
Teach Yourself Perl 5 in 21 days
David Till

Table of Contents:

Introduction

●     Who Should Read This Book? 
●     Special Features of This Book 
●     Programming Examples 
●     End-of-Day Q& A and Workshop 
●     Conventions Used in This Book 
●     What You'll Learn in 21 Days 

Week 1   Week at a Glance

●     Where You're Going 

Day 1   Getting Started

●     What Is Perl? 
●     How Do I Find Perl? 

❍     Where Do I Get Perl? 
❍     Other Places to Get Perl 

●     A Sample Perl Program 
●     Running a Perl Program 

❍     If Something Goes Wrong 
●     The First Line of Your Perl Program: How Comments Work 

❍     Comments 
●     Line 2: Statements, Tokens, and <STDIN> 

❍     Statements and Tokens 
❍     Tokens and White Space 
❍     What the Tokens Do: Reading from Standard Input 

●     Line 3: Writing to Standard Output 
❍     Function Invocations and Arguments 

●     Error Messages 



●     Interpretive Languages Versus Compiled Languages 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 2   Basic Operators and Control Flow

●     Storing in Scalar Variables Assignment 
❍     The Definition of a Scalar Variable 
❍     Scalar Variable Syntax 
❍     Assigning a Value to a Scalar Variable 

●     Performing Arithmetic 
❍     Example of Miles-to-Kilometers Conversion 
❍     The chop Library Function 

●     Expressions 
❍     Assignments and Expressions 

●     Other Perl Operators 
●     Introduction to Conditional Statements 
●     The if Statement 

❍     The Conditional Expression 
❍     The Statement Block 
❍     Testing for Equality Using == 
❍     Other Comparison Operators 

●     Two-Way Branching Using if and else 
●     Multi-Way Branching Using elsif 
●     Writing Loops Using the while Statement 
●     Nesting Conditional Statements 
●     Looping Using the until Statement 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 3   Understanding Scalar Values

●     What Is a Scalar Value? 
●     Integer Scalar Values 

❍     Integer Scalar Value Limitations 



●     Floating-Point Scalar Values 
❍     Floating-Point Arithmetic and Round-Off Error 

●     Using Octal and Hexadecimal Notation 
❍     Decimal Notation 
❍     Octal Notation 
❍     Hexadecimal Notation 
❍     Why Bother? 

●     Character Strings 
❍     Using Double-Quoted Strings 
❍     Escape Sequences 
❍     Single-Quoted Strings 

●     Interchangeability of Strings and Numeric Values 
❍     Initial Values of Scalar Variables 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 4   More Operators

●     Using the Arithmetic Operators 
❍     Exponentiation 
❍     The Remainder Operator 
❍     Unary Negation 

●     Using Comparison Operators 
❍     Integer-Comparison Operators 
❍     String-Comparison Operators 
❍     String Comparison Versus Integer Comparison 
❍     Comparison and Floating-Point Numbers 

●     Using Logical Operators 
❍     Evaluation Within Logical Operators 
❍     Logical Operators as Subexpressions 

●     Using Bit-Manipulation Operators 
❍     What Bits Are and How They Are Used 
❍     The Bit-Manipulation Operators 

●     Using the Assignment Operators 
❍     Assignment Operators as Subexpressions 

●     Using Autoincrement and Autodecrement 
❍     The Autoincrement Operator Pre-Increment 
❍     The Autoincrement Operator Post-Increment 



❍     The Autodecrement Operator 
❍     Using Autoincrement With Strings 

●     The String Concatenation and Repetition Operators 
❍     The String-Concatenation Operator 
❍     The String-Repetition Operator 
❍     Concatenation and Assignment 

●     Other Perl Operators 
❍     The Comma Operator 
❍     The Conditional Operator 

●     The Order of Operations 
❍     Precedence 
❍     Associativity 
❍     Forcing Precedence Using Parentheses 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 5   Lists and Array Variables

●     Introducing Lists 
●     Scalar Variables and Lists 

❍     Lists and String Substitution 
●     Storing Lists in Array Variables 
●     Accessing an Element of an Array Variable 

❍     More Details on Array Element Names 
●     Using Lists and Arrays in Perl Programs 

❍     Using Brackets and Substituting for Variables 
●     Using List Ranges 

❍     Expressions and List Ranges 
●     More on Assignment and Array Variables 

❍     Copying from One Array Variable to Another 
❍     Using Array Variables in Lists 
❍     Substituting for Array Variables in Strings 
❍     Assigning to Scalar Variables from Array Variables 

●     Retrieving the Length of a List 
●     Using Array Slices 

❍     Using List Ranges in Array-Slice Subscripts 
❍     Using Variables in Array-Slice Subscripts 
❍     Assigning to Array Slices 



❍     Overlapping Array Slices 
❍     Using the Array-Slice Notation as a Shorthand 

●     Reading an Array from the Standard Input File 
●     Array Library Functions 

❍     Sorting a List or Array Variable 
❍     Reversing a List or Array Variable 
❍     Using chop on Array Variables 
❍     Creating a Single String from a List 
❍     Splitting a String into a List 
❍     Other List-Manipulation Functions 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 6   Reading from and Writing to Files

●     Opening a File 
❍     The File Variable 
❍     The Filename 
❍     The File Mode 
❍     Checking Whether the Open Succeeded 

●     Reading from a File 
❍     File Variables and the Standard Input File 
❍     Terminating a Program Using die 
❍     Reading into Array Variables 

●     Writing to a File 
❍     The Standard Output File Variable 
❍     Merging Two Files into One 

●     Redirecting Standard Input and Standard Output 
●     The Standard Error File 
●     Closing a File 
●     Determining the Status of a File 

❍     File-Test Operator Syntax 
❍     Available File-Test Operators 
❍     More on the -e Operator 
❍     Testing for Read Permission-the -r Operator 
❍     Checking for Other Permissions 
❍     Checking for Empty Files 
❍     Using File-Test Operators with File Variables 



●     Reading from a Sequence of Files 
❍     Reading into an Array Variable 

●     Using Command-Line Arguments as Values 
❍     ARGV and the <> Operator 

●     Opening Pipes 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 7   Pattern Matching

●     Introduction 
●     The Match Operators 

❍     Match-Operator Precedence 
●     Special Characters in Patterns 

❍     The + Character 
❍     The [] Special Characters 
❍     The * and ? Special Characters 
❍     Escape Sequences for Special Characters 
❍     Matching Any Letter or Number 
❍     Anchoring Patterns 
❍     Variable Substitution in Patterns 
❍     Excluding Alternatives 
❍     Character-Range Escape Sequences 
❍     Matching Any Character 
❍     Matching a Specified Number of Occurrences 
❍     Specifying Choices 
❍     Reusing Portions of Patterns 
❍     Pattern-Sequence Scalar Variables 
❍     Special-Character Precedence 
❍     Specifying a Different Pattern Delimiter 

●     Pattern-Matching Options 
❍     Matching All Possible Patterns 
❍     Ignoring Case 
❍     Treating the String as Multiple Lines 
❍     Evaluating a Pattern Only Once 
❍     Treating the String as a Single Line 
❍     Using White Space in Patterns 

●     The Substitution Operator 



❍     Using Pattern-Sequence Variables in Substitutions 
❍     Options for the Substitution Operator 
❍     Evaluating a Pattern Only Once 
❍     Treating the String as Single or Multiple Lines 
❍     Using White Space in Patterns 
❍     Specifying a Different Delimiter 

●     The Translation Operator 
❍     Options for the Translation Operator 

●     Extended Pattern-Matching 
❍     Parenthesizing Without Saving in Memory 
❍     Embedding Pattern Options 
❍     Positive and Negative Look-Ahead 
❍     Pattern Comments 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Week 1   Week 1 in Review

Week 2   Week 2 at a Glance

●     Where You're Going 

Day 8   More Control Structures

●     Using Single-Line Conditional Statements 
❍     Problems with Single-Line Conditional Statements 

●     Looping Using the for Statement 
❍     Using the Comma Operator in a for Statement 

●     Looping Through a List: The foreach Statement 
❍     The foreach Local Variable 
❍     Changing the Value of the Local Variable 
❍     Using Returned Lists in the foreach Statement 

●     The do Statement 
●     Exiting a Loop Using the last Statement 
●     Using next to Start the Next Iteration of a Loop 
●     The redo Statement 
●     Using Labeled Blocks for Multilevel Jumps 



❍     Using next and redo with Labels 
●     The continue Block 
●     The goto Statement 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 9   Using Subroutines

●     What Is a Subroutine? 
●     Defining and Invoking a Subroutine 

❍     Forward References to Subroutines 
●     Returning a Value from a Subroutine 

❍     Return Values and Conditional Expressions 
●     The return Statement 
●     Using Local Variables in Subroutines 

❍     Initializing Local Variables 
●     Passing Values to a Subroutine 

❍     Passing a List to a Subroutine 
●     Calling Subroutines from Other Subroutines 
●     Recursive Subroutines 
●     Passing Arrays by Name Using Aliases 
●     Using the do Statement with Subroutines 
●     Specifying the Sort Order 
●     Predefined Subroutines 

❍     Creating Startup Code Using BEGIN 
❍     Creating Termination Code Using END 
❍     Handling Non-Existent Subroutines Using AUTOLOAD 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 10   Associative Arrays

●     Limitations of Array Variables 
●     Definition 
●     Referring to Associative Array Elements 



●     Adding Elements to an Associative Array 
●     Creating Associative Arrays 
●     Copying Associative Arrays from Array Variables 
●     Adding and Deleting Array Elements 
●     Listing Array Indexes and Values 
●     Looping Using an Associative Array 
●     Creating Data Structures Using Associative Arrays 

❍     Linked Lists 
❍     Structures 
❍     Trees 
❍     Databases 
❍     Example: A Calculator Program 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 11   Formatting Your Output

●     Defining a Print Format 
●     Displaying a Print Format 
●     Displaying Values in a Print Format 

❍     Creating a General-Purpose Print Format 
❍     Choosing a Value-Field Format 
❍     Printing Value-Field Characters 
❍     Using the Multiline Field Format 

●     Writing to Other Output Files 
❍     Saving the Default File Variable 

●     Specifying a Page Header 
❍     Changing the Header Print Format 

●     Setting the Page Length 
❍     Using print with Pagination 

●     Formatting Long Character Strings 
❍     Eliminating Blank Lines When Formatting 
❍     Supplying an Indefinite Number of Lines 

●     Formatting Output Using printf 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 



❍     Exercises 

Day 12   Working with the File System

●     File Input and Output Functions 
❍     Basic Input and Output Functions 
❍     Skipping and Rereading Data 
❍     System Read and Write Functions 
❍     Reading Characters Using getc 
❍     Reading a Binary File Using binmode 

●     Directory-Manipulation Functions 
❍     The mkdir Function 
❍     The chdir Function 
❍     The opendir Function 
❍     The closedir Function 
❍     The readdir Function 
❍     The telldir and seekdir Functions 
❍     The rewinddir Function 
❍     The rmdir Function 

●     File-Attribute Functions 
❍     File-Relocation Functions 
❍     Link and Symbolic Link Functions 
❍     File-Permission Functions 
❍     Miscellaneous Attribute Functions 

●     Using DBM Files 
❍     The dbmopen Function 
❍     The dbmclose Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 13   Process, String, and Mathematical Functions

●     Process- and Program-Manipulation Functions 
❍     Starting a Process 
❍     Terminating a Program or Process 
❍     Execution Control Functions 
❍     Miscellaneous Control Functions 

●     Mathematical Functions 



❍     The sin and cos Functions 
❍     The atan2 Function 
❍     The sqrt Function 
❍     The exp Function 
❍     The log Function 
❍     The abs Function 
❍     The rand and srand Functions 

●     String-Manipulation Functions 
❍     The index Function 
❍     The rindex Function 
❍     The length Function 
❍     Retrieving String Length Using tr 
❍     The pos Function 
❍     The substr Function 
❍     The study Function 
❍     Case Conversion Functions 
❍     The quotemeta Function 
❍     The join Function 
❍     The sprintf Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 14   Scalar-Conversion and List-Manipulation Functions

●     The chop Function 
●     The chomp Function 
●     The crypt Function 
●     The hex Function 
●     The int Function 
●     The oct Function 

❍     The oct Function and Hexadecimal Integers 
●     The ord and chr Functions 
●     The scalar Function 
●     The pack Function 

❍     The pack Function and C Data Types 
●     The unpack Function 

❍     Unpacking Strings 
❍     Skipping Characters When Unpacking 



❍     The unpack Function and uuencode 
●     The vec Function 
●     The defined Function 
●     The undef Function 
●     Array and List Functions 

❍     The grep Function 
❍     The splice Function 
❍     The shift Function 
❍     The unshift Function 
❍     The push Function 
❍     The pop Function 
❍     Creating Stacks and Queues 
❍     The split Function 
❍     The sort and reverse Functions 
❍     The map Function 
❍     The wantarray Function 

●     Associative Array Functions 
❍     The keys Function 
❍     The values Function 
❍     The each Function 
❍     The delete Function 
❍     The exists Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Week 2   Week 2 in Review

Week 3   Week 3 at a Glance

●     Where You're Going 

Day 15   System Functions

●     System Library Emulation Functions 
❍     The getgrent Function 
❍     The setgrent and endgrent Functions 
❍     The getgrnam Function 



❍     The getgrid Function 
❍     The getnetent Function 
❍     The getnetbyaddr Function 
❍     The getnetbyname Function 
❍     The setnetent and endnetent Functions 
❍     The gethostbyaddr Function 
❍     The gethostbyname Function 
❍     The gethostent, sethostent, and endhostent Functions 
❍     The getlogin Function 
❍     The getpgrp and setpgrp Functions 
❍     The getppid Function 
❍     The getpwnam Function 
❍     The getpwuid Function 
❍     The getpwent Function 
❍     The setpwent and endpwent Functions 
❍     The getpriority and setpriority Functions 
❍     The getprotoent Function 
❍     The getprotobyname and getprotobynumber Functions 
❍     The setprotoent and endprotoent Functions 
❍     The getservent Function 
❍     The getservbyname and getservbyport Functions 
❍     The setservent and endservent Functions 
❍     The chroot Function 
❍     The ioctl Function 
❍     The alarm Function 
❍     Calling the System select Function 
❍     The dump Function 

●     Socket-Manipulation Functions 
❍     The socket Function 
❍     The bind Function 
❍     The listen Function 
❍     The accept Function 
❍     The connect Function 
❍     The shutdown Function 
❍     The socketpair Function 
❍     The getsockopt and setsockopt Functions 
❍     The getsockname and getpeername Functions 

●     The UNIX System V IPC Functions 
❍     IPC Functions and the require Statement 
❍     The msgget Function 
❍     The msgsnd Function 



❍     The msgrcv Function 
❍     The msgctl Function 
❍     The shmget Function 
❍     The shmwrite Function 
❍     The shmread Function 
❍     The shmctl Function 
❍     The semget Function 
❍     The semop Function 
❍     The semctl Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 16   Command-Line Options

●     Specifying Options 
❍     Specifying Options on the Command Line 
❍     Specifying an Option in the Program 

