives examples of these situa-
tions and provides a summary of what’s required for a custom component, ren-
derer, and tag.

One example of using a custom renderer without a custom component is when
you want to add some client-side validation on a standard component. You
would implement the validation code with a client-side scripting language, such
as JavaScript. You render the JavaScript with the custom renderer. In this situa-
tion, you will need a custom tag to go with the renderer so that its tag handler
can register the renderer on the standard component.

Both custom components and custom renderers need custom tags associated
with them. However, you can have a custom tag without a custom renderer or
custom component. One example is when you need to create a custom validator
that requires extra attributes on the validator tag. In this case, the custom tag cor-
responds to a custom validator, not to a custom component or custom renderer.
In any case, you still need to associate the custom tag with a server-side object.

UNDERSTANDING THE IMAGE MAP EXAMPLE 121
The following table summarizes what you must or can associate with a custom
component, custom renderer, or custom tag.

Understanding the Image Map
Example

The cardemo application now includes a custom image map component on the
ImageMap.jsp page. This image map displays a map of the world. When the
user clicks on one of a particular set of regions in the map, the application sets
the locale in the FacesContext to the language spoken in the selected region.
The hot spots of the map are: the United States, Spanish-speaking Central and
South America, France, and Germany.

Why Use JavaServer Faces Technology
to Implement an Image Map?
JavaServer Faces technology is an ideal framework to use for implementing this
kind of image map because it can perform the work that must be done on the
server without requiring you to create a server-side image map.

In general, client-side image maps are preferred over server-side image maps for
a few reasons. One reason is that the client-side image map allows the browser to
provide immediate feedback when a user positions her mouse over a hot spot.
Another reason is that client-side image maps perform better because they don’t

Table 4–1 Requirements for Custom Components, Custom Renderers, and Custom
Tags

Must have Can have

custom component custom tag custom renderer

custom renderer custom tag
custom component or standard com-
ponent

custom JavaServer
Faces tag

some server-side object, like
a component, a custom ren-
derer, or custom validator

custom component or standard com-
ponent associated with a custom
renderer

122 CREATING CUSTOM UI COMPONENTS
require round-trips to the server. However, in some situations, your image map
might need to access the server to retrieve some data or to change the appearance
of non-form controls, which a client-side image map cannot do.

The image map custom component—because it uses JavaServer Faces technol-
ogy—has the best of both style of image maps: It can handle the parts of the
application that need to be performed on the server, while allowing the other
parts of the application to be performed on the client side.

Understanding the Rendered HTML
Here is an abbreviated version of the form part of the HTML page that the appli-
cation needs to render:

<form METHOD="post" ACTION="/cardemo/faces/...">
<table> <tr> <td> Welcome to JavaServer Faces</td></tr>

<tr><td>

<map name="worldMap">
<area shape="poly"

coords="6,15,6,28,2,30,6,34,13,28,17,..."
onclick="document.forms[0].selectedArea.value=

’NAmericas’;
document.forms[0].submit()"

onmouseover="document.forms[0].mapImage.src=
’world_namer.jpg’;"

onmouseout="document.forms[0].mapImage.src=
’world.jpg’;"

alt="NAmericas">
...

<input type="hidden" name="selectedArea"></map>
</td></tr>

</table>
</form>

The img tag associates an image (world.jpg) with an image map, referenced in
the usemap attribute value.

The map tag specifies the image map and contains a set of area tags.

Each area tag specifies a region of the image map. The onmouseover, onmouse-
out, and onmouseclick attributes define which JavaScript code is executed
when these events occur. When the user moves her mouse over a region, the
onmouseover function associated with the region displays the map with that
region highlighted. When the user moves her mouse out of a region, the onmou-

UNDERSTANDING THE JSP PAGE 123
seout function redisplays the original image. If the user clicks on a region, the
onclick function sets the value of the input tag to the id of the selected area and
submits the page.

The input tag represents a hidden control that stores the value of the currently-
selected area between client/server exchanges so that the server-side component
classes can retrieve the value.

The server side objects retrieve the value of selectedArea and set the locale in
the FacesContext according to what region was selected.

Understanding the JSP Page
Here is an abbreviated form of the JSP page that the image map component will
use to generate the HTML page shown in the previous section:

<f:use_faces>
<h:form formName="imageMapForm" >
...

<h:graphic_image id="mapImage" url="/world.jpg"
usemap="#worldMap" />

<d:map id="worldMap" currentArea="NAmericas" >
<f:action_listener

type="cardemo.ImageMapEventHandler" />
<d:area id="NAmericas" valueRef="NA"

onmouseover="/cardemo/world_namer.jpg"
onmouseout="/cardemo/world.jpg" />

...
</d:map>
...

</h:form>
</f:use_faces>

The action_listener tag nested inside the map tag causes the ImageMapE-

ventHandler to be registered on the component corresponding to map. This han-
dler changes the locale according to the area selected from the image map. The
way this event is handled is explained more in Handling Events for Custom
Components (page 141).