●     The -v Option: Printing the Perl Version Number 
●     The -c Option: Checking Your Syntax 
●     The -w Option: Printing Warnings 

❍     Checking for Possible Typos 
❍     Checking for Redefined Subroutines 
❍     Checking for Incorrect Comparison Operators 

●     The -e Option: Executing a Single-Line Program 
●     The -s Option: Supplying Your Own Command-Line Options 

❍     The -s Option and Other Command-Line Arguments 
●     The -P Option: Using the C Preprocessor 

❍     The C Preprocessor: A Quick Overview 
●     The -I Option: Searching for C Include Files 
●     The -n Option: Operating on Multiple Files 
●     The -p Option: Operating on Files and Printing 
●     The -i Option: Editing Files 

❍     Backing Up Input Files Using the -i Option 
●     The -a Option: Splitting Lines 
●     The -F Option: Specifying the Split Pattern 
●     The -0 Option: Specifying Input End-of-Line 
●     The -l Option: Specifying Output End-of-Line 
●     The -x Option: Extracting a Program from a Message 



●     Miscellaneous Options 
❍     The -u Option 
❍     The -U Option 
❍     The -S Option 
❍     The -D Option 
❍     The -T Option: Writing Secure Programs 

●     The -d Option: Using the Perl Debugger 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 17   System Variables

●     Global Scalar Variables 
❍     The Default Scalar Variable: $_ 
❍     The Program Name: $0 
❍     The User ID: $< and $> 
❍     The Group ID: $( and $) 
❍     The Version Number: $] 
❍     The Input Line Separator: $/ 
❍     The Output Line Separator: $ 
❍     The Output Field Separator: $, 
❍     The Array Element Separator: $" 
❍     The Number Output Format: $# 
❍     The eval Error Message: $@ 
❍     The System Error Code: $? 
❍     The System Error Message: $! 
❍     The Current Line Number: $. 
❍     Multiline Matching: $* 
❍     The First Array Subscript: $[ 
❍     Multidimensional Associative Arrays and the $; Variable 
❍     The Word-Break Specifier: $: 
❍     The Perl Process ID: $$ 
❍     The Current Filename: $ARGV 
❍     The Write Accumulator: $^A 
❍     The Internal Debugging Value: $^D 
❍     The System File Flag: $^F 
❍     Controlling File Editing Using $^I 
❍     The Format Form-Feed Character: $^L 



❍     Controlling Debugging: $^P 
❍     The Program Start Time: $^T 
❍     Suppressing Warning Messages: $^W 
❍     The $^X Variable 

●     Pattern System Variables 
❍     Retrieving Matched Subpatterns 
❍     Retrieving the Entire Pattern: $& 
❍     Retrieving the Unmatched Text: the $` and $' Variables 
❍     The $+ Variable 

●     File System Variables 
❍     The Default Print Format: $~ 
❍     Specifying Page Length: $= 
❍     Lines Remaining on the Page: $- 
❍     The Page Header Print Format: $^ 
❍     Buffering Output: $| 
❍     The Current Page Number: $% 

●     Array System Variables 
❍     The @_ Variable 
❍     The @ARGV Variable 
❍     The @F Variable 
❍     The @INC Variable 
❍     The %INC Variable 
❍     The %ENV Variable 
❍     The %SIG Variable 

●     Built-In File Variables 
❍     STDIN, STDOUT, and STDERR 
❍     ARGV 
❍     DATA 
❍     The Underscore File Variable 

●     Specifying System Variable Names as Words 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 18   References in Perl 5

●     Introduction to References 
●     Using References 
●     Using the Backslash Operator 



●     References and Arrays 
●     Multidimensional Arrays 
●     References to Subroutines 

❍     Using Subroutine Templates 
●     Using Subroutines to Work with Multiple Arrays 

❍     Pass By Value or By Reference? 
●     References to File Handles 

❍     What Does the *variable Operator Do? 
●     Using Symbolic References… Again 

❍     Declaring Variables with Curly Braces 
●     More on Hard Versus Symbolic References 
●     For More Information 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
●     Exercises 

Day 19   Object-Oriented Programming in Perl

●     An Introduction to Modules 
❍     The Three Important Rules 

●     Classes in Perl 
●     Creating a Class 
●     Blessing a Constructor 

❍     Instance Variables 
●     Methods 
●     Exporting Methods 
●     Invoking Methods 
●     Overrides 
●     Destructors 
●     Inheritance 
●     Overriding Methods 
●     A Few Comments About Classes and Objects in Perl 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 20   Miscellaneous Features of Perl



●     The require Function 
❍     The require Function and Subroutine Libraries 
❍     Using require to Specify a Perl Version 

●     The $#array Variables 
❍     Controlling Array Length Using $#array 

●     Alternative String Delimiters 
❍     Defining Strings Using << 

●     Special Internal Values 
●     Using Back Quotes to Invoke System Commands 
●     Pattern Matching Using ?? and the reset Function 

❍     Using reset with Variables 
●     Other Features of the <> Operator 

❍     Scalar Variable Substitution and <> 
❍     Creating a List of Filenames 

●     Global Indirect References and Aliases 
●     Packages 

❍     Defining a Package 
❍     Switching Between Packages 
❍     The main Package 
❍     Referring to One Package from Another 
❍     Specifying No Current Package 
❍     Packages and Subroutines 
❍     Defining Private Data Using Packages 
❍     Packages and System Variables 
❍     Accessing Symbol Tables 

●     Modules 
❍     Creating a Module 
❍     Importing Modules Into Your Program 
❍     Using Predefined Modules 

●     Using Perl in C Programs 
●     Perl and CGI Scripts 
●     Translators and Other Supplied Code 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Day 21   The Perl Debugger



●     Entering and Exiting the Perl Debugger 
❍     Entering the Debugger 
❍     Exiting the Debugger 

●     Listing Your Program 
❍     The l command 
❍     The - Command 
❍     The w Command 
❍     The // and ?? Commands 
❍     The S Command 

●     Stepping Through Programs 
❍     The s Command 
❍     The n Command 
❍     The f command 
❍     The Carriage-Return Command 
❍     The r Command 

●     Displaying Variable Values 
❍     The X Command 
❍     The V Command 

●     Breakpoints 
❍     The b Command 
❍     The c Command 
❍     The L Command and Breakpoints 
❍     The d and D Commands 

●     Tracing Program Execution 
●     Line Actions 

❍     The a Command 
❍     The A Command 
❍     The < and > Commands 
❍     Displaying Line Actions Using the L Command 

●     Other Debugging Commands 
❍     Executing Other Perl Statements 
❍     The H Command: Listing Preceding Commands 
❍     The ! Command: Executing Previous Commands 
❍     The T Command: Stack Tracing 
❍     The p Command: Printing an Expression 
❍     The = Command: Defining Aliases 
❍     Predefining Aliases 
❍     The h Command: Debugger Help 

●     Summary 
●     Q&A 
●     Workshop 



❍     Quiz 

Week 3   Week 3 in Review

Appendix A   Answers

●     Answers for Day 1, "Getting Started" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 2, "Basic Operators and Control Flow" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 3, "Understanding Scalar Values" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 4, "More Operators" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 5, "Lists and Array Variables" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 6, "Reading from and Writing to Files" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 7, "Pattern Matching" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 8, "More Control Structures" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 9, "Using Subroutines" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 10, "Associative Arrays" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 11, "Formatting Your Output" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 12, "Working with the File System" 
❍     Quiz 



❍     Exercises 
●     Answers for Day 13, "Process, String, and Mathematical Functions" 

❍     Quiz 
❍     Exercises 

●     Answers for Day 14, "Scalar-Conversion and List-Manipulation Functions" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 15, "System Functions" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 16, "Command-Line Options" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 17, "System Variables" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 18, "References in 
Perl 5" 

❍     Quiz 
❍     Exercises 

●     Answers for Day 19, "Object-Oriented Programming in Perl" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 20, "Miscellaneous Features of Perl" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 21, "The Perl Debugger" 
❍     Quiz 

Appendix B   ASCII Character Set

Credits

Copyright © 1996 by Sams Publishing 

SECOND EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval 



system, or transmitted by any means, electronic, mechanical, photocopying, recording, or 
otherwise, without written permission from the publisher. No patent liability is assumed 
with respect to the use of the information contained herein. Although every precaution 
has been taken in the preparation of this book, the publisher and author assume no 
responsibility for errors or omissions. Neither is any liability assumed for damages 
resulting from the use of the information contained herein. For information, address 
Sams Publishing, 201 W. 103rd St., Indianapolis, IN 46290. 

International Standard Book Number: 0-672-30894-0 HTML conversion by : 
    M/s. LeafWriters (India) Pvt. Ltd. 
    Website : http://leaf.stpn.soft.net 
    e-mail : leafwriters@leaf.stpn.soft.net 

Publisher and 
President

Richard K. Swadley Acquisitions 
Manager

Greg Wiegand 

Development 
Manager

Dean Miller Managing Editor Cindy Morrow 

Marketing Manager John Pierce Assistant 
Marketing Manager

Kristina Perry 

Acquisitions Editor Chris Denny Development 
Editors

Angelique Brittingham, 
Keith Davenport 

Software 
Development 
Specialist

Steve Straiger Production Editor Tonya R. Simpson

Copy Editor Kimberly K. Hannel Technical Reviewer Elliotte Rusty Harold 

Editorial 
Coordinator

Bill Whitmer Technical Edit 
Coordinator

Lynette Quinn 

Formatter Frank Sinclair Editorial 
Assistants

Carol Ackerman, Andi 
Richter Rhonda, Tinch-
Mize 

Cover Designer Tim Amrhein Book Designer Gary Adair 

Copy Writer Peter Fuller Production Team 
Supervisor

Brad Chinn 

Production Michael Brumitt, Charlotte Clapp, Jason Hand, Sonja Hart, Louisa 
Klucznik, Ayanna Lacey, Clint Lahnen, Paula Lowell, Laura Robbins, 
Bobbi Satterfield, Carol Sheehan, Chris Wilcox 

Acknowledgments

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net


I would like to thank the following people for their help: 

●     David Macklem at Sietec Open Systems for allowing me to take the time off to 
work on the first edition of this book 

●     Everyone at Sams Publishing, for their efforts and encouragement 
●     Jim Gardner, for telling the people at Sams Publishing about me 

I'd also like to thank all those friends of mine (you know who you are) who tolerated 
my going stir-crazy as my deadlines approached. 

About the Authors

David Till 

David Till is a technical writer working in Toronto, Ontario, Canada. He holds a 
master's degree in computer science from the University of Waterloo; programming 
languages was his major field of study. He also has worked in compiler development and 
on version-control software. He lists his hobbies as "writing, comedy, walking, duplicate 
bridge, and fanatical support of the Toronto Blue Jays." 

He can be reached via e-mail at am671@freenet.toronto.on.ca or davet@klg.com, or on 
the World Wide Web at http://www.interlog.com/~davet/. 

Kamran Husain

Kamran Husain is a software consultant with experience in UNIX system programming. 
He has dabbled in all sorts of software for real-time systems applications, 
telecommunications, seismic data acquisition and navigation, X Window/Motif and 
Microsoft Windows applications. He refuses to divulge any more of his qualifications. 
Kamran offers consulting services and training classes through his company, MPS Inc., in 
Houston, Texas. He is an alumnus of the University of Texas at Austin. 

You can reach Kamran through Sams Publishing or via e-mail at khusain@neosoft.com or 
mpsi@aol.com. 

Introduction
This book is designed to teach you the Perl programming language in just 21 days. When 
you finish reading this book, you will have learned why Perl is growing rapidly in 
popularity: It is powerful enough to perform many useful, sophisticated programming 
tasks, yet it is easy to learn and use. 

http://www.interlog.com/~davet/


Who Should Read This Book?

No previous programming experience is required for you to learn everything you need to 
know about programming with Perl from this book. In particular, no knowledge of the C 
programming language is required. If you are familiar with other programming 
languages, learning Perl will be a snap. The only assumption this book does make is that 
you are familiar with the basics of using the UNIX operating system. 

Special Features of This Book

This book contains some special elements that help you understand Perl features and 
concepts as they are introduced: 

●     Syntax boxes 
●     DO/DON'T boxes 
●     Notes 
●     Warnings 
●     Tips 

Syntax boxes explain some of the more complicated features of Perl, such as the control 
structures. Each syntax box consists of a formal definition of the feature followed by 
an explanation of the elements of the feature. Here is an example of a syntax box: 

The syntax of the for statement is 

for (expr1; expr2; expr3) {

        statement_block

}

expr1 is the loop initializer. It is evaluated only once, before the start of the loop. 

expr2 is the conditional expression that terminates the loop. The conditional expression 
in expr2 behaves just like the ones in while and if statements: If its value is zero, the 
loop is terminated, and if its value is nonzero, the loop is executed. 

statement_block is the collection of statements that is executed if (and when) expr2 has 
a nonzero value. 

expr3 is executed once per iteration of the loop, and is executed after the last 
statement in statement_block is executed. 



Don't try to understand this definition yet! 

DO/DON'T boxes present the do's and don'ts for a particular task or feature. Here is an 
example of such a box:

DON'T confuse the | operator (bitwise OR) with the || 
operator (logical OR). 

DO make sure you are using the proper bitwise operator. 
It's easy to slip and assume you want bitwise OR when 
you really want bitwise AND. (Trust me. 

Notes are explanations of interesting properties of a particular program feature. Here is 
an example of a note:

NOTE

In left-justified output, the value being displayed 
appears at the left end of the value field. In right-
justified output, the value being displayed appears at the 
right end of the value field.

Warnings warn you of programming pitfalls to avoid. Here is a typical warning:

You cannot use the last statement inside the do 
statement. The do statement, although it behaves like 
the other control structures, is actually implemented 
differently. 

Tips are hints on how to write your Perl programs better. Here is an example of a tip:

TIP



It is a good idea to use all uppercase letters for your 
file variable names. This makes it easier to distinguish 
file variable names from other variable names and from 
reserved words.

Programming Examples

Each feature of Perl is illustrated by examples of its use. In addition, each chapter of 
this book contains many useful programming examples complete with explanations; these 
examples show you how you can use Perl features in your own programs. 

Each example contains a listing of the program, the input required by and the output 
generated by the program, and an analysis of how the program works. Special icons are 
used to point out each part of the example: Type, Input-Output, and Analysis. 

In the Input-Output example following Listing IN.1, there are some special typographic 
conventions. The input you enter is shown in bold monospace type, and the output 
generated by the system or the program is shown in plain monospace type. The system 
prompt ($ in the examples in this book) is shown so that you know when a command is to 
be entered on the command line. 

Listing IN.1. A simple Perl program with comments.

1: #!/usr/local/bin/perl

2: # this program reads a line of input, and writes the line

3: # back out

4: $inputline = <STDIN>;    # read a line of input

5: print( $inputline );     # write the line out

$ programIN_1

This is a line of input.

This is a line of input.

$



Line 1 is the header comment. Lines 2 and 3 are comments, not executable lines 
of code. Line 4 reads a line of input. Line 5 writes the line of input on your screen. 

End-of-Day Q& A and Workshop

Each day ends with a Q&A section containing answers to common questions relating to 
that day's material. There also is a Workshop at the end of each day that consists of 
quiz questions and programming exercises. The exercises often include BUG BUSTER 
exercises that help you spot some of the common bugs that crop up in Perl programs. The 
answers to these quiz questions as well as sample solutions for the exercises are 
presented in Appendix A, "Answers." 

Conventions Used in This Book

This book uses different typefaces to help you differentiate between Perl code and 
regular English, and also to help you identify important concepts. 

●     Actual Perl code is typeset in a special monospace font. You'll see this font used in 
listings and the Input-Output examples, as well as in code snippets. In the 
explanations of Perl features, commands, filenames, statements, variables, and 
any text you see on the screen also are typeset in this font. 

●     Command input and anything that you are supposed to enter appears in a bold 
monospace font. You'll see this mainly in the Input-Output examples. 

●     Placeholders in syntax descriptions appear in an italic monospace font. Replace 
the placeholder with the actual filename, parameter, or whatever element it 
represents. 

●     Italics highlight technical terms when they first appear in the text and are 
sometimes used to emphasize important points. 

What You'll Learn in 21 Days 

In your first week of learning Perl, you'll learn enough of the basics of Perl to write 
many useful Perl programs. Here's a summary of what you'll learn in Week 1: 

Day 1, "Getting Started," tells you how to get Perl, how to run Perl 
programs, and how to read from your keyboard and write to your screen. 

Day 2, "Basic Operators and Control Flow," teaches you about simple 
arithmetic, how to assign a value to a scalar variable, and how to control 
execution using conditional statements. 



Day 3, "Understanding Scalar Values," teaches you about integers, 
floating-point numbers, and character strings. It also shows you that all 
three are interchangeable in Perl. 

Day 4, "More Operators," tells you all about operators and expressions in 
Perl and talks about operator associativity and precedence. 

Day 5, "Lists and Array Variables," introduces you to lists, which are 
collections of values, and to array variables, which store lists. 

Day 6, "Reading from and Writing to Files," tells you how to interact 
with your file system by reading from input files, writing to output files, 
and testing for particular file attributes. 

Day 7, "Pattern Matching," describes pattern-matching in Perl and shows 
how you can substitute values and translate sets of characters in text 
strings. 

By the end of Week 2, you'll have mastered almost all the features of Perl; you'll also 
have learned about many of the library functions supplied with the language. Here's a 
summary of what you'll learn: 

Day 8, "More Control Structures," discusses the control flow 
statements not previously covered. 

Day 9, "Using Subroutines," shows how you can break your program into 
smaller, more manageable, chunks. 

Day 10, "Associative Arrays," introduces one of the most powerful and 
useful constructs in Perl-arrays-and it shows how you can use these arrays 
to simulate other data structures. 

Day 11, "Formatting Your Output," shows how you can use Perl to 
produce tidy reports. 

Day 12, "Working with the File System," shows how you can interact with 
your system's directory structure. 

Day 13, "Process, String, and Mathematical Functions," describes the 
library functions that interact with processes running on the system. It 
also describes the functions that perform trigonometric and other 
mathematical operations, and the functions that operate on strings. 



Day 14, "Scalar-Conversion and List-Manipulation Functions," describes 
the library functions that convert values from one form to another and 
the functions that work with lists and array variables. 

By the end of Week 3, you'll know all the features and capabilities of Perl. It covers 
the rest of the Perl library functions and describes some of the more esoteric concepts 
of the language. Here's a summary of what you'll learn: 

Day 15, "System Functions," describes the functions that manipulate the 
Berkeley UNIX and UNIX System V environments. 

Day 16, "Command-Line Options," describes the options you can supply with 
Perl to control how your program runs. 

Day 17, "System Variables," describes the built-in variables that are 
included automatically as part of every Perl program. 

Day 18, "References in Perl 5," describes the pointer and reference 
features of Perl 5, including multi-dimensional arrays. 

Day 19, "Object-Oriented Programming in Perl," describes the object-
oriented capabilities added to Perl 5. These enable you to hide information 
and divide your program into individual file modules. 

Day 20, "Miscellaneous Features of Perl," covers some of the more exotic 
or obscure features of the language. 

Day 21, "The Perl Debugger," shows you how to use the Perl debugger to 
discover errors quickly. 

  



Week
1

Week at a Glance

CONTENTS

●     Where You're Going 

In your first week of teaching yourself Perl, you'll learn enough of the basics to write 
many useful Perl programs. Although some experience in using a programming language 
will be an advantage as you read this book, it is not required. In particular, you don't 
need to know the C programming language before you read this book. 

To use this book effectively, you should be able to try out some of the features of Perl 
as you learn them. To do this, you should have Perl running on your system. If you don't 
have Perl, Day 1, "Getting Started," tells how you can get it for free. 

Each chapter of this book contains quiz and exercise questions that test you on the 
material covered in the day's lesson. These questions are answered in Appendix A, 
"Answers." 

Where You're Going

The first week covers the essentials of Perl. Here's a summary of what you'll learn. 

Day 1, "Getting Started," tells you how to get Perl, how to run Perl programs, and how 
to read input from your keyboard and write output to your screen. 

Day 2, "Basic Operators and Control Flow," teaches you about simple arithmetic, how to 
assign a value to a scalar variable, and how to control execution using conditional 
statements. 

Day 3, "Understanding Scalar Values," teaches you about integers, floating-point 



numbers, and character strings. It also shows you that all three are interchangeable in 
Perl. 

Day 4, "More Operators," tells you all about operators and expressions in Perl and talks 
about operator associativity and precedence. 

Day 5, "Lists and Array Variables," introduces you to lists, which are collections of 
values, and to array variables, which store lists. 

Day 6, "Reading from and Writing to Files," tells you how to interact with your file 
system by reading from input files, writing to output files, and testing for particular 
file attributes. 

Finally, Day 7, "Pattern Matching," describes pattern matching in Perl and shows how 
you can substitute values and translate sets of characters in text strings. 

This is quite a bit of material to learn in one week; however, by the end of the week 
you'll know most of the essentials of Perl and will be able to write many useful 
programs. 

   



Chapter 1

Getting Started

CONTENTS

●     What Is Perl?
●     How Do I Find Perl?

❍     Where Do I Get Perl?
❍     Other Places to Get Perl

●     A Sample Perl Program
●     Running a Perl Program

❍     If Something Goes Wrong
●     The First Line of Your Perl Program: How Comments Work

❍     Comments
●     Line 2: Statements, Tokens, and <STDIN>

❍     Statements and Tokens
❍     Tokens and White Space
❍     What the Tokens Do: Reading from Standard Input

●     Line 3: Writing to Standard Output
❍     Function Invocations and Arguments

●     Error Messages
●     Interpretive Languages Versus Compiled Languages
●     Summary
●     Q&A
●     Workshop

❍     Quiz
❍     Exercises

Welcome to Teach Yourself Perl 5 in 21 Days. Today you'll learn about the following: 

●     What Perl is and why Perl is useful
●     How to get Perl if you do not already have it
●     How to run Perl programs
●     How to write a very simple Perl program
●     The difference between interpretive and compiled programming languages
●     What an algorithm is and how to develop one



What Is Perl?
Perl is an acronym, short for Practical Extraction and Report Language. It was designed 
by Larry Wall as a tool for writing programs in the UNIX environment and is 
continually being updated and maintained by him. 

For its many fans, Perl provides the best of several worlds. For instance: 

●     Perl has the power and flexibility of a high-level programming language such as 
C. In fact, as you will see, many of the features of the language are borrowed 
from C.

●     Like shell script languages, Perl does not require a special compiler and linker to 
turn the programs you write into working code. Instead, all you have to do is 
write the program and tell Perl to run it. This means that Perl is ideal for 
producing quick solutions to small programming problems, or for creating 
prototypes to test potential solutions to larger problems.

●     Perl provides all the features of the script languages sed and awk, plus features 
not found in either of these two languages. Perl also supports a sed-to-Perl 
translator and an awk-to-Perl translator.

In short, Perl is as powerful as C but as convenient as awk, sed, and shell scripts. 

NOTE

This book assumes that you are familiar with the basics 
of using the UNIX operating system

As you'll see, Perl is very easy to learn. Indeed, if you are familiar with other 
programming languages, learning Perl is a snap. Even if you have very little 
programming experience, Perl can have you writing useful programs in a very short time. 
By the end of Day 2, "Basic Operators and Control Flow," you'll know enough about 
Perl to be able to solve many problems. 

How Do I Find Perl?
To find out whether Perl already is available on your system, do the following: 

●     If you are currently working in a UNIX programming environment, check to see 
whether the file /usr/local/bin/perl exists.

●     If you are working in any other environment, check the place where you 
normally keep your executable programs, or check the directories accessible from 
your PATH environment variable.



If you do not find Perl in this way, talk to your system administrator and ask whether 
she or he has Perl running somewhere else. If you don't have Perl running in your 
environment, don't despair-read on! 

Where Do I Get Perl?

One of the reasons Perl is becoming so popular is that it is available free of charge to 
anyone who wants it. If you are on the Internet, you can obtain a copy of Perl with file-
transfer protocol (FTP). The following is a sample FTP session that transfers a copy of 
the Perl distribution. The items shown in boldface type are what you would enter 
during the session. 

$ ftp prep.ai.mit.edu

Connected to prep.ai.mit.edu.

220 aeneas FTP server (Version wu-2.4(1) Thu Apr 14 20:21:35 EDT 1994) 
ready.

Name (prep.ai.mit.edu:dave): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password:

230-Welcome, archive user!

230-

230-If you have problems downloading and are seeing "Access denied" or

230-"Permission denied", please make sure that you started your FTP 

230-client in a directory to which you have write permission.

230-

230-If you have any problems with the GNU software or its 
downloading, 

230-please refer your questions to <gnu@PREP.AI.MIT.EDU>. If you have 
any

230-other unusual problems, please report them to 
<root@aeneas.MIT.EDU>.

230-

230-If you do have problems, please try using a dash (-) as the first 

230-character of your password - this will turn off the continuation

230-messages that may be confusing your FTP client.



230-

230 Guest login ok, access restrictions apply.

ftp> cd pub/gnu

250-If you have problems downloading and are seeing "Access denied" or

250-"Permission denied", please make sure that you started your FTP

250-client in a directory to which you have write permission.

250-

250-Please note that all files ending in '.gz' are compressed with 

250-'gzip', not with the unix 'compress' program.  Get the file README

250- and read it for more information.

250-

250-Please read the file README

250-  it was last modified on Thu Feb 1 15:00:50 1996 - 32 days ago

250-Please read the file README-about-.diff-files

250-  it was last modified on Fri Feb 2 12:57:14 1996 - 31 days ago

250-Please read the file README-about-.gz-files

250-  it was last modified on Wed Jun 14 16:59:43 1995 - 264 days ago

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get perl-5.001.tar.gz

200 PORT command successful.

150 Opening ASCII mode data connection for perl-5.001.tar.gz (1130765 
bytes).

226 Transfer complete.

1130765 bytes received in 9454 seconds (1.20 Kbytes/s)

ftp> quit

221 Goodbye.

$



The commands entered in this session are explained in the following steps. If some of 
these steps are not familiar to you, ask your system administrator for help. 

1.  The command

$ ftp prep.ai.mit.edu

connects you to the main Free Software Foundation source depository at MIT. 
2.  The user ID anonymous tells FTP that you want to perform an anonymous FTP 

operation.
3.  When FTP asks for a password, enter your user ID and network address. This lets 

the MIT system administrator know who is using the MIT archives. (For security 
reasons, the password is not actually displayed when you type it.)

4.  The command cd pub/gnu sets your current working directory to be the directory 
containing the Perl source.

5.  The binary command tells FTP that the file you'll be receiving is a file that 
contains unreadable (non-text) characters.

6.  The get command copies the file perl-5.001.tar.gz from the MIT source 
depository to your own site. (It's usually best to do this in off-peak hours to make 
things easier for other Internet users-it takes awhile.) This file is quite large 
because it contains all the source files for Perl bundled together into a single 
file.

7.  The quit command disconnects from the MIT source repository and returns you to 
your own system.

Once you've retrieved the Perl distribution, do the following: 

1.  Create a directory and move the file you just received, perl-5.001.tar.gz, to this 
directory. (Or, alternatively, move it to a directory already reserved for this 
purpose.)

2.  The perl-5.001.tar.gz file is compressed to save space. To uncompress it, enter the 
command

$ gunzip perl-5.001.tar.gz

gunzipis the GNU uncompress program. If it's not available on your system, see 
your system administrator. (You can, in fact, retrieve it from 
prep.ai.mit.eduusing anonymous FTP with the same commands you used to 
retrieve the Perl distribution.) 
When you run gunzip, the file perl-5.001.tar.gzwill be replaced by perl-
5.001.tar, which is the uncompressed version of the Perl distribution file. 

3.  The next step is to unpack the Perl distribution. In other words, use the 
information in the Perl distribution to create the Perl source files. To do this, 
enter the following command:

$ tar xvf - <perl-5.001.tar

As this command executes, it creates each source file in turn and displays the 
name and size of each file as it is created. The tarcommand also creates 



subdirectories where appropriate; this ensures that the Perl source files are 
organized in a logical way. 

4.  Using your favorite C compiler, compile the Perl source code using the makefile 
provided. (This makefile should have been created when the source files were 
unpacked in the last step.)

5.  Place the compiled Perl executable into the directory where you normally keep 
your executables. On UNIX systems, this directory usually is called 
/usr/local/bin, and Perl usually is named /usr/local/bin/perl.

You might need your system administrator's help to do this because you might not have 
the necessary permissions. 

Other Places to Get Perl

If you cannot access the MIT site from where you are, you can get Perl from the 
following sites using anonymous FTP: 

North America 

Site Location

ftp.netlabs.com Internet address 192.94.48.152 
Directory /pub/outgoing/perl5.0

ftp.cis.ufl.edu Internet address 128.227.100.198 
Directory /pub/perl/src/5.0

ftp.uu.net Internet address 192.48.96.9 
Directory /languages/perl

ftp.khoros.unm.edu Internet address 198.59.155.28 
Directory /pub/perl

ftp.cbi.tamucc.edu Internet address 165.95.1.3 
Directory /pub/duff/Perl

ftp.metronet.com Internet address 192.245.137.1 
Directory /pub/perl/sources

genetics.upenn.edu Internet address 128.91.200.37 
Directory /perl5

Europe 

Site Location

ftp.cs.ruu.nl Internet address 131.211.80.17 
Directory /pub/PERL/perl5.0/src



ftp.funet.fi Internet address 128.214.248.6 
Directory 
/pub/languages/perl/ports/perl5

ftp.zrz.tu-
berlin.de

Internet address 130.149.4.40 
Directory /pub/unix/perl

src.doc.ic.ac.uk Internet address 146.169.17.5 
Directory /packages/perl5

Australia 

Site Location

sungear.mame.mu.oz.au Internet address 128.250.209.2 
Directory /pub/perl/src/5.0

South America 

Site Location

ftp.inf.utfsm.cl Internet address 146.83.198.3 
Directory /pub/gnu

You also can obtain Perl from most sites that store GNU source code, or from any site 
that archives the Usenet newsgroup comp.sources.unix. 