Notice that the area tags do not contain any of the JavaScript, coordinate, or
shape data that is displayed on the HTML page. The JavaScript is generated by
the AreaRenderer class. The onmouseover and onmouseout attribute values
indicate the image to be loaded when these events occur. How the JavaScript is
generated is explained more in Performing Encoding (page 132).

124 CREATING CUSTOM UI COMPONENTS
The coordinate, shape, and alt data are obtained through the valueRef attribute,
whose value refers to an attribute in application scope. The value of this attribute
is a model object, which stores the coordinate, shape, and alt data. How these
model objects are stored in the application scope is explained more in Simplify-
ing the JSP Page (page 124).

Simplifying the JSP Page
One of the primary goals of JavaServer Faces technology is ease-of-use. This
includes separating out the code from the page so that a wider range of page
authors can easily contribute to the Web development process. For this reason,
all JavaScript is rendered by the component classes rather than being included in
the page.

Ease-of-use also includes compartmentalizing the tasks of developing a Web
application. For example, rather than requiring the page author to hardcode the
coordinates of the hot spots in the page, the application should allow the coordi-
nates to be retrieved from a database or generated by one of the many image map
tools available.

In a JavaServer Faces application, data such as coordinates would be retrieved
via a model object from the valueRef attribute. However, the shape and coordi-
nates of a hotspot should be defined together because the coordinates are inter-
preted differently depending on what shape the hotspot is. Since a component’s
valueRef can only be bound to one property, the valueRef attribute cannot refer
to both the shape and the coordinates.

To solve this problem, the application encapsulates all of this information in a set
of ImageArea objects. These objects are initialized into application scope by the
Managed Bean Facility (Managed Bean Creation (page 28)). Here is part of the
managed-bean declaration for the ImageArea bean corresponding to the South
America hotspot:

<managed-bean>
...
<managed-bean-name>SA</managed-bean-name>
<managed-bean-class>

components.model.ImageArea
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>poly</value>

SIMPLIFYING THE JSP PAGE 125
</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>SAmerica</value>
</managed-property>
<managed-property>

<property-name>coords</property-name>
<value>89,217,95,100...</value>

</managed-property>
</managed-bean>

For more information on initializing managed beans with the Managed Bean
Facility, see section Creating Model Objects (page 33).

The valueRef attributes of the area tags refer to the beans in the application
scope, as shown in this area tag from ImageMap.jsp:

<d:area id="NAmericas"
valueRef="NA"
onmouseover="/cardemo/world_namer.jpg"
onmouseout="/cardemo/world.jpg" />

To reference the ImageArea model object values from the component class, you
need to call getvalueRef from your component class. This returns the name of
the attribute that stores the ImageArea object associated with the tag being pro-
cessed. Next, you need to pass the attribute to the getValueRef method of the
Util class, which is a reference implementation helper class that contains vari-
ous factories for resources. This will return a ValueBinding, which uses the
expression from the valueRef attribute to locate the ImageArea object contain-
ing the values associated with the current UIArea component. Here is the line
from AreaRenderer that does all of this:

ImageArea ia = (ImageArea)
((Util.getValueBinding(
uiArea.getValueRef())).getValue(context));

ImageArea is just a simple bean, so you can access the shape, coordinates, and
alt values by calling the appropriate accessor methods. Performing
Encoding (page 132) explains how to do this in the AreaRenderer class.

126 CREATING CUSTOM UI COMPONENTS
Summary of the Application Classes
The following table summarizes all of the classes needed to implement the
image map component.

Steps for Creating a Custom
Component

Before describing how the image map works, it helps to summarize the basic
steps needed to create an application that uses custom components. You can
apply the following steps while developing your own custom component exam-
ple.

1. Write a tag handler class that extends javax.faces.webapp.FacesTag. In
this class, you need:

Table 4–2 Image Map Classes

Class Function

AreaTag
The tag handler that implements the area custom
tag

MapTag
The tag handler that implements the map custom
tag

UIArea
The class that defines the UIArea component, cor-
responding to the area custom tag

UIMap
The class that defines the UIMap component, cor-
responding to the map custom tag

AreaRenderer
This Renderer performs the delegated rendering
for the UIArea component

ImageArea
The model object that stores the shape and coordi-
nates of the hot spots

ImageMapEventHandler
The listener interface for handling the action event
generated by the map component

examples/imageMap/AreaTag.java
examples/imageMap/MapTag.java
examples/imageMap/UIArea.java
examples/imageMap/UIMap.java
examples/imageMap/AreaRenderer.java
examples/imageMap/ImageArea.java
examples/imageMap/ImageMapEventHandler.java

CREATING THE COMPONENT TAG HANDLER 127
• A getRendererType method, which returns the type of your custom
renderer, if you are using one (explained in step 4).

• A getComponentType method, which returns the type of the custom
component.

• An overrideProperties method, in which you set all of the new
attributes of your component.

2. Create a tag library descriptor (TLD) that defines the custom tag.

3. Create a custom component class

4. Include the rendering code in the component class or delegate it to a ren-
derer (explained in step 6).

5. If your component generates events, queue the event on the FacesCon-

text.