A Sample Perl Program
Now that Perl is available on your system, it's time to show you a simple program that 
illustrates how easy it is to use Perl. Listing 1.1 is a simple program that asks for a line 
of input and writes it out. 

 

Listing 1.1. A simple Perl program that reads and writes a line of input.

1: #!/usr/local/bin/perl

2: $inputline = <STDIN>;

3: print( $inputline );



 

$program1_1

This is my line of input.

This is my line of input.

$

 

 Line 1 is the header comment. Line 2 reads a line of input. Line 3 writes the line of input 
back to your screen. 

The following sections describe how to create and run this program, and they describe it 
in more detail. 

Running a Perl Program
To run the program shown in Listing 1.1, do the following: 

1.  Using your favorite editor, type the previous program and save it in a file called 
program1_1.

2.  Tell the system that this file contains executable statements. To do this in the 
UNIX environment, enter the command

$ chmod +x program1_1

3.  Run the program by entering the command

$ program1_1

When you run program1_1, it waits for you to enter a line of input. After you enter the 
line of input, program1_1 prints what you entered, as follows: 

$ program1_1

This is my line of input.

This is my line of input.

$ 



If Something Goes Wrong

If Listing 1.1 is stored in the file program1_1 and run according to the preceding steps, 
the program should run successfully. If the program doesn't run, one of two things has 
likely happened: 

●     The system can't find the file program1_1.
●     The system can't find Perl.

If you receive the error message 

program1_1 not found

or something similar, your system couldn't find the file program1_1. To tell the system 
where program1_1 is located, you can do one of two things in a UNIX environment: 

●     Enter the command ./program1_1, which gives the system the pathname of 
program1_1 relative to the current directory.

●     Add the current directory . to your PATH environment variable. This tells the 
system to search in the current directory when looking for executable programs 
such as program1_1.

If you receive the message 

/usr/local/bin/perl not found

or something similar, this means that Perl is not installed properly on your machine. See 
the section "How Do I Find Perl?" earlier today, for more details. 

If you don't understand these instructions or are still having trouble running Listing 
1.1, talk to your system administrator. 

The First Line of Your Perl Program: How Comments 
Work
Now that you've run your first Perl program, let's look at each line of Listing 1.1 and 
figure out what it does. 

Line 1 of this program is a special line that tells the system that this is a Perl program: 

#!/usr/local/bin/perl



Let's break this line down, one part at a time: 

●     The first character in the line, the # character, is the Perl comment character. It 
tells the system that this line is not an executable instruction.

●     The ! character is a special character; it indicates what type of program this is. 
(You don't need to worry about the details of what the ! character does. All you 
have to do is remember to include it.)

●     The path /usr/local/bin/perl is the location of the Perl executable on your 
system. This executable interprets your program; in other words, it figures out what 
you want to do and then does it. Because the Perl executable has the job of 
interpreting Perl instructions, it usually is called the Perl interpreter.

If, after reading this, you still don't understand the meaning of the line 
#!/usr/local/bin/perl don't worry. The actual specifics of what it does are not 
important for our purposes in this book. Just remember to include it as the first line of 
your program, and Perl will take it from there. 

NOTE

If you are running Perl on a system other than UNIX, 
you might need to replace the line 
#!/usr/local/bin/perl with some other line indi-cating 
the location of the Perl interpreter on your system. Ask 
your system administrator for details on what you need 
to include here. 

After you have found out what the proper first line is in 
your environment, include that line as the first line of 
every Perl program you write, and you're all set

Comments

As you have just seen, the first character of the line 

#!/usr/local/bin/perl

is the comment character, #. When the Perl interpreter sees the #, it ignores the rest of 
that line. 

Comments can be appended to lines containing code, or they can be lines of their own: 

$inputline = <STDIN>;    # this line contains an appended comment



# this entire line is a comment

You can-and should-use comments to make your programs easier to understand. Listing 
1.2 is the simple program you saw earlier, but it has been modified to include comments 
explaining what the program does. 

NOTE

As you work through the lessons in this book and create 
your own programs-such as the one in Listing 1.2-you 
can, of course, name them anything you want. For 
illustration and discussion purposes, I've adopted the 
convention of using a name that corresponds to the 
listing number. For example, the program in Listing 1.2 is 
called program1_2. 

The program name is used in the Input-Output examples 
such as the one following this listing, as well as in the 
Analysis section where the listing is discussed in detail. 
When you follow the Input-Output example, just 
remember to substitute your program's name for the one 
shown in the example

 

Listing 1.2. A simple Perl program with comments.

1: #!/usr/local/bin/perl

2: # this program reads a line of input, and writes the line

3: # back out

4: $inputline = <STDIN>;    # read a line of input

5: print( $inputline );     # write the line out

 

$ program1_2



This is a line of input.

This is a line of input.

$

 

 The behavior of the program in Listing 1.2 is identical to that of Listing 1.1 because the 
actual code is the same. The only difference is that Listing 1.2 has comments in it 

Note that in an actual program, comments normally are used only to explain 
complicated code or to indicate that the following lines of code perform a specific task. 
Because Perl instructions usually are pretty straightforward, Perl programs don't need 
to have a lot of comments. 

DO use comments whenever you think that a line of code 
is not easy to understand. 

DON'T clutter up your code with unnecessary comments. 
The goal is readability. If a comment makes a program 
easier to read, include it. Otherwise, don't bother. 

DON'T put anything else after /usr/local/bin/perl in 
the first line: 
#!/usr/local/bin/perl

This line is a special comment line, and it is not treated 
like the others.

Line 2: Statements, Tokens, and <STDIN>
Now that you've learned what the first line of Listing 1.1 does, let's take a look at line 
2: 

$inputline = <STDIN>;

This is the first line of code that actually does any work. To understand what this line 



does, you need to know what a Perl statement is and what its components are. 

Statements and Tokens

The line of code you have just seen is an example of a Perl statement. Basically, a 
statement is one task for the Perl interpreter to perform. A Perl program can be 
thought of as a collection of statements performed one at a time. 

When the Perl interpreter sees a statement, it breaks the statement down into smaller 
units of information. In this example, the smaller units of information are $inputline, =, 
<STDIN>, and ;. Each of these smaller units of information is called a token. 

Tokens and White Space

Tokens can normally be separated by as many spaces and tabs as you like. For example, 
the following statements are identical in Perl: 

$inputline = <STDIN>;

$inputline=<STDIN>;

$inputline      =     <STDIN>;

Your statements can take up as many lines of code as you like. For example, the 
following statement is equivalent to the ones above: 

$inputline

=

<STDIN>

;

The collection of spaces, tabs, and new lines separating one token from another is 
known as white space. 

When programming in Perl, you should use white space to make your programs more 
readable. The examples in this book use white space in the following ways: 

●     New statements always start on a new line.
●     One blank space is used to separate one token from another (except in special 

cases, some of which you'll see today).

What the Tokens Do: Reading from Standard Input



As you've seen already, the statement 

$inputline = <STDIN>;

consists of four tokens: $inputline, =, <STDIN>, and ;. The following subsections explain 
what each of these tokens does. 

The $inputline and = Tokens

The first token in line 1, $inputline (at the left of the statement), is an example of a 
scalar variable. In Perl, a scalar variable can store one piece of information. 

The = token, called the assignment operator, tells the Perl interpreter to store the item 
specified by the token to the right of the = in the place specified by the token to the left 
of the =. In this example, the item on the right of the assignment operator is the <STDIN> 
token, and the item to the left of the assignment operator is the $inputline token. 
Thus, <STDIN> is stored in the scalar variable $inputline. 

Scalar variables and assignment operators are covered in more detail on Day 2, "Basic 
Operators and Control Flow." 

The <STDIN> Token and the Standard Input File

The next token, <STDIN>, represents a line of input from the standard input file. The 
standard input file, or STDIN for short, typically contains everything you enter when 
running a program. 

For example, when you run program1_1 and enter 

This is a line of input.

the line you enter is stored in the standard input file. 

The <STDIN> token tells the Perl interpreter to read one line from the standard input 
file, where a line is defined to be a set of characters terminated by a new line. In this 
example, when the Perl interpreter sees <STDIN>, it reads in 

This is a line of input.

If the Perl interpreter then sees another <STDIN> in a different statement, it reads 
another line of data from the standard input file. The line of data you read earlier is 



destroyed unless it has been copied somewhere else. 

NOTE

If there are more lines of input than there are <STDIN> 
tokens, the extra lines of input are ignored 

Because the <STDIN> token is to the right of the assignment operator =, the line 

This is a line of input.

is assigned to the scalar variable $inputline. 

The ; Token

The ; token at the end of the statement is a special token that tells Perl the statement 
is complete. You can think of it as a punctuation mark that is like a period in English. 

Line 3: Writing to Standard Output
Now that you understand what statements and tokens are, consider line 3 of Listing 1.1, 
which is 

print ($inputline);

This statement refers to the library function that is called print. Library functions, such 
as print, are provided as part of the Perl interpreter; each library function performs a 
useful task. 

The print function's task is to send data to the standard output file. The standard output 
file stores data that is to be written to your screen. The standard output file sometimes 
appears in Perl programs under the name STDOUT. 

In this example, print sends $inputline to the standard output file. Because the second 
line of the Perl program assigns the line 

This is a line of input.

to $inputline, this is what print sends to the standard output file and what appears on 
your screen. 



Function Invocations and Arguments

When a reference to print appears in a Perl program, the Perl interpreter calls, or 
invokes, the print library function. This function invocation is similar to a function 
invocation in C, a GOSUB statement in BASIC, or a PERFORM statement in COBOL. When 
the Perl interpreter sees the print function invocation, it executes the code contained 
in print and returns to the program when print is finished. 

Most library functions require information to tell them what to do. For example, the 
print function needs to know what you want to print. In Perl, this information is 
supplied as a sequence of comma-separated items located between the parentheses of the 
function invocation. For example, the statement you've just seen: 

print ($inputline);

supplies one piece of information that is passed to print: the variable $inputline. This 
piece of information commonly is called an argument. 

The following call to print supplies two arguments: 

print ($inputline, $inputline);

You can supply print with as many arguments as you like; it prints each argument 
starting with the first one (the one on the left). In this case, print writes two copies of 
$inputline to the standard output file. 

You also can tell print to write to any other specified file. You'll learn more about 
this on Day 6, "Reading From and Writing To Files." 

Error Messages
If you incorrectly type a statement when creating a Perl program, the Perl interpreter 
will detect the error and tell you where the error is located. 

For example, look at Listing 1.3. This program is identical to the program you've been 
seeing all along, except that it contains one small error. Can you spot it? 

 



Listing 1.3. A program containing an error.

1: #!/usr/local/bin/perl

2: $inputline = <STDIN>

3: print ($inputline);

 

$ program1_3

Syntax error in file program1_3 at line3, next char (

Execution of program1_3 aborted due to compilation errors. 

$

 

 When you try to run this program, an error message appears. The Perl interpreter has 
detected that line 2 of the program is missing its closing ; character. The error message 
from the interpreter tells you what the problem is and identifies the line on which the 
problem is located 

TIP

You should fix errors starting from the beginning of 
your program and working down.

When the Perl interpreter detects an error, it tries to 
figure out what you meant to say and carries on from 
there; this feature is known as error recovery. Error 
recovery enables the interpreter to detect as many 
errors as possible at one time, which speeds up the 
development process. 

Sometimes, however, the Perl interpreter can get 
confused and think you meant to do one thing when you 
really meant to do another. In this situation, the 
interpreter might start trying to detect errors that 
don't really exist. This problem is known as error 



cascading. 

It's usually pretty easy to spot error cascading. If the 
interpreter is telling you that errors exist on several 
consecutive lines, it usually means that the interpreter 
is confused. Fix the first error, and the others might 
very well go away

Interpretive Languages Versus Compiled Languages
As you've seen, running a Perl program is easy. All you need to do is create the program, 
mark it as executable, and run it. The Perl interpreter takes care of the rest. Languages 
such as Perl that are processed by an interpreter are known as interpretive languages. 

Some programming languages require more complicated processing. If a language is a 
compiled language, the program you write must be translated into machine-readable code 
by a special program known as a compiler. In addition, library code might need to be added 
by another special program known as a linker. After the compiler and linker have done 
their jobs, the result is a program that can be executed on your machine-assuming, of 
course, that you have written the program correctly. If not, you have to compile and 
link the program all over again. 

Interpretive languages and compiled languages both have advantages and 
disadvantages, as follows: 

●     As you've seen with Perl, it takes very little time to run a program in an 
interpretive language.

●     Interpretive languages, however, cannot run unless the interpreter is available. 
Compiled programs, on the other hand, can be transferred to any machine that 
understands them.

As you'll see, Perl is as powerful as a compiled language. This means that you can do a 
lot of work quickly and easily. 

Summary
Today you learned that Perl is a programming language that provides many of the 
capabilities of a high-level programming language such as C. You also learned that Perl 
is easy to use; basically, you just write the program and run it. 

You saw a very simple Perl program that reads a line of input from the standard input 
file and writes the line to the standard output file. The standard input file stores 



everything you type from your keyboard, and the standard output file stores 
everything your Perl program sends to your screen. 

You learned that Perl programs contain a header comment, which indicates to the 
system that your program is written in Perl. Perl programs also can contain other 
comments, each of which must be preceded by a #. 

Perl programs consist of a series of statements, which are executed one at a time. Each 
statement consists of a collection of tokens, which can be separated by white space. 

Perl programs call library functions to perform certain predefined tasks. One example 
of a library function is print, which writes to the standard output file. Library 
functions are passed chunks of information called arguments; these arguments tell a 
function what to do. 

The Perl interpreter executes the Perl programs you write. If it detects an error in your 
program, it displays an error message and uses the error-recovery process to try to 
continue processing your program. If Perl gets confused, error cascading can occur, and 
the Perl interpreter might display inappropriate error messages. 

Finally, you learned about the differences between interpretive languages and 
compiled languages, and that Perl is an example of an interpretive language. 

Q&A

Q: Is there any particular editor I need to use with Perl?

A: No. Perl programs are ordinary text files. You can use any text editor you like. 

Q: Why do I need to enter the chmod +x command before running my program?

A: Because Perl programs are ordinary text files, the UNIX operating system does 
not know that they are executable programs. By default, text files have read 
and write permissions granted, which means you can look at your file or change 
it. The chmod +x command adds execute permission to the file; when this 
permission is granted, the system knows that this is an executable program. 

Q: Can I use print to print other things besides input lines?

A: Yes. You'll learn more about how you can use print on Day 3, "Understanding 
Scalar Values." 

Q: Why is Perl available for free?



A: This encourages the dissemination of computer knowledge and capabilities.  
It works like this: You can get Perl for free, and you can use it to write 
interesting and useful programs. If you want, you can then give these programs 
away and let other people write interesting and useful programs based on your 
programs. This way, everybody benefits. 
You also can modify the source for Perl, provided you tell everybody that your 
version is a modification of the original. This means that if you think of a clever 
thing you want Perl to do, you can add it yourself. (However, you can't blame 
anybody else if your modification breaks something or if it doesn't work.) 
Of course, you don't have to give your Perl programs away for free. In fact, you 
even can sell your Perl programs, provided you don't borrow anything from 
somebody else's program. 

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
to understand the quiz and exercise answers before continuing to the next day. 

Quiz

1.  What do Perl's fans appreciate about Perl?
2.  What does the Perl interpreter do?
3.  Define the following terms:

a    statement 
b    token 
c    argument 
d    error recovery 
e    standard input file 

4.  What is a comment, and where can it appear?
5.  Where is Perl usually located on a UNIX machine?
6.  What is a header comment, and where does it appear in a program?
7.  What is a library function?

Exercises

1.  Modify program1_1 to print the input line twice.
2.  Modify program1_1 to read and print two different input lines.
3.  Modify program1_1 to read two input lines and print only the second one.
4.  BUG BUSTER: What is wrong with the following program?

#!/usr/local/bin/perl
$inputline = <STDIN>;



print ($inputline)

5.  BUG BUSTER: What is wrong with the following program?

#!/usr/local/bin/perl
$inputline = <STDIN>;
# print my line! print($inputline);

6.  What does the following program do?

#!/usr/local/bin/perl
$inputline = <STDIN>;
$inputline2 = <STDIN>;
print ($inputline2);
print ($inputline);

 



Chapter 2

Basic Operators and Control Flow 

CONTENTS

●     Storing in Scalar Variables Assignment 
❍     The Definition of a Scalar Variable 
❍     Scalar Variable Syntax 
❍     Assigning a Value to a Scalar Variable 

●     Performing Arithmetic 
❍     Example of Miles-to-Kilometers Conversion 
❍     The chop Library Function 

●     Expressions 
❍     Assignments and Expressions 

●     Other Perl Operators 
●     Introduction to Conditional Statements 
●     The if Statement 

❍     The Conditional Expression 
❍     The Statement Block 
❍     Testing for Equality Using == 
❍     Other Comparison Operators 

●     Two-Way Branching Using if and else 
●     Multi-Way Branching Using elsif 
●     Writing Loops Using the while Statement 
●     Nesting Conditional Statements 
●     Looping Using the until Statement 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson gives you the information you need to write some simple Perl programs. 
You'll learn the following: 



●     More about scalar variables and how to assign values to them 
●     The basic arithmetic operators and how they work with scalar variables 
●     What an expression is 
●     How to use the if statement and the == operator to test for simple conditions 
●     How to specify two-way and multi-way branches using else and elsif 
●     How to write simple loops using the while and until statements 

Storing in Scalar Variables Assignment

In yesterday's lesson, you saw the following statement, which assigns a line of input 
from the keyboard to the variable $inputline: 

$inputline = <STDIN>;

This section tells you more about variables such as $inputline and how to assign values 
to these variables. 

The Definition of a Scalar Variable

The variable $inputline is an example of a scalar variable. A scalar variable stores 
exactly one item-a line of input, a piece of text, or a number, for example. Items that can 
be stored in scalar variables are called scalar values. 

You'll learn more about scalar values on Day 3, "Understanding Scalar Values." For 
today, all you need to remember is that a scalar variable stores exactly one value, 
which is a scalar value. 

Scalar Variable Syntax

The name of a scalar variable consists of the character $ followed by at least one 
letter, which is followed by any number of letters, digits, or underscore characters 
(that is, the _ character). 

The following are examples of legal scalar variable names: 

$x

$var

$my_variable

$var2



$a_new_variable

These, however, are not legal scalar variable names: 

variable        # the $ character is missing

$               # there must be at least one letter in the name

$47x            # second character must be a letter

$_var           # again, the second character must be a letter

$variable!      # you can't have a ! in a variable name

$new.var        # you can't have a . in a variable name

Perl variables are case-sensitive. This means that the following variables are different: 

$VAR

$var

$Var

Your variable name can be as long as you want. 

$this_is_a_really_long_but_legal_name

$this_is_a_really_long_but_legal_name_that_is_different

The $ character is necessary because it ensures that the Perl interpreter can distinguish 
scalar variables from other kinds of Perl variables, which you'll see on later days.

TIP

Variable names should be long enough to be self-
explanatory but short enough to be easy to read and 
type.

Assigning a Value to a Scalar Variable

The following statement contains the Perl assignment operator, which is the = character: 



$inputline = <STDIN>;

Remember that this statement tells Perl that the line of text read from the standard 
input file, represented by <STDIN>, is to become the new value of the scalar variable 
$inputline. 

You can use the assignment operator to assign other values to scalar variables as well. 
For example, in the following statement, the number 42 is assigned to the scalar 
variable $var: 

$var = 42;

A second assignment to a scalar variable supersedes any previous assignments. In these 
two statements: 

$var = 42;

$var = 113;

the old value of $var, 42, is destroyed, and the value of $var becomes 113. 

Assignment statements can assign text to scalar variables as well. Consider the 
following statement: 

$name = "inputdata";

In this statement, the text inputdata is assigned to the scalar variable $name. 

Note that the quotation marks (the " characters) on either end of the text are not part 
of the text assigned to $name. This is because the " characters are just there to enclose 
the text. 

Spaces or tabs contained inside the pair of " characters are treated as part of the text: 

$name = "John Q Hacker";

Here, the spaces on either side of the Q are considered part of the text. 



In Perl, enclosed text such as John Q Hacker is known as a character string, and the 
surrounding " characters are an example of string delimiters. You learn more about 
character strings on Day 3; for now, all you need to know is that everything inside the 
" characters is treated as a single unit. 

Performing Arithmetic

As you've seen, the assignment operator = takes the value to the right of the = sign and 
assigns it to the variable on the left of the =: 

$var = 42;

Here, the value 42 is assigned to the scalar variable $var. 

In Perl, the assignment operator is just one of many operators that perform tasks, or 
operations. Each operation consists of the following components: 

●     The operator, such as the assignment operator (=) 
●     One or more operands, such as $var and 42 

This might sound a little confusing, but it's really quite straightforward. To illustrate, 
Table 2.1 lists some of the basic arithmetic operators that Perl supports.

Table 2.1. Basic arithmetic operators.

Operator Operation 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

You use these operators in the same way you use +, -, and so on when you do arithmetic 
on paper. For example, the following statement adds 17 and 5 and then assigns the 
result, 22, to the scalar variable $var: 

$var = 17 + 5;

You can perform more than one arithmetic operation in a single statement like this one, 
which assigns 19 to $var: 



$var = 17 + 5 - 3;

You can use the value of a variable in an arithmetic operation, as follows: 

$var1 = 11;

$var2 = $var1 * 6;

The second statement takes the value currently stored in $var1, 11, and multiplies it by 
6. The result, 66, is assigned to $var2. 

Now examine the following statements: 

$var = 11;

$var = $var * 6;

As you can see, $var appears twice in the second statement. What Perl does in this case is 
straightforward: 

1.  The first statement assigns the value 11 to $var. 
2.  In the second statement, the Perl interpreter retrieves the current value of $var, 

11, and multiplies it by 6, producing the result 66. 
3.  This result, 66, is then assigned to $var (destroying the old value, 11). 

As you can see, there is no ambiguity. Perl uses the old value of $var in the arithmetic 
operation, and then it assigns the result of the operation to $var.

NOTE

Perl always performs multiplication and division before 
addition and subtraction-even if the addition or 
subtraction operator appears first. Perl does this to 
conform to the rules of arithmetic. For example, in the 
following statement:

$var = 5 + 6 * 4; 

$var is assigned 29: 6 is multiplied by 4, and then 5 is 
added to the result 



Example of Miles-to-Kilometers Conversion

To see how arithmetic operators work, look at Listing 2.1, which performs a simple miles-
to-kilometers and kilometers-to-miles conversion.

 

Listing 2.1. Miles-to-kilometers converter.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the distance to be converted:\n");

4:  $originaldist = <STDIN>;

5:  chop ($originaldist);

6:  $miles = $originaldist * 0.6214;

7:  $kilometers = $originaldist * 1.609;

8:  print ($originaldist, " kilometers = ", $miles,

9:         " miles\n");

10: print ($originaldist, " miles = ", $kilometers,

11:        " kilometers\n");

 

$ program2_1

Enter the distance to be converted:

10

10 kilometers = 6.2139999999999995 miles

10 miles = 16.09 kilometers



$

 Line 3 of this program asks for a distance to convert. To do this, it prints the 
following text on your screen 

Enter the distance to be converted:

Note that the \n at the end of the text is not printed. The \n is a special sequence of 
characters that represents the newline character; when the print library function sees 
\n, it starts a new line of output on your screen. (You'll learn more about special 
sequences of characters such as \n on Day 3.) 

At this point, you can enter any number you want in response to the program's request 
for a distance. The input/output example shows an entry of 10. 

Line 4 retrieves the line of input you entered and then assigns it to the variable named 
$originaldist. 

Line 5 calls the library function chop, which gets rid of the closing newline character 
that is part of the input line you entered. The chop library function is described in the 
following section, "The chop Library Function." 

Line 6 determines the number of miles that is equivalent to 10 kilometers and assigns 
this number to the variable $miles. 

Line 7 determines the number of kilometers that is equivalent to 10 miles and assigns 
this number to the variable $kilometers. 

Lines 8-11 print the values of the variables $miles and $kilometers.

NOTE



Different machines handle floating-point numbers 
(numbers containing a decimal point) in different ways. 
Because of this, the numbers displayed in your Listing 2.1 
output might not be exactly the same as the numbers 
shown here. These minor differences will appear 
whenever a floating-point number is printed.

For more information on difficulties with floating-point 
numbers, refer to the discussion of round-off errors on 
Day 3, "Understanding Scalar Values.

The chop Library Function

The program shown in Listing 2.1 calls a special library function, chop. This function 
assumes that a line of text is stored in the variable passed to it; chop's job is to delete 
the character at the right end of the line of text. Consider this example: 

$line = "This is my line";

chop ($line);

After chop is called, the value of $line becomes 

This is my lin

Here's why Listing 2.1 uses chop. The statement 

$originaldist = <STDIN>;

assigns a line of input from the standard input file to the variable $originaldist. When 
you type 10 and press Enter, the line of input assigned to $originaldist consists of three 
characters: the 1, the 0, and a newline character. When chop is called, the newline 
character is removed, and $originaldist now contains the value 10, which can be used 
in arithmetic operations. 

You'll learn more about using lines of input in arithmetic operations and about 
conversions from lines of input to numbers on Day 3. For now, just remember to call chop 
after reading a number from the standard input file. 



$originaldist = <STDIN>;

chop ($originaldist);

Expressions

Now that you know a little more about operators, operands, and how they both work, 
it's time to learn some more terminology as well as the details about exactly what Perl 
is doing when it evaluates operators such as the arithmetic operators and the 
assignment operator. 

In Perl, a collection of operators and operands is known as an expression. Each expression 
yields a result, which is the value you get when the Perl interpreter evaluates the 
expression (that is, when the Perl interpreter performs the specified operations). For 
example, in the simple expression 

4 * 5

the result is 20, or 4 times 5. 

You can think of an expression as a set of subordinate expressions. Consider this example: 

4 * 5 + 3 * 6

When the Perl interpreter evaluates this expression, it first evaluates the 
subexpressions 4 * 5 and 3 * 6, yielding the results 20 and 18. These results are then 
(effectively) substituted for the subexpressions, leaving the following: 

20 + 18

The Perl interpreter then performs the addition operation, and the final result of the 
expression is 38. 

Consider the following statement: 

$var = 4 * 5 + 3;

As you can see, the Perl interpreter multiplies 4 by 5, adds 3, and assigns the result, 23, 



to $var. Here's what the Perl interpreter is doing, more formally, when it evaluates this 
expression ($var = 4 * 5 + 3): 

1.  The subexpression 4 * 5 is evaluated, yielding the result 20. The expression being 
evaluated is now
$var = 20 + 3

because the multiplication operation has been replaced by its result. 
2.  The subexpression 20 + 3 is evaluated, yielding 23. The expression is now

$var = 23 
3.  Finally, the value 23 is assigned to $var. 

Here's one more example, this time using the value of a variable in an expression: 

$var1 = 15;

$var2 = $var1 - 11;

When the Perl interpreter evaluates the second expression, it does the following: 

1.  It retrieves the value currently stored in $var1, which is 15, and replaces the 
variable with its value. This means the expression is now
$var2 = 15 - 11

and $var1 is out of the picture. 
2.  The Perl interpreter performs the subtraction operation, yielding 

$var2 = 4 
3.  $var2 is thus assigned the value 4. 

NOTE

An expression and a statement are two different things. 
A statement, however, can contain a Perl expression. For 
example, the statement

$var2 = 4; 

contains the Perl expression

$var2 = 4 

and is terminated by a semicolon (;). 

The distinction between statements and expressions will 
become clearer when you encounter other places where 
Perl statements use expressions. For example, expressions 



are used in conditional statements, which you'll see 
later today.

Assignments and Expressions

The assignment operator, like all Perl operators, yields a result. The result of an 
assignment operation is the value assigned. For example, in the expression 

$var = 42

the result of the expression is 42, which is the value assigned to $var. 

Because the assignment operator yields a value, you can use more than one assignment 
operator in a single expression: 

$var1 = $var2 = 42;

In this example, the subexpression 

$var2 = 42

is performed first. (You'll learn why on Day 4, "More Operators," in the lesson about 
operator precedence.) The result of this subexpression is 42, and the expression is now 

$var1 = 42

At this point, 42 is assigned to $var1. 

Other Perl Operators

So far, you have encountered the following Perl operators, which are just a few of the 
many operators Perl supports: 

●     The assignment operator, =. 
●     The arithmetic operators +, -, *, and /. 

You'll learn about additional Perl operators on Day 4. 



Introduction to Conditional Statements

So far, the Perl programs you've seen have had their statements executed in sequential 
order. For example, consider the kilometer-to-mile conversion program you saw in 
Listing 2.1: 

#!/usr/local/bin/perl

print ("Enter the distance to be converted:\n");

$originaldist = <STDIN>;

chop ($originaldist);

$miles = $originaldist * 0.6214;

$kilometers = $originaldist * 1.609;

print ($originaldist, " kilometers = ", $miles,

       " miles\n");

print ($originaldist, " miles = ", $kilometers,

       " kilometers\n");

When the Perl interpreter executes this program, it starts at the top of the program and 
executes each statement in turn. When the final statement is executed, the program is 
terminated. 

All the statements in this program are unconditional statements-that is, they always are 
executed sequentially, regardless of what is happening in the program. In some 
situations, however, you might want to have statements that are executed only when 
certain conditions are true. These statements are known as conditional statements. 

Perl supports a variety of conditional statements. In the following sections, you'll 
learn about these conditional statements:

Statement Description 

if Executes when a specified condition is true. 

if-else Chooses between two alternatives. 

if-elsif-else Chooses between more than two alternatives.



While and until Repeats a group of statements a specified 
number of times. 

Perl also has other conditional statements, which you'll learn about on Day 8, "More 
Control Structures." 