6. Delegate rendering to a renderer if your component does not handle the
rendering.

a. Create a custom renderer class by extending javax.faces.ren-

der.Renderer.

b. Register the renderer to a render kit.

c. Identify the renderer type in the component tag handler.

7. Register the component

8. Create an event handler if your component generates events.

9. Declare your new TLD in your JSP page and use the tag in the page.

Creating the Component Tag Handler
If you’ve created your own JSP custom tags before, creating a component tag
and tag handler should be easy for you.

In JavaServer Faces applications, the tag handler class associated with a compo-
nent drives the Render Response phase of the JavaServer Faces lifecycle. For
more information on the JavaServer Faces lifecycle, see The Lifecycle of a Jav-
aServer Faces Page (page 13). The first thing that the tag handler does is retrieve
the type of the component associated with the tag. Next, it sets the component’s
attributes to the values given in the page. Finally, it returns the type of the ren-
derer (if there is one) to the JavaServer Faces implementation so that the compo-
nent’s encoding can be performed when the tag is processed.

128 CREATING CUSTOM UI COMPONENTS
The image map custom component includes two tag handlers: AreaTag and
MapTag. To see how the operations on a JavaServer Faces tag handler are imple-
mented, let’s take a look at MapTag:

public class MapTag extends FacesTag {
public String currentArea = null;
public MapTag(){

super();
}
public String getCurrentArea() {

return currentArea;
}
public void setCurrentArea(String area) {

currentArea = area;
}
public void overrideProperties(UIComponent component) {

super.overrideProperties(component);
UIMap map = (UIMap) component;
if(map.getAttribute("currentArea") == null)

map.setAttribute("currentArea", getCurrentArea());
}
public String getRendererType() { return null; }
public UIComponent createComponent() {

return (new UIMap());
}

} // end of class

The first thing to notice is that MapTag extends FacesTag, which supports
jsp.tagext.Tag functionality as well as JavaServer Faces-specific functional-
ity. FacesTag is the base class for all JavaServer Faces tags that correspond to a
component. Tags that need to process their tag bodies should subclass Faces-

BodyTag instead.

As explained above, the first thing MapTag does is to retrieve the type of the com-
ponent. This is done with the getComponentType operation,:

public String getComponentType() {
return (“Map”);

}

Next, the tag handler sets the component’s attribute values to those supplied as
tag attributes in the page. The MapTag handler gets the attribute values from the
page via JavaBean properties that correspond to the attributes. UIMap only has

DEFINING THE CUSTOM COMPONENT TAG IN A TAG LIBRARY DESCRIPTOR 129
one attribute, currentArea. Here is the property used to access the value of cur-
rentArea:

public String currentArea = null;
...
public String getCurrentArea() {return currentArea;}
public void setCurrentArea(String area) {

currentArea = area;
}

To pass the value of currentArea to the UIMap component, the tag handler
implements the overrideProperties method, which calls the UIMap.setAt-

tribute method with the name and value of currentArea attribute:

public void overrideProperties(UIComponent component) {
super.overrideProperties(component);
UIMap map = (UIMap) component;
if(map.getAttribute("currentArea") == null)

map.setAttribute("currentArea", getCurrentArea());
}

Finally, the tag handler provides a renderer type—if there is a renderer associ-
ated with the component—to the JavaServer Faces implementation. It does this
with the getRendererType method:

public String getRendererType() {return null;}

Since UIMap does not have a renderer associated with it, this method returns null.
In this case, the JavaServer Faces implementation will invoke the encoding
methods of UIMap to perform the rendering.

Delegating Rendering to a Renderer (page 136) provides an example of return-
ing a renderer from this method.

Defining the Custom Component Tag
in a Tag Library Descriptor

To define a tag, you need to declare it in a tag library descriptor (TLD), which is
an XML document that describes a tag library. A TLD contains information
about a library and each tag contained in the library. TLDs are used by a Web
container to validate the tags. The set of tags that are part of the HTML render
kit are defined in the html_basic TLD.

130 CREATING CUSTOM UI COMPONENTS
The custom tags image, area, and map, are defined in components.tld, which is
stored in the components/src/components/taglib directory of your installa-
tion. The components.tld defines tags for all of the custom components
included in this release.

All tag definitions must be nested inside the taglib element in the TLD. Each
tag is defined by a tag element. Here is the tag definition of the map tag:

<tag>
<name>map</name>
<tag-class>cardemo.MapTag</tag-class>
<attribute>

<name>id</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>currentArea</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

At a minimum, each tag must have a name (the name of the tag) and a tag-class
(the tag handler) attribute. For more information on defining tags in a TLD,
please consult the Defining Tags section of The Java Web Services Tutorial.