The if Statement 

The if statement is the simplest conditional statement used in Perl. The easiest way to 
explain how the if statement works is to show you a simple example: 

if ($number) {

        print ("The number is not zero.\n");

}

The if statement consists of (closing brace character): 

This statement consists of two parts: 

●     The code between the if and the open brace character ({). 
●     The code between the { and the }. 

The first part is known as a conditional expression; the second part is a set of one or more 
statements called a statement block. Let's look at each part in detail. 

The Conditional Expression

The first part of an if statement-the part between the parentheses-is the conditional 
expression associated with the if statement. This conditional expression is just like any 
other expression you've seen so far; in fact, you can use any legal Perl expression as a 
conditional expression. 

When the Perl interpreter sees a conditional expression, it evaluates the expression. 
The result of the expression is then placed in one of two classes: 

●     If the result is a nonzero value, the conditional expression is true. 
●     If the result is zero, the conditional expression is false. 

The Perl interpreter uses the value of the conditional expression to decide whether to 
execute the statements between the { and } characters. If the conditional expression is 
true, the statements are executed. If the conditional expression is false, the statements 



are not executed. 

In the example you have just seen, 

if ($number) {

        print ("The number is not zero.\n");

}

the conditional expression consists of the value of the variable $number. If $number 
contains something other than zero, the conditional expression is true, and the 
statement 

print ("The value is not zero.\n");

is executed. If $number currently is set to zero, the conditional expression is false, and 
the print statement is not executed. 

Listing 2.2 is a program that contains this simple if statement.

 

Listing 2.2. A program containing a simple example of an if statement.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a number:\n");

4:  $number = <STDIN>;

5:  chop ($number);

6:  if ($number) {

7:          print ("The number is not zero.\n");

8:  }

9:  print ("This is the last line of the program.\n");



 

$ program2_2

Enter a number:

5

The number is not zero.

This is the last line of the program.

$

 Lines 3, 4, and 5 of Listing 2.2 are similar to lines you've seen before. Line 3 
tells you to enter a number; line 4 assigns the line you've entered to the variable 
$number; and line 5 throws away the trailing newline character 

Lines 6-8 constitute the if statement itself. As you have seen, this statement evaluates 
the conditional expression consisting of the variable $number. If $number is not zero, the 
expression is true, and the call to print is executed. If $number is zero, the expression is 
false, and the call to print is skipped; the Perl interpreter thus jumps to line 9. 

The Perl interpreter executes line 9 and prints the following regardless of whether the 
conditional expression in line 6 is true or false: 

This is the last line of the program.

Now that you understand how an if statement works, you're ready to see the formal 
syntax definition for the if statement. 

The syntax for the if statement is 

if (expr) {

        statement_block

}



This formal definition doesn't tell you anything you don't already know. expr refers to 
the conditional expression, which evaluates to either true or false. statement_block is 
the group of statements that is executed when expr evaluates to true.

If you are familiar with the C programming language, 
you probably have noticed that the if statement in Perl 
is syntactically similar to the if statement in C. There is 
one important difference, however: In Perl, the braces ({ 
and }) must be present 

The following statement is illegal in Perl because the { and } are missing: 

if ($number)

        print ("The value is not zero.\n");

Perl does support a syntax for single-line conditional statements. This is discussed on 
Day 8. 

The Statement Block

The second part of the if statement, the part between the { and the }, is called a 
statement block. A statement block consists of any number of legal Perl statements 
(including no statements, if you like). 

In the following example, the statement block consists of one statement: 

print ("The value is not zero.\n");

NOTE



A statement block can be completely empty. In this 
statement, for example:

if ($number == 21) { 

} 

there is nothing between the { and }, so the statement 
block is empty. This is perfectly legal Perl code, 
although it's not particularly useful 

Testing for Equality Using ==

So far, the only conditional expression you've seen is an expression consisting of a single 
variable. Although you can use any expression you like and any operators you like, Perl 
provides special operators that are designed for use in conditional expressions. One such 
operator is the equality comparison operator, ==. 

The == operator, like the other operators you've seen so far, requires two operands or 
subexpressions. Unlike the other operators, however, it yields one of two possible 
results: true or false. (The other operators you've seen yield a numeric value as a 
result.) The == operator works like this: 

●     If the two subexpressions evaluate to the same numeric value, the == operator 
yields the result true. 

●     If the two subexpressions have different values, the == operator yields the result 
false. 

Because the == operator returns either true or false, it is ideal for use in conditional 
expressions, because conditional expressions are expected to evaluate to either true or 
false. For an example, look at Listing 2.3, which compares two numbers read in from the 
standard input file.

 

Listing 2.3. A program that uses the equality-comparison operator to 
compare two numbers entered at the keyboard.

1:  #!/usr/local/bin/perl



2:  

3:  print ("Enter a number:\n");

4:  $number1 = <STDIN>;

5:  chop ($number1);

6:  print ("Enter another number:\n");

7:  $number2 = <STDIN>;

8:  chop ($number2);

9:  if ($number1 == $number2) {

10:         print ("The two numbers are equal.\n");

11: }

12: print ("This is the last line of the program.\n");

 

$ program2_3

Enter a number:

17

Enter another number:

17

The two numbers are equal.

This is the last line of the program.

$

 Lines 3-5 are again similar to statements you've seen before. They print a 
message on your screen, read a number into the variable $number1, and chop the newline 
character from the number 

Lines 6-8 repeat the preceding process for a second number, which is stored in $number2. 



Lines 9-11 contain the if statement that compares the two numbers. Line 9 contains the 
conditional expression 

$number1 == $number2

If the two numbers are equal, the conditional expression is true, and the print 
statement in line 10 is executed. If the two numbers are not equal, the conditional 
expression is false, so the print statement in line 10 is not executed; in this case, the 
Perl interpreter skips to the first statement after the if statement, which is line 12. 

Line 12 is executed regardless of whether or not the conditional expression in line 9 is 
true. It prints the following message on the screen: 

This is the last line of the program.

Make sure that you don't confuse the = and == operators. 
Because any expression can be used as a conditional 
expression, Perl is quite happy to accept statements such 
as 

if ($number = 5) { 

print ("The number is five.\n"); 

} 

Here, the if statement is evaluated as follows: 

1.  The number 5 is assigned to $number, and the following 
expression yields the result 5: 
$number = 5 

2.  The value 5 is nonzero, so the conditional expression is true. 
3.  Because the conditional expression is true, this statement is 

executed: 

print ("The number is five.\n"); 

Note that the print statement is executed regardless of 



what the value of $number was before the if statement. 
This is because the value 5 is assigned to $number by the 
conditional expression. 

To repeat: Be careful when you use the == operator 

Other Comparison Operators

The == operator is just one of many comparison operators that you can use in conditional 
expressions. For a complete list, refer to Day 4. 

Two-Way Branching Using if and else

When you examine Listing 2.3 (shown previously), you might notice a problem. What 
happens if the two numbers are not equal? In this case, the statement 

print ("The two numbers are equal.\n");

is not printed. In fact, nothing is printed. 

Suppose you want to modify Listing 2.3 to print one message if the two numbers are equal 
and another message if the two numbers are not equal. One convenient way of doing 
this is with the if-else statement. 

Listing 2.4 is a modification of the program in Listing 2.3. It uses the if-else statement to 
print one of two messages, depending on whether the numbers are equal.

 

Listing 2.4. A program that uses the if-else statement.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a number:\n");

4:  $number1 = <STDIN>;

5:  chop ($number1);



6:  print ("Enter another number:\n");

7:  $number2 = <STDIN>;

8:  chop ($number2);

9:  if ($number1 == $number2) {

10:         print ("The two numbers are equal.\n");

11: } else {

12:         print ("The two numbers are not equal.\n");

13: }

14: print ("This is the last line of the program.\n");

 

$ program2_4

Enter a number:

17

Enter another number:

18

The two numbers are not equal.

This is the last line of the program.

$

 Lines 3-8 are identical to those in Listing 2.3. They read in two numbers, assign 
them to $number1 and $number2, and chop their newline characters 

Line 9 compares the value stored in $number1 to the value stored in $number2. If the two 
values are equal, line 10 is executed, and the following message is printed: 

The two numbers are equal.



The Perl interpreter then jumps to the first statement after the if-else statement-line 
14. 

If the two values are not equal, line 12 is executed, and the following message is 
printed: 

The two numbers are not equal.

The interpreter then continues with the first statement after the if-else-line 14. 

In either case, the Perl interpreter executes line 14, which prints the following message: 

This is the last line of the program.

The syntax for the if-else statement is 

if (expr) {

        statement_block_1

} else {

        statement_block_2

}

As in the if statement, expr is any expression (it is usually a conditional expression). 
statement_block_1 is the block of statements that the Perl interpreter executes if expr 
is true, and statement_block_2 is the block of statements that are executed if expr is 
false. 

Note that the else part of the if-else statement cannot appear by itself; it must always 
follow an if. 

TIP



In Perl, as you've learned, you can use any amount of 
white space to separate tokens. This means that you can 
present conditional statements in a variety of ways.

The examples in this book use what is called the one true 
brace style: 

if ($number == 0) {
print ("The number is zero.\n");
} else {
print ("The number is not zero.\n");

} 

In this brace style, the opening brace ({) appears on the 
same line as the if or else, and the closing brace (}) 
starts a new line. 

Other programmers insist on putting the braces on 
separate lines:

if ($number == 0)
{
print ("The number is zero.\n");
}
else
{
print ("The number is not zero.\n");

} 

Still others prefer to indent their braces:

if ($number == 0) 

{ 

print ("The number is not zero.\n"); 

} 

I prefer the one true brace style because it is both 
legible and compact. However, it doesn't really matter 
what brace style you choose, provided that you follow 
these rules:

●     The brace style is consistent. Every if and else that appears in 
your program should have its braces displayed in the same way. 



●     The brace style is easy to follow. 
●     The statement blocks inside the braces always should be 

indented in the same way. 

If you do not follow a consistent style, and you write 
statements such as

if ($number == 0) { print ("The number is zero"); } 

you'll find that your code is difficult to understand, 
especially when you start writing longer Perl programs

Multi-Way Branching Using elsif

Listing 2.4 (which you've just seen) shows how to write a program that chooses between 
two alternatives. Perl also provides a conditional statement, the if-elsif-else 
statement, which selects one of more than two alternatives. Listing 2.5 illustrates the 
use of elsif.

 

Listing 2.5. A program that uses the if-elsif-else statement.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a number:\n");

4:  $number1 = <STDIN>;

5:  chop ($number1);

6:  print ("Enter another number:\n");

7:  $number2 = <STDIN>;

8:  chop ($number2);

9:  if ($number1 == $number2) {

10:         print ("The two numbers are equal.\n");

11: } elsif ($number1 == $number2 + 1) {



12:         print ("The first number is greater by one.\n");

13: } elsif ($number1 + 1 == $number2) {

14:         print ("The second number is greater by one.\n");

15: } else {

16:         print ("The two numbers are not equal.\n");

17: }

18: print ("This is the last line of the program.\n");

 

$ program2_5

Enter a number:

17

Enter another number:

18

The second number is greater by one.

This is the last line of the program.

$

 You already are familiar with lines 3-8. They obtain two numbers from the 
standard input file and assign them to $number1 and $number2, chopping the terminating 
newline character in the process 

Line 9 checks whether the two numbers are equal. If the numbers are equal, line 10 is 
executed, and the following message is printed: 

The two numbers are equal.

The Perl interpreter then jumps to the first statement after the if-elsif-else 
statement, which is line 18. 



If the two numbers are not equal, the Perl interpreter goes to line 11. Line 11 performs 
another comparison. It adds 1 to the value of $number2 and compares it with the value of 
$number1. If the two values are equal, the Perl interpreter executes line 12, printing 
the message 

The first number is greater by one.

The interpreter then jumps to line 18-the statement following the if-elsif-else 
statement. 

If the conditional expression in line 11 is false, the interpreter jumps to line 13. Line 13 
adds 1 to the value of $number1 and compares it with the value of $number2. If these two 
values are equal, the Perl interpreter executes line 14, which prints 

The second number is greater by one.

on the screen. The interpreter then jumps to line 18. 

If the conditional expression in line 13 is false, the Perl interpreter jumps to line 15 and 
executes line 16, which prints 

The two numbers are not equal.

on the screen. The Perl interpreter continues with the next statement, which is line 18. 

If you have followed the program logic to this point, you've realized that the Perl 
interpreter eventually reaches line 18 in every case. Line 18 prints this statement: 

This is the last line of the program.

The syntax of the if-elsif-else statement is as follows: 

if (expr_1) {

        statement_block_1

} elsif (expr_2) {

        statement_block_2



} elsif (expr_3) {

        statement_block_3

...

} else {

        default_statement_block

}

Here, expr_1, expr_2, and expr_3 are conditional expressions. statement_block_1, 
statement_block_2, statement_block_3, and default_statement_block are blocks of 
statements. 

The ... indicates that you can have as many elsif statements as you like. Each elsif 
statement has the same form: 

} elsif (expr) {

        statement_block

}

Syntactically, an if-else statement is just an if-elsif-else statement with no elsif 
parts. 

If you want, you can leave out the else part of the if-elsif-else statement, as follows: 

if (expr_1) {

        statement_block_1

} elsif (expr_2) {

        statement_block_2

} elsif (expr_3) {

        statement_block_3

...

}

Here, if none of the expressions-expr_1, expr_2, expr_3, and so on-are true, the Perl 
interpreter just skips to the first statement following the if-elsif-else statement.



NOTE

The elsif parts of the if-elsif-else statement must 
appear between the if part and the else part 

Writing Loops Using the while Statement

The conditional statements you've seen so far enable the Perl interpreter to decide 
between alternatives. However, each statement in the Perl programs that you have seen 
is either not executed or is executed only once. 

Perl also enables you to write conditional statements that tell the Perl interpreter to 
repeat a block of statements a specified number of times. A block of statements that can 
be repeated is known as a loop. 

The simplest way to write a loop in Perl is with the while statement. Here is a simple 
example of a while statement: 

while ($number == 5) {

        print ("The number is still 5!\n");

}

The while statement is structurally similar to the if statement, but it works in a 
slightly different way. Here's how: 

●     First, the conditional expression located between the parentheses is tested. 
●     If the conditional expression is true, the statement block between the { and } is 

executed. If the expression is false, the statement block is skipped, and the Perl 
interpreter jumps to the statement following the while statement. (This is called 
exiting the loop.) 

●     If the statement block is executed, the Perl interpreter jumps back to the start of 
the while statement and tests the conditional expression over again. (This is the 
looping part of the while statement, because at this point the Perl interpreter is 
executing a statement it has executed before.) 

The statement block in the while statement is repeated until the conditional expression 
becomes false. This means that the statement 

while ($number == 5) {



        print ("The number is still 5!\n");

}

loops forever (which is referred to as going into an infinite loop) if the value of $number is 
5, because the value of $number never changes and the following conditional expression 
is always true: 

$number == 5

For a more useful example of a while statement-one that does not go into an infinite 
loop-take a look at Listing 2.6. 

 

Listing 2.6. A program that demonstrates the while statement.