Creating Custom Component Classes
As explained in When to Use a Custom Component (page 118), a component
class defines the state and behavior of a UI component. Some of the state infor-
mation includes the component’s type, identifier, and local value. Some of the
behavior defined by the component class includes:

• Decoding (converting the request parameter to the component’s local
value)

• Encoding (converting the local value into the corresponding markup)

• Updating the model object value with the local value

• Processing validation on the local value

• Queueing events

http://java.sun.com/webservices/docs/1.0/tutorial/doc/JSPTags5.html

EXTENDING FROM A STANDARD COMPONENT 131
The UIComponentBase class defines the default behavior of a component class.
All of the classes representing the standard components extend from UICompo-

nentBase. These classes add their own behavior definitions, as your custom
component class will do.

Your custom component class needs to either extend UIComponentBase directly
or extend a class representing one of the standard components. These classes are
located in the javax.faces.component package and their names begin with UI.

To decide whether you need to extend directly from UIComponentBase or from
one of the standard component classes, consider what behavior you want your
component to have. If one of the standard component classes defines most of the
functionality you need, you should extend that class rather than UIComponent-

Base. For example, suppose you want to create an editable menu component. It
makes sense to have this component extend UISelectOne rather than UICompo-

nentBase because you can reuse the behavior already defined in UISelectOne.
The only new functionality you need to define is that which makes the menu
editable.

The image map example has two component classes: UIArea and UIMap. The
UIMap component class extends the standard component, UICommand. The
UIArea class extends UIOutput.

This following sections explain how to extend a standard component and how to
implement the behavior for a component.

Extending From a Standard Component
Both UIMap and UIArea extend from standard components. The UIMap class rep-
resents the component corresponding to the map tag:

<d:map id="worldMap" currentArea="NAmericas" />

The UIArea class represents the component corresponding to the area tag:

<d:area id="NAmericas" valueRef="NA"
onmouseover="/world_namer.jpg" onmouseout="/world.jpg" />

132 CREATING CUSTOM UI COMPONENTS
The UIMap component has one or more UIArea components as children. Its
behavior consists of:

• Retrieving the value of the currently-selected area.

• Rendering the map tag and the input tag

• Generating an event when the user clicks on the image map

• Queuing the event on the FacesContext

The UIMap class extends from UICommand because UIMap generates an Action-

Event when a user clicks on the map. Since UICommand components already
have the ability to generate this kind of event, it makes sense to extend UICom-

mand rather than redefining this functionality in a custom component extending
from UIComponentBase.

The UIArea component class extends UIOutput because UIArea requires a value
and valueRef attribute, which are already defined by UIOutput.

The UIArea component is bound to a model object that stores the shape and
coordinates of the region of the image map. You’ll see how all of this data is
accessed through the valueRef expression in Performing Encoding (page 132).
The behavior of the UIArea component consists of:

• Retrieving the shape and coordinate data from the model object

• Setting the value of the selectedArea tag to the id of this component

• Rendering the area tag, including the JavaScript for the onmouseover,
onmouseout, and onclick functions

Although these tasks are actually performed by AreaRenderer, the UIArea com-
ponent class must delegate the tasks to AreaRenderer. See Delegating Render-
ing to a Renderer (page 136) for more information.

The rest of these ccomponents’ behavior is performed in its encoding and decod-
ing methods. Performing Encoding (page 132) and Performing
Decoding (page 135) explain how this behavior is implemented.

Performing Encoding
During the Render Response phase, the JavaServer Faces implementation pro-
cesses the encoding methods of all components and their associated renderers in
the tree. The encoding methods convert the current local value of the component
into the corresponding markup that represents it in the response.

PERFORMING ENCODING 133
The UIComponentBase class defines a set of methods for rendering markup:
encodeBegin, encodeChildren, encodeEnd. If the component has child compo-
nents, you might need to use more than one of these methods to render the com-
ponent; otherwise, all rendering should be done in encodeEnd.

The UIArea class defines the component corresponding to the area tags:

...
<d:area id="SAmericas" valueRef="SA"

onmouseover="/cardemo/world_samer.gif"
onmouseout="/cardemo/world.gif" />

...

The UIArea component is bound to a model object that stores the shape and
coordinates of the region of the image map. You’ll see how all of this data is
accessed through the valueRef expression in Performing Encoding (page 132).
The UIArea component delegates its rendering to a renderer, as explained in Del-
egating Rendering to a Renderer (page 136). Therefore, UIArea has no rendering
behavior.

Since UIMap is a parent component of UIArea, the area tags must be rendered
after the beginning map tag and before the ending map tag. To accomplish this,
the UIMap class renders the beginning map tag in encodeBegin and the rest of the
map tag in encodeEnd.

The JavaServer Faces implementation will automatically invoke the encodeEnd

method of the UIArea component’s renderer after it invokes UIMap’s encodeBe-
gin method and before it invokes UIMap’s encodeEnd method. If a component
needs to perform the rendering for its children, it does this in the encodeChil-

dren method.

Here are the encodeBegin and encodeEnd methods of UIMap:

public void encodeBegin(FacesContext context) throws
IOException {

if (context == null) {
System.out.println("Map: context is null");
throw new NullPointerException();

}
ResponseWriter writer = context.getResponseWriter();

134 CREATING CUSTOM UI COMPONENTS
writer.write("<Map name=\"");
writer.write(getComponentId());
writer.write("\">");

}

public void encodeEnd(FacesContext context) throws IOException
{

if (context == null) {
throw new NullPointerException();

}
ResponseWriter writer = context.getResponseWriter();
writer.write(

"<input type=\"hidden\" name=\"selectedArea\"");
writer.write("\">");
writer.write("</Map>");

}

Notice that encodeBegin renders only the beginning map tag. The encodeEnd

method renders the input tag and the ending map tag.

These methods first check if the FacesContext is null. The FacesContext con-
tains all of the information associated with the current request.

You also need a ResponseWriter, which you get from the FacesContext. The
ResponseWriter writes out the markup to the current response.

The rest of the method renders the markup to the ResponseWriter. This basi-
cally involves passing the HTML tags and attributes to the ResponseWriter as
strings, retrieving the values of the component attributes, and passing these val-
ues to the ResponseWriter.

The id attribute value is retrieved with the getComponentId method, which
returns the component’s unique identifier. The other attribute values are retrieved
with the getAttribute method, which takes the name of the attribute.

If you want your component to perform its own rendering but delegate to a
Renderer if there is one, include the following lines in the encode method to
check if there is a renderer associated with this component.

if (getRendererType() != null) {
super.encodeEnd(context);
return;

}

PERFORMING DECODING 135
If there is a Renderer available, this method invokes the superclass’ encodeEnd
method, which does the work of finding the renderer. The UIMap class performs
its own rendering so does not need to check for available renderers.

In some custom component classes that extend standard components, you might
need to implement additional methods besides encodeEnd. For example, if you
need to retrieve the component’s value from the request parameters—such as to
update a model object—you also have to implement the decode method.

Performing Decoding
During the Apply Request Values phase, the JavaServer Faces implementation
processes the decode methods of all components in the tree. The decode method
extracts a component’s local value from incoming request parameters and con-
verts the value to a type acceptable to the component class.

A custom component class needs to implement the decode method only if it
must retrieve the local value, or it needs to queue events onto the FacesContext.
The UIMap component must do both of the tasks. Here is the decode method of
UIMap:

public void decode(FacesContext context) throws IOException {
if (context == null) {

throw new NullPointerException();
}
String value =

context.getServletRequest().getParameter("selectedArea");
if (value != null)

setAttribute("currentArea", value);
context.addFacesEvent(

new ActionEvent(this, commandName));
setValid(true);

}

The decode method first extracts the value of selectedArea from the request
parameters. Then, it sets the value of UIMap’s currentArea attribute to the value
of selectedArea. The currentArea attribute value indicates the currently-
selected area.

The decode method queues an action event onto the FacesContext. In the JSP
page, the action_listener tag nested inside the map tag causes the ImageMapE-

ventHandler to be registered on the map component. This event handler will

136 CREATING CUSTOM UI COMPONENTS
handle the queued event during the Apply Request Values phase, as explained in
Handling Events for Custom Components (page 141).

Finally, the decode method calls setValid(true) to confirm that the local val-
ues are valid.

Delegating Rendering to a Renderer
For the purpose of illustrating delegated rendering, the image map example
includes an AreaRenderer, which performs the rendering for the UIArea compo-
nent.

To delegate rendering, you need to perform these tasks:

• Create the renderer class

• Register the renderer with a render kit

• Identify the renderer type in the component’s tag handler

Create the Renderer Class
When delegating rendering to a renderer, you can delegate all encoding and
decoding to the renderer, or you can choose to do part of it in the component
class. The UIArea component class only requires encoding.

To delegate the encoding to AreaRenderer, the AreaRenderer needs to imple-
ment an encodeEnd method.

The encoding methods in a Renderer are just like those in a UIComponent class
except that they accept a UIComponent argument as well as a FacesContext

argument, whereas the encodeEnd method defined by UIComponentBase only
takes a FacesContext. The UIComponent argument is the component that needs
to be rendered. In the case of non-delegated rendering, the component is render-
ing itself. In the case of delegated rendering, the renderer needs to be told what
component it is rendering. So you need to pass the component to the encodeEnd

method of AreaRenderer:

public void encodeEnd(FacesContext context,
UIComponent component) { ... }

The encodeEnd method of AreaRenderer must retrieve the shape, coordinates,
and alt values stored in the ImageArea model object that is bound to the UIArea

CREATE THE RENDERER CLASS 137
component. Suppose that the area tag currently being rendered has a valueRef

attribute value of “fraA”. The following line from encodeEnd gets the valueRef

value of “fraA” and uses it to get the value of the attribute “fraA” from the
FacesContext.

ImageArea ia = (ImageArea)
context.getModelValue(component.getvalueRef());

The attribute value is the ImageArea model object instance, which contains the
shape, coordinates, and alt values associated with the fraA UIArea component
instance.

Simplifying the JSP Page (page 124) describes how the application stores these
values.