1:  #!/usr/local/bin/perl

2:  

3:  $done = 0;

4:  $count = 1;

5:  print ("This line is printed before the loop starts.\n");

6:  while ($done == 0) {

7:          print ("The value of count is ", $count, "\n");

8:          if ($count == 3) {

9:                  $done = 1;

10:         }

11:         $count = $count + 1;

12: }

13: print ("End of loop.\n");



 

$ program2_6

This line is printed before the loop starts.

The value of count is 1

The value of count is 2

The value of count is 3

End of loop.

$

 Lines 3-5 prepare the program for looping. Line 3 assigns the value 0 to the 
variable $done. (As you'll see, the program uses $done to indicate whether or not to 
continue looping.) Line 4 assigns the value 1 to the variable $count. Line 5 prints the 
following line to the screen 

This line is printed before the loop starts.

The while statement appears in lines 6-12. Line 6 contains a conditional expression to be 
tested. If the conditional expression is true, the statement block in lines 7-11 is 
executed. At this point, the conditional expression is true, so the Perl interpreter 
continues with line 7. 

Line 7 prints the current value of the variable $count. At present, $count is set to 1. This 
means that line 7 prints the following on the screen: 

The value of count is 1

Lines 8-10 test whether $count has reached the value 3. Because $count is 1 at the 
moment, the conditional expression in line 8 is false, and the Perl interpreter skips to 
line 11. 

Line 11 adds 1 to the current value of $count, setting it to 2. 

Line 12 is the bottom of the while statement. The Perl interpreter now jumps back to 
line 6, and the whole process is repeated. Here's how the Perl interpreter continues from 



here: 

●     Line 6: $done == 0 is true, so continue. 
●     Line 7: Print The value of count is 2 on the screen. 
●     Line 8: $count is 2; $count == 3 is false, so skip to line 11. 
●     Line 11: 1 is added to $count; $count is now 3. 
●     Line 12: Jump back to the start of the loop, which is line 6. 
●     Line 6: $done == 0 is true, so continue. 
●     Line 7: Print The value of count is 3 on the screen. 
●     Line 8: $count is 3; $count == 3 is true, and the if statement block is executed. 
●     Line 9: $done is set to 1. Execution continues with the first statement after the if, 

which is line 11. 
●     Line 11: $count is set to 4. 
●     Line 12: Jump back to line 6. 
●     Line 6: $done == 0 is now false, because the value of $done is 1. The Perl 

interpreter exits the loop and continues with the first statement after while, 
which is line 13. 

Line 13 prints the following message on the screen: 

End of loop.

At this point, program execution terminates because there are no more statements to 
execute. 

The syntax for the while statement is 

while (expr) {

        statement_block

}

As you can see, the while statement is syntactically similar to the if statement. expr is 
a conditional expression to be evaluated, and statement_block is a block of statements 
to be executed while expr is true. 

Nesting Conditional Statements

The if statement in Listing 2.6 (shown previously) is an example of a nested conditional 
statement. It is contained inside another conditional statement (the while statement). In 
Perl, you can nest any conditional statement inside another. For example, you can have 
a while statement inside another while statement, as follows: 



while (expr_1) {

        some_statements

        while (expr_2) {

                inner_statement_block

        }

        some_more_statements

}

Similarly, you can have an if statement inside another if statement, or you can have a 
while statement inside an if statement. 

You can nest conditional statements inside elsif and else parts of if statements as 
well: 

if ($number == 0) {

        # some statements go here

} elsif ($number == 1) {

        while ($number2 == 19) {

                # here is a place for a statement block

        }

} else {

        while ($number2 == 33) {

                # here is a place for another statement block

        }

}

The braces ({ and }) around the statement block for each conditional statement ensure 
that the Perl interpreter never gets confused.

TIP



If you plan to nest conditional statements, it's a good 
idea to indent each statement block to indicate how 
many levels of nesting you are using. If you write code 
such as the following, it's easy to get confused:

while ($done == 0) {
print ("The value of count is", $count, "\n");
if ($count == 3) {
$done = 1;
}
$count = $count + 1;

} 

Although this code is correct, it's not easy to see that 
the statement

$done = 1; 

is actually inside an if statement that is inside a while 
statement. Larger and more complicated programs 
rapidly become unreadable if you do not indent properly. 

Looping Using the until Statement

Another way to loop in Perl is with the until statement. It is similar in appearance to 
the while statement, but it works in a slightly different way. 

●     The while statement loops while its conditional expression is true. 
●     The until statement loops until its conditional expression is true (that is, it loops 

as long as its conditional expression is false). 

Listing 2.7 contains an example of the until statement. 

 

Listing 2.7. A program that uses the until statement.

1:  #!/usr/local/bin/perl

2:  



3:  print ("What is 17 plus 26?\n");

4:  $correct_answer = 43;     # the correct answer

5:  $input_answer = <STDIN>;

6:  chop ($input_answer);

7:  until ($input_answer == $correct_answer) {

8:          print ("Wrong! Keep trying!\n");

9:          $input_answer = <STDIN>;

10:         chop ($input_answer);

11: }

12: print ("You've got it!\n");

 

$ program2_7

What is 17 plus 26?

39

Wrong! Keep trying!

43

You've got it!

$

 Lines 3 and 4 set up the loop. Line 3 prints the following question on the 
screen 

What is 17 plus 26?

Line 4 assigns the correct answer, 43, to $correct_answer. 

Lines 5 and 6 retrieve the first attempt at the answer. Line 5 reads a line of input and 



stores it in $input_answer. Line 6 chops off the newline character. 

Line 7 tests whether the answer entered is correct by comparing $input_answer with 
$correct_answer. If the two are not equal, the Perl interpreter continues with lines 8-
10; if they are equal, the interpreter skips to line 12. 

Line 8 prints the following on the screen: 

Wrong! Keep trying!

Line 9 reads another attempt from the standard input file and stores it in 
$input_answer. 

Line 10 chops off the newline character. At this point, the Perl interpreter jumps back 
to line 7 and tests the new attempt. 

The interpreter reaches line 12 when the answer is correct. At this point, the following 
message appears on the screen, and the program terminates: 

You've got it!

The syntax for the until statement is 

until (expr) {

        statement_block

}

As in the while statement, expr is a conditional expression, and statement_block is a 
statement block. 

Summary

Today, you learned about scalar variables and how to assign values to them. 

Scalar variables and values can be used by the arithmetic operators to perform the basic 
arithmetic operations of addition, subtraction, multiplication, and division. The chop 
library function removes the trailing newline character from a line, which enables you 
to read scalar values from the standard input file. 



A collection of operations and their values is known as an expression. The values 
operated on by a particular operator are called the operands of the operator. Each 
operator yields a result, which then can be used in other operations. 

An expression can be divided into subexpressions, each of which is evaluated in turn. 

Today you were introduced to the idea of a conditional statement. A conditional 
statement consists of two components: a conditional expression, which yields a result of 
either true or false; and a statement block, which is a group of statements that is 
executed only when the conditional expression is true. 

Some conditional expressions contain the == operator, which returns true if its operands 
are numerically equal, and returns false if its operands are not. 

The following conditional statements were described today: 

●     The if statement, which is executed only if its conditional expression is true 
●     The if-else statement, which chooses between two alternatives 
●     The if-elsif-else statement, which chooses between multiple alternatives 
●     The while statement, which loops while a condition is true 
●     The until statement, which loops until a condition is true 

You also learned about nesting conditional statements, as well as about infinite loops 
and how to avoid them. 

Q&A

Q: Which should I use, the while statement or the until statement? 

A: It doesn't matter, really; it just depends on which, in your judgment, is easier to 
read. 
Once you learn about the other comparison operators on Day 4, "More 
Operators," you'll be able to use the while statement wherever you can use an 
until statement, and vice versa. 

Q: In Listing 2.7, you read input from the standard input file in two separate 
places. Is there any way I can reduce this to one? 

A: Yes, by using the do statement, which you'll encounter on Day 8, "More Control 
Structures." 

Q: Do I really need both a $done variable and a $count variable in Listing 2.6? 

A: No. On Day 4 you'll learn about comparison operators, which enable you to test 
whether a variable is less than or greater than a particular value. At that 
point, you won't need the $done variable. 

Q: How many elsif parts can I have in an if-elsif-else statement? 



A: Effectively, as many as you like. (There is an upper limit, but it's so large that 
you are not likely ever to reach it.) 

Q: How much nesting of conditional statements does Perl allow? Can I put an 
if inside a while that is inside an if that is inside an until? 

A: Yes. You can nest as many levels deep as you like. Generally, though, you don't 
want to go too many levels down because your program will become difficult to 
read. 
The logical operators, which you'll learn about on Day 4, make it possible to 
produce more complicated conditional expressions. They'll eliminate the need for 
too much nesting. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define the following terms:
a.     expression
b.     operand
c.     conditional statement
d.     statement block
e.     infinite loop 

2.  When does a while statement stop looping? 
3.  When does an until statement stop looping? 
4.  What does the == operator do? 
5.  What is the result when the following expression is evaluated? 

14 + 6 * 3 - 10 / 2 
6.  Which of the following are legal scalar variable names?

a.     $hello
b.     $_test
c.     $now_is_the_time_to_come_to_the_aid_of_the_party 
d.     $fries&gravy
e.     $96tears
f.     $tea_for_2 

Exercises

1.  Write a Perl program that reads in a number, multiplies it by 2, and prints the 
result. 

2.  Write a Perl program that reads in two numbers and does the following: 



❍     It prints Error: can't divide by zero if the second number is 0. 
❍     If the first number is 0 or the second number is 1, it just prints the first 

number (because no division is necessary). 
❍     In all other cases, it divides the first number by the second number and 

prints the result. 
3.  Write a Perl program that uses the while statement to print out the first 10 

numbers (1-10) in ascending order. 
4.  Write a Perl program that uses the until statement to print out the first 10 

numbers in descending order (10-1). 
5.  BUG BUSTER: What is wrong with the following program? (Hint: there might be 

more than one bug!)
#!/usr/local/bin/perl
$value = <STDIN>;
if ($value = 17) {
print ("You typed the number 17.\n");
else {

print ("You did not type the number 17.\n"); 
6.  BUG BUSTER: What is wrong with the following program? 

#!/usr/local/bin/perl
# program which prints the next five numbers after the
# number typed in
$input = <STDIN>;
chop ($input);
$input = $input + 1; # start with the next number;
$input = $terminate + 5; # we want to loop five times
until ($input == $terminate) {

print ("The next number is ", $terminate, "\n"); 

    



Chapter 3

Understanding Scalar Values

CONTENTS

●     What Is a Scalar Value? 
●     Integer Scalar Values 

❍     Integer Scalar Value Limitations 
●     Floating-Point Scalar Values 

❍     Floating-Point Arithmetic and Round-Off Error 
●     Using Octal and Hexadecimal Notation 

❍     Decimal Notation 
❍     Octal Notation 
❍     Hexadecimal Notation 
❍     Why Bother? 

●     Character Strings 
❍     Using Double-Quoted Strings 
❍     Escape Sequences 
❍     Single-Quoted Strings 

●     Interchangeability of Strings and Numeric Values 
❍     Initial Values of Scalar Variables 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson describes everything you need to know about scalar values in Perl. 
Today, you learn about the following: 

●     Scalar values 
●     How integers are represented 
●     Floating-point values 
●     The octal and hexadecimal notations 
●     Character strings, and using the double-quote and single-quote characters to 

enclose them 



●     Escape sequences 
●     The interchangeability of character strings and numeric values 

What Is a Scalar Value?

Basically, a scalar value is one unit of data. This unit of data can be either a number or a 
chunk of text. 

There are several types of scalar values that Perl understands. Today's lesson describes 
each of them in turn and shows you how you can use them. 

Integer Scalar Values

The most common scalar values in Perl programs are integer scalar values, also known 
as integer constants or integer literals. 

An integer scalar value consists of one or more digits, optionally preceded by a plus or 
minus sign and optionally containing underscores. 

Here are a few examples: 

14

10000000000

-27

1_000_000

You can use integer scalar values in expressions or assign them to scalar variables, as 
follows: 

$x = 12345;

if (1217 + 116 == 1333) {

        # statement block goes here

}

Integer Scalar Value Limitations

In Perl, there is a limit on the size of integers included in a program. To see what this 
limit is and how it works, take a look at Listing 3.1, which prints out integers of various 



sizes. 

 

Listing 3.1. A program that displays integers and illustrates their size 
limitations.

1:  #!/usr/local/bin/perl

2:  

3:  $value = 1234567890;

4:  print ("first value is ", $value, "\n");

5:  $value = 1234567890123456;

6:  print ("second value is ", $value, "\n");

7:  $value = 12345678901234567890;

8:  print ("third value is ", $value, "\n");

 

$ program3_1

first value is 1234567890

second value is 1234567890123456

third value is 12345678901234567168

$

 This program assigns integer scalar values to the variable $value, and then 
prints $value 

Lines 3 and 4 store and print the value 1234567890 without any difficulty. Similarly, 
lines 5 and 6 successfully store and print the value 1234567890123456. 



Line 7 attempts to assign the value 12345678901234567890 to $value. Unfortunately, this 
number is too big for Perl to understand. When line 8 prints out the value assigned to 
$value, it prints out 

12345678901234567168

As you can see, the last three digits have been replaced with different values. 

Here's what has happened: Perl actually stores integers in the floating-point registers 
on your machine. In other words, integers are treated as if they are floating-point 
numbers (numbers containing decimal points). 

On most machines, floating-point registers can store approximately 16 digits before 
running out of space. As the output from line 8 shows, the first 17 digits of the number 
12345678901234567890 are remembered and stored by the Perl interpreter, and the rest 
are thrown away. This means that the value printed by line 8 is not the same as the 
value assigned in line 7. 

This somewhat annoying limitation on the number of digits in an integer can be found in 
almost all programming languages. In fact, many programming languages have an upper 
integer limit of 4294967295 (which is equal to 232 minus 1). 

The number of digits that can be stored varies from machine to machine. For a more 
detailed explanation, refer to the discussion of precision in the following section, 
"Floating-Point Scalar Values."

An integer constant that starts with a 0 is a special case:

$x = 012345; 

The 0 at the beginning of the constant (also known as a 
leading zero) tells the Perl interpreter to treat this as an 
octal integer constant. To find out about octal integer 
constants, refer to the section called "Using Octal and 
Hexadecimal Notation" later today 

Floating-Point Scalar Values



As you have just seen, integers in Perl actually are represented as floating-point 
numbers. This means that an integer scalar value is actually a special kind of floating-
point scalar value. 

In Perl, a floating-point scalar value consists of all of the following: 

●     An optional minus sign (-) 
●     A sequence of digits, optionally containing a decimal point 
●     An optional exponent 

Here are some simple examples of floating-point scalar values: 

11.4

-275

-0.3

.3

3.

The optional exponent tells the Perl interpreter to multiply or divide the scalar value 
by a power of ten. An exponent consists of all of the following: 

●     The letter e (E is also acceptable) 
●     An optional + or - 
●     A one-, two-, or three-digit number 

The number in the exponent represents the value by which to multiply or divide, 
represented as a power of 10. For example, the exponent e+01 tells the Perl interpreter 
to multiply the scalar value by 10 to the power of 1, or 10. This means that the scalar 
value 8e+01 is equivalent to 8 multiplied by 10, or 80. 