After retrieving the ImageArea object, you render the values for shape, coords,
and alt by simply calling the associated accessor methods and passing the
returned values to the ResponseWriter, as shown by these lines of code, which
write out the shape and coordinates:

writer.write("<area shape=\"");
writer.write(ia.getShape());
writer.write("\"");
writer.write(" coords=\"");
writer.write(ia.getCoords());

The encodeEnd method also renders the JavaScript for the onmouseout, onmou-
seover, and onclick attributes. The page author only needs to provide the path
to the images that are to be loaded during an onmouseover or onmouseout

action:

<d:area id="France" valueRef="fraA"
onmouseover="/cardemo/world_france.jpg"
onmouseout="/cardemo/world.jpg" />

The AreaRenderer class takes care of generating the JavaScript for these
actions, as shown in this code from encodeEnd:

writer.write(" onmouseover=\"");
writer.write("document.forms[0].mapImage.src='");
imagePath = (String) component.getAttribute("onmouseover");
if ('/' == imagePath.charAt(0)) {

writer.write(imagePath);
} else {

writer.write(contextPath + imagePath);

138 CREATING CUSTOM UI COMPONENTS
}
writer.write("';\"");
writer.write(" onmouseout=\"");
writer.write("document.forms[0].mapImage.src='");
imagePath = (String) component.getAttribute("onmouseout");
if ('/' == imagePath.charAt(0)) {

writer.write(imagePath);
} else {

writer.write(contextPath + imagePath);
}

The JavaScript that AreaRenderer generates for the onclick action sets the
value of the hidden variable, selectedArea, to the value of the current area’s
component ID and submits the page:

writer.write("\"
onclick=\"document.forms[0].selectedArea.value='");

writer.write(component.getComponentId());
writer.write("'; document.forms[0].submit()\"");
writer.write(" onmouseover=\"");
writer.write("document.forms[0].mapImage.src='");

By submitting the page, this code causes the JavaServer Faces lifecycle to return
back to the Reconstitute Component Tree phase. This phase saves any state
information—including the value of the selectedArea hidden variable—so that
a new request component tree is constructed. This value is retrieved by the
decode method of the UIMap component class. This decode method is called by
the JavaServer Faces implementation during the Apply Request Values phase,
which follows the Reconstitute Request Tree Phase.

In addition to the encodeEnd method, AreaRenderer also contains an empty
constructor. This will be used to create an instance of AreaRenderer in order to
add it to the render kit.

AreaRenderer also must implement the decode method and the other encoding
methods, whether or not they are needed.

Finally, AreaRenderer requires an implementation of supportsComponentType:

public boolean supportsComponentType(String componentType) {
if (componentType == null) {

throw new NullPointerException();
}
return (componentType.equals(UIArea.TYPE));

}

REGISTER THE RENDERER WITH A RENDER KIT 139
This method returns true when componentType equals UIArea’s component
type, indicating that AreaRenderer supports the UIArea component.

Note that AreaRenderer extends BaseRenderer, which in turn extends Ren-

derer. The BaseRenderer class is included in the RI of JavaServer Faces tech-
nology. It contains definitions of the Renderer class methods so that you don’t
have to include them in your renderer class.

Register the Renderer with a Render Kit
For every UI component that a render kit supports, the render kit defines a set of
Renderer objects that can render the component in different ways to the client
supported by the render kit. For example, the standard UISelectOne component
class defines a component that allows a user to select one item out of a group of
items. This component can be rendered with the Listbox renderer, the Menu ren-
derer, or the Radio renderer. Each renderer produces a different appearance for
the component. The Listbox renderer renders a menu that displays all possible
values. The Menu renderer renders a subset of all possible values. The Radio ren-
derer renders a set of radio buttons.

When you create a custom renderer, you need to register it with the appropriate
render kit. Since the image map application implements an HTML image map,
AreaRenderer should be registered with the HTML render kit.

You register the renderer using the application configuration file (see Application
Configuration (page 29)):

<render-kit>
<renderer>

<renderer-type>Area</renderer-type>
<renderer-class>

components.renderkit.AreaRenderer
</renderer-class>

</renderer>
</render-kit>

The render-kit element represents a RenderKit implementation. If no ren-

der-kit-id is specified, the default HTML render kit is assumed. The renderer
element represents a Renderer implementation. By nesting the renderer ele-
ment inside the render-kit element, you are registering the renderer with the
RenderKit associated with the render-kit element.

140 CREATING CUSTOM UI COMPONENTS
The renderer-type will be used by the tag handler, as explained in the next sec-
tion. The renderer-class is the fully-qualified classname of the Renderer.

Identify the Renderer Type
During the Render Response phase, the JavaServer Faces implementation calls
the getRendererType method of the component’s tag to determine which ren-
derer to invoke, if there is one.

The getRendererType method of AreaTag must return the type associated with
AreaRenderer. Recall that you identified this type when you registered
AreaRenderer with the render kit. Here is the getRendererType method from
the cardemo application’s AreaTag class:

public String getRendererType() { return “Area”;}

Register the Component
After writing your component classes, you need to register them with the appli-
cation using the application configuration file (see Application
Configuration (page 29))

Here are the declarations that register the UIMap and UIArea components:

<component>
<component-type>Area</component-type>
<component-class>

components.components.UIArea
</component-class>

</component>
<component>

<component-type>Map</component-type>
<component-class>

components.components.UIMap
</component-class>

</component>

The component-type element indicates the name under which the component
should be registered. Other objects referring to this component use this name.
The component-class element indicates the fully-qualified class name of the
component.

HANDLING EVENTS FOR CUSTOM COMPONENTS 141
Handling Events for Custom
Components

As explained in Handling Events (page 99), a standard component queues events
automatically on the FacesContext. Custom components on the other hand
must manually queue the event from the decode method.

Performing Decoding (page 135) explained how to write the decode method of
UIMap to queue an event on the FacesContext component. This section explains
how to write an event handler to handle this event and to register the event han-
dler on the component.

The JavaServer Faces implementation calls the processing methods of any event
handlers registered on components and queued on the FacesContext. The UIMap
component queues an event on the FacesContext. In the JSP page, the
ImageMapEventHandler was registered on map by nesting the action_listener
tag within the map tag:

<d:map id="worldMap" currentArea=”NAmericas” >
<f:action_listener type="cardemo.ImageMapEventHandler"/>
...

</d:map>

Since ImageMapEventHandler is registered on the map component, the JavaSer-
ver Faces implementation calls the ImageMapEventHandler’s processAction

method when the user clicks on the image map:

public void processAction(ActionEvent event) {
UIMap map = (UIMap)event.getSource();
String value = (String) map.getAttribute("currentArea");
Locale curLocale = (Locale) localeTable.get(value);
if (curLocale != null) {

FacesContext context = FacesContext.getCurrentInstance();
context.setLocale(curLocale);
String treeId = "/Storefront.jsp";
TreeFactory treeFactory = (TreeFactory)
FactoryFinder.getFactory(FactoryFinder.TREE_FACTORY);
Assert.assert_it(null != treeFactory);
context.setTree(treeFactory.getTree(context,treeId));

}
}

When the JavaServer Faces implementation calls this method, it passes in an
ActionEvent, representing the event generated by clicking on the image map.

142 CREATING CUSTOM UI COMPONENTS
This method first gets the UIMap component that generated the event by calling
event.getSource. From this component, this method gets the currentArea

attribute value, which is the ID of the currently-selected area. With this value,
this method gets the locale corresponding to the selected area and sets the locale
in the FacesContext. The rest of the code sets the component tree in FacesCon-

text to that corresponding to Storefront.jsp, causing Storefront.jsp to
load after the user clicks the image map.

It is possible to implement event-handling code in the custom component class
instead of in an event handler if the component receives application events. This
component class must subclass UIComponentBase. It must also implement the
appropriate listener interface. This scenario allows an application developer to
create a component that registers itself as a listener so that the page author
doesn’t need to register it.

Using the Custom Component in the
Page

After you’ve created your custom component and written all the accompanying
code, you are ready to use the component from the page.

To use the custom component in the JSP page, you need to declare the custom
tag library that defines the custom tag corresponding to the custom component.
The tag library is described in Defining the Custom Component Tag in a Tag
Library Descriptor (page 129).

To declare the custom tag library, include a taglib directive at the top of each
page that will contain the tags included in the tag library. Here is the taglib

directive that declares the JavaServer Faces components tag library:

<%@ taglib uri="http://java.sun.com/jsf/demo/components"
prefix=”d” %>

The uri attribute value uniquely identifies the tag library. The prefix attribute
value is used to distinguish tags belonging to the tag library. For example, the
map tag must be referenced in the page with the d prefix, like this:

<d:map ...>

USING THE CUSTOM COMPONENT IN THE PAGE 143
Don’t forget to also include the taglib directive for the standard tags included
with the RI:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

When you reference any JavaServer Faces tags—custom or standard—from
within a JSP page, you must enclose all of them in the use_faces tag:

<f:use_faces>
... other faces tags, custom tags, and possibly mixed with
other content

</f:use_faces>

All form elements must also be enclosed within the form tag, which is also
nested within the use_faces tag:

<f:use_faces>
<h:form formName="imageMapForm" >

... other faces tags, custom tags, and possibly mixed with
other content

</h:form>
<f:use_faces>

The form tag encloses all of the controls that display or collect data from the
user. The formName attribute is passed to the application, where it is used to
select the appropriate business logic.

Now that you’ve set up your page, you can add the custom tags in between the
form tags, as shown here in the ImageMap.jsp page:

...
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jsf/demo/components"

prefix="d" %>
<f:use_faces>

<h:form formName=”imageMapForm” >
<table> <tr> <td>
...

<tr> <TD>
<h:graphic_image url=”/world.jpg” usemap=”#worldMap” />
<d:map id=”worldMap” currentArea=”NAmericas” >

<d:area id=”NAmericas” valueRef=”NA”
onmouseover=”/cardemo/world_namer.jpg”

144 CREATING CUSTOM UI COMPONENTS
onmouseout=”/cardemo/world.jpg” />
...

</d:map>
</TD></tr></table>
</h:form>

</f:use_faces>

Conclusion
JavaServer Faces technology provides a rich, flexible architecture that makes it
easy to build Web applications with server-side UI functionality.

You have seen how to use this technology to extend the functionality of standard
components and create new components, to perform data conversions and vali-
dation, and to handle component events. You have also seen how to specify the
rendering of components and how to use them in a Web application.

You have gained this knowledge by learning about the various examples
included in the release and explained in this tutorial. You now have the means to
create your own Web applications using JavaServer Faces technology.

	Contents
	Preface
	Who Should Use This Tutorial
	How to Print This Tutorial
	About the Examples
	Prerequisites for the Examples
	Required Software
	Running the Examples Using the Pre- Installed XML Files
	Building and Running the Sample Apps Manually

	Basic Requirements of a JavaServer Faces Application
	Writing the web.xml File
	Identifying the Servlet for Lifecycle Processing
	Provide the Path to the Servlets

	Including the Required JAR Files
	Including the Classes, Pages, and Other Resources
	Invoking the FacesServlet
	Setting Up The Application Configuration File

	Related Information

	Introduction to JavaServer™ Faces Technology
	JavaServer Faces Technology Benefits
	What is a JavaServer Faces Application?
	An Example JavaServer Faces Page
	Framework Roles
	A Simple JavaServer Faces Application
	Steps in the Development Process
	Develop the Model Objects
	Adding Managed Bean Declarations
	Creating the Pages
	Define Page Navigation

	The Lifecycle of a JavaServer Faces Page
	Request Processing Lifecycle Scenarios
	Standard Request Processing Lifecycle
	Reconstitute Component Tree
	Apply Request Values
	Process Validations
	Update Model Values
	Invoke Application
	Render Response

	User Interface Component Model
	The User-Interface Component Classes
	The Component Rendering Model
	Conversion Model
	Event and Listener Model
	Validation Model

	Navigation Model
	Managed Bean Creation
	Application Configuration

	Using JavaServer Faces Technology
	The cardemo Example
	How to Build and Run the Example
	Creating Model Objects
	Using the managed-bean Element
	Initializing Properties using the managed-property Element
	Referencing an Initialization Parameter
	Initializing Map Properties
	Initializing Array and Collection Properties
	Initializing Managed Bean Properties

	Binding a Component to a Data Source
	How Binding a Component to Data Works
	Binding a Component to a Bean Property
	Binding a Component to an Initial Default
	Combining Component Data and Action Objects

	Using the JavaServer Faces Tag Libraries
	Declaring the JavaServer Faces Tag Libraries
	Using the Core Tags
	Using the HTML Tags
	The UIForm Component
	The UICommand Component
	The UIGraphic Component
	The UIInput and UIOutput Components
	The UIPanel Component
	The UISelectBoolean Component
	The UISelectMany Component
	The UISelectOne Component
	The UISelectItem and UISelectItems Classes

	Writing a Model Object Class
	Writing Model Object Properties
	UIInput and UIOutput Properties
	UIPanel Properties
	UISelectBoolean Properties
	UISelectMany Properties
	UISelectOne Properties
	UISelectItem Properties
	UISelectItems Properties

	Performing Validation
	Displaying Validation Error Messages
	Using the Standard Validators
	Using the Required Validator
	Using the StringRangeValidator

	Creating a Custom Validator
	Implement the Validator Interface
	Register the Error Messages
	Register the Custom Validator
	Create a Custom Tag or Use the validator Tag

	Performing Data Conversions
	Using the Standard Converters
	Creating and Using a Custom Converter
	Implement the Converter Interface
	Register the Converter
	Use the Converter in the Page

	Handling Events
	Implementing an Event Listener
	Implementing a Value-Changed Listener
	Implementing Action Listeners

	Registering Listeners on Components
	Registering a ValueChangedListener on a Component
	Registering an ActionListener on a Component

	Navigating Between Pages
	What is Navigation?
	How Navigation Works
	Configuring Navigation Rules in faces- config.xml
	Referencing An Action From a Component
	Using an Action Object With a Navigation Rule

	Performing Localization
	Localizing Static Data
	Localizing Dynamic Data
	Localizing Messages

	Creating Custom UI Components
	Determining if You Need a Custom Component or Renderer
	When to Use a Custom Component
	When to Use a Custom Renderer
	Component, Renderer, and Tag Combinations

	Understanding the Image Map Example
	Why Use JavaServer Faces Technology to Implement an Image Map?
	Understanding the Rendered HTML
	Understanding the JSP Page
	Simplifying the JSP Page
	Summary of the Application Classes

	Steps for Creating a Custom Component
	Creating the Component Tag Handler
	Defining the Custom Component Tag in a Tag Library Descriptor
	Creating Custom Component Classes
	Extending From a Standard Component
	Performing Encoding
	Performing Decoding

	Delegating Rendering to a Renderer
	Create the Renderer Class
	Register the Renderer with a Render Kit
	Identify the Renderer Type

	Register the Component
	Handling Events for Custom Components
	Using the Custom Component in the Page
	Conclusion