Similarly, the exponent e+02 is equivalent to multiplying by 100, e+03 is equivalent to 
multiplying by 1,000, and so on. The following scalar values are all equal: 

541e+01

54.1e+02

5.41e+03

A negative exponent tells the Perl interpreter to divide by 10. For example, the value 
54e-01 is equivalent to 54 divided by 10, or 5.4. Similarly, e-02 tells the Perl interpreter 



to divide by 100, e-03 to divide by 1,000, and so on. 

The exponent e+00 is equivalent to multiplying by 1, which does nothing. Therefore, the 
following values are equal: 

5.12e+00

5.12

If you want, you can omit the + when you multiply by a power of ten. 

5.47e+03

5.47e03

Listing 3.2 shows how Perl works with and prints out floating-point scalar values.

 

Listing 3.2. A program that displays various floating-point scalar 
values. 

1:  #!/usr/local/bin/perl

2:  

3:  $value = 34.0;

4:  print ("first value is ", $value, "\n");

5:  $value = 114.6e-01;

6:  print ("second value is ", $value, "\n");

7:  $value = 178.263e+19;

8:  print ("third value is ", $value, "\n");

9:  $value = 123456789000000000000000000000;

10: print ("fourth value is ", $value, "\n");

11: $value = 1.23e+999;

12: print ("fifth value is ", $value, "\n");



13: $value = 1.23e-999;

14: print ("sixth value is ", $value, "\n");

 

$ program3_2

first value is 34

second value is 11.460000000000001

third value is 1.7826300000000001e+21

fourth value is 1.2345678899999999e+29

fifth value is Infinity

sixth value is 0

$

 As in Listing 3.1, this program stores and prints various scalar values. Line 3 
assigns the floating-point value 34.0 to $value. Line 4 then prints this value. Note that 
because there are no significant digits after the decimal point, the Perl interpreter 
treats 34.0 as if it is an integer 

Line 5 assigns 114.6e-01 to $value, and line 6 prints this value. Whenever possible, the 
Perl interpreter removes any exponents, shifting the decimal point appropriately. As a 
result, line 6 prints out 

11.460000000000001

which is 114.6e-01 with the exponent e-01 removed and the decimal point shifted one 
place to the left (which is equivalent to dividing by 10). 

Note that the number printed by line 6 is not exactly equal to the value assigned in line 
5. This is a result of round-off error. The floating-point register cannot contain the exact 
value 11.46, so it comes as close as it can. It comes pretty close-in fact, the first 16 digits 
are correct. This number of correct digits is known as the precision, and it is a property of 
the machine on which you are working; the precision of a floating-point number varies 



from machine to machine. (The machine on which I ran these test examples supports a 
floating-point precision of 16 or 17 digits. This is about normal.)

NOTE

The size of an integer is roughly equivalent to the 
supported floating-point precision. If a machine supports 
a floating-point precision of 16 digits, an integer can be 
approximately 16 digits long.

Line 6 shows that a floating-point value has its exponent removed whenever possible. 
Lines 7 and 8 show what happens when a number is too large to be conveniently 
displayed without the exponent. In this case, the number is displayed in scientific 
notation. 

In scientific notation, one digit appears before the decimal point, and all the other 
significant digits (the rest of the machine's precision) follow the decimal point. The 
exponent is adjusted to reflect this. In this example, the number 

178.263e+19

is converted into scientific notation and becomes 

1.7826300000000001e+21

As you can see, the decimal point has been shifted two places to the left, and the 
exponent has, as a consequence, been adjusted from 19 to 21. As before, the 1 at the end is 
an example of round-off error. 

If an integer is too large to be displayed conveniently, the Perl interpreter converts it 
to scientific notation. Lines 9 and 10 show this. The number 

123456789000000000000000000000

is converted to 

1.2345678899999999e+29



Here, scientific notation becomes useful. At a glance, you can tell approximately how 
large the number is. (In conventional notation, you can't do this without counting the 
zeros.) 

Lines 11 and 12 show what happens when the Perl interpreter is given a number that is 
too large to fit into the machine's floating-point register. In this case, Perl just prints 
the word Infinity. 

The maximum size of a floating-point number varies from machine to machine. Generally, 
the largest possible exponent that can be stored is about e+308. 

Lines 13 and 14 illustrate the case of a number having a negative exponent that is too 
large (that is, it's too small to store). In such cases, Perl either gets as close as it can or 
just prints 0. 

The largest negative exponent that produces reliable values is about e-309. Below that, 
accuracy diminishes. 

Floating-Point Arithmetic and Round-Off Error

The arithmetic operations you saw on Day 2, "Basic Operators and Control Flow," also 
work on floating-point values. On that day, you saw an example of a miles-to-kilometers 
conversion program that uses floating-point arithmetic. 

When you perform floating-point arithmetic, you must remember the problems with 
precision and round-off error. Listing 3.3 illustrates what can go wrong and shows you 
how to attack this problem.

 

Listing 3.3. A program that illustrates round-off error problems in 
floating-point arithmetic.

1:  #!/usr/local/bin/perl

2:  

3:  $value = 9.01e+21 + 0.01 - 9.01e+21;

4:  print ("first value is ", $value, "\n");

5:  $value = 9.01e+21 - 9.01e+21 + 0.01;

6:  print ("second value is ", $value, "\n");



 

$ program3_3

first value is 0

second value is 0.01

$

 Line 3 and line 5 both subtract 9.01e+21 from itself and add 0.01. However, as 
you can see when you examine the output produced by line 4 and line 6, the order in 
which you perform the addition and subtraction has a significant effect 

In line 3, a very small number, 0.01, is added to a very large number, 9.01e+21. If you 
work it out yourself, you see that the result is 9.01000000000000000000001e+21. 

The final 1 in the preceding number can be retained only on machines that support 24 
digits of precision in their floating-point numbers. Most machines, as you've seen, handle 
only 16 or 17 digits. As a result, the final 1, along with some of the zeros, is lost, and the 
number instead is stored as 9.0100000000000000e+21. 

This is the same as 9.01e+21, which means that subtracting 9.01e+21 yields zero. The 0.01 
is lost along the way. 

Line 5, however, doesn't have this problem. The two large numbers are operated on first, 
yielding 0, and then 0.01 is added. The result is what you expect: 0.01. 

The moral of the story: Floating-point arithmetic is accurate only when you bunch 
together operations on large numbers. If the arithmetic operations are on values stored 
in variables, it might not be as easy to spot this problem. 

$result = $number1 + $number2 - $number3;

If $number1 and $number3 contain large numbers and $number2 is small, $result is likely 
to contain an incorrect value because of the problem demonstrated in Listing 3.3. 



Using Octal and Hexadecimal Notation

So far, all the integer scalar values you've seen have been in what normally is called 
base 10 or decimal notation. Perl also enables you to use two other notations to represent 
integer scalar values: 

●     Base 8 notation, or octal 
●     Base 16 notation, or hexadecimal (sometimes shortened to hex) 

To use octal notation, put a zero in front of your integer scalar value: 

$result = 047;

This assigns 47 octal, or 39 decimal, to $result. 

To use hexadecimal notation, put 0x in front of your integer scalar value, as follows: 

$result = 0x1f;

This assigns 1f hexadecimal, or 31 decimal, to $result. 

Perl accepts either uppercase letters or lowercase letters as representations of the 
digits a through f: 

$result = 0xe;

$result = 0xE;

Both of the preceding statements assign 14 (decimal) to $result. 

If you are not familiar with octal and hexadecimal notations and would like to learn 
more, read the following sections. These sections explain how to convert numbers to 
different bases. If you are familiar with this concept, you can skip to the section called 
"Character Strings." 

Decimal Notation

To understand how the octal and hexadecimal notations work, take a closer look at 
what the standard decimal notation actually represents. 



In decimal notation, each digit in a number has one of 10 values: the standard numbers 0 
through 9. Each digit in a number in decimal notation corresponds to a power of 10. 
Mathematically, the value of a digit x in a number is 

x * 10 to the exponent n,

where n is the number of digits you have to skip before reaching x. 

This might sound complicated, but it's really straightforward. For example, the number 
243 can be expressed as follows: 

●     2 * 10 to the exponent 2 (which is 200), plus 
●     4 * 10 to the exponent 1 (which is 40), plus 
●     3 * 10 to the exponent 0 (which is 3 * 1, which is 3) 

Adding the three numbers together yields 243. 

Octal Notation

Working through these steps might seem like a waste of time when you are dealing with 
decimal notation. However, once you understand this method, reading numbers in other 
notations becomes simple. 

For example, in octal notation, each digit x in a number is 

x * 8 to the exponent n

where x is the value of the digit, and n is the number of digits to skip before reaching x. 
This is the same formula as in decimal notation, but with the 10 replaced by 8. 

Using this method, here's how to determine the decimal equivalent of 243 octal: 

●     2 * 8 to the exponent 2, which is 2 * 64, or 128, plus 
●     4 * 8 to the exponent 1, which is 4 * 8, or 32, plus 
●     3 * 8 to the exponent 0, which is 3 * 1, or 3 

Adding 128, 32 and 3 yields 163, which is the decimal notation equivalent of 243 octal. 

Hexadecimal Notation

Hexadecimal notation works the same way, but with 16 as the base instead of 10 or 8. For 



example, here's how to convert 243 hexadecimal to decimal notation: 

●     2 * 16 to the exponent 2, which is 2 * 256, or 512, plus 
●     4 * 16 to the exponent 1, which is 4 * 16, or 64, plus 
●     3 * 16 to the exponent 0, which is 3 * 1, or 3 

Adding these three numbers together yields 579. 

Note that the letters a through f represent the numbers 10 through 15, respectively. 
For example, here's the hexadecimal number fe in decimal notation: 

●     15 * 16 to the exponent 1, which is 15 * 16, or 240, plus 
●     14 * 16 to the exponent 0, which is 14 * 1, or 14 

Adding 240 and 14 yields 254, which is the decimal equivalent of fe. 

Why Bother?

You might be wondering why Perl bothers supporting octal and hexadecimal notation. 
Here's the answer: Computers store numbers in memory in binary (base 2) notation, not 
decimal (base 10) notation. Because 8 and 16 are multiples of 2, it is easier to represent 
stored computer memory in base 8 or base 16 than in base 10. (You could use base 2, of 
course; however, base 2 numbers are clumsy because they are very long.)

NOTE

Perl supports base-2 operations on integer scalar values. 
These operations, called bit-manipulation operations, are 
discussed on Day 4, "More Operators.

Character Strings

On previous days, you've seen that Perl enables you to assign text to scalar variables. In 
the following statement, for instance 

$var = "This is some text";

the text This is some text is an example of what is called a character string (frequently 
shortened to just string). A character string is a sequence of one or more letters, digits, 
spaces, or special characters. 

The following subsections show you 



●     How you can substitute for scalar variables in character strings 
●     How to add escape sequences to your character strings 
●     How to tell the Perl interpreter not to substitute for scalar variables 

NOTE

C programmers should be advised that character strings 
in Perl do not contain a hidden null character at the 
end of the string. In Perl, null characters can appear 
anywhere in a string. (See the discussion of escape 
sequences later today for more details.

Using Double-Quoted Strings

Perl supports scalar variable substitution in character strings enclosed by double quotation-
mark characters. For example, consider the following assignments: 

$number = 11;

$text = "This text contains the number $number.";

When the Perl interpreter sees $number inside the string in the second statement, it 
replaces $number with its current value. This means that the string assigned to $text is 
actually 

This text contains the number 11.

The most immediate practical application of this is in the print statement. So far, many of 
the print statements you have seen contain several arguments, as in the following: 

print ("The final result is ", $result, "\n");

Because Perl supports scalar variable substitution, you can combine the three arguments 
to print into a single argument, as in the following: 

print ("The final result is $result\n");



NOTE

From now on, examples and listings that call print use 
scalar variable substitution because it is easier to read 

Escape Sequences

Character strings that are enclosed in double quotes accept escape sequences for special 
characters. These escape sequences consist of a backslash (\) followed by one or more 
characters. The most common escape sequence is \n, which represents the newline 
character as shown in this example: 

$text = "This is a string terminated by a newline\n";

Table 3.1 lists the escape sequences recognized in double-quoted strings.

Table 3.1. Escape sequences in strings.

Escape 
Sequence

Description

\a Bell (beep) 

\b Backspace 

\cn The Ctrl+n character 

\e Escape 

\E Ends the effect of \L, \U or \Q 

\f Form feed 

\l Forces the next letter into 
lowercase 

\L All following letters are 
lowercase 

\n Newline 

\r Carriage return 

\Q Do not look for special pattern 
characters 

\t Tab 

\u Force next letter into uppercase 



\U All following letters are 
uppercase 

\v Vertical tab 

The \Q escape sequence is useful only when the string is used as a pattern. Patterns are 
described on Day 7, "Pattern Matching." 

The escape sequences \L, \U, and \Q can be turned off by \E, as follows: 

$a = "T\LHIS IS A \ESTRING"; # same as "This is a STRING"

To include a backslash or double quote in a double-quoted string, precede the backslash 
or quote with another backslash: 

$result = "A quote \" in a string";

$result = "A backslash \\ in a string";

A backslash also enables you to include a $ character in a string. For example, the 
statements 

$result = 14;

print("The value of \$result is $result.\n");

print the following on your screen: 

The value of $result is 14.

You can specify the ASCII value for a character in base 8 or octal notation using \nnn, 
where each n is an octal digit; for example: 

$result = "\377";        # this is the character 255, or EOF

You can also use hexadecimal notation to specify the ASCII value for a character. To do 
this, use the sequence \xnn, where each n is a hexadecimal digit. 



$result = "\xff";        # this is also 255

Listing 3.4 is an example of a program that uses escape sequences. This program takes a 
line of input and converts it to a variety of cases.

 

Listing 3.4. A case-conversion program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a line of input:\n");

4:  $inputline = <STDIN>;

5:  print ("uppercase: \U$inputline\E\n");

6:  print ("lowercase: \L$inputline\E\n");

7:  print ("as a sentence: \L\u$inputline\E\n");

 

$ program3_4

Enter a line of input:

tHis Is My INpUT LiNE.

uppercase: THIS IS MY INPUT LINE.

lowercase: this is my input line.

as a sentence: This is my input line.

$

 Line 3 of this program reads a line of input and stores it in the scalar variable 



$inputline 

Line 5 replaces the string $inputline with the current value of the scalar variable 
$inputline. The escape character \U tells the Perl interpreter to convert everything in 
the string into uppercase until it sees a \E character; as a result, line 4 writes the 
contents of $inputline in uppercase. 

Similarly, line 6 writes the input line in all lowercase characters by specifying the 
escape character \L in the string. 

Line 7 combines the escape characters \L and \u. The \L specifies that everything in the 
string is to be in lowercase; however, the \u special character temporarily overrides this 
and tells the Perl interpreter that the next character is to be in uppercase. When this 
character-the first character in the line-is printed, the \L escape character remains in 
force, and the rest of the line is printed in lowercase. The result is as if the input line is 
a single sentence in English. The first character is capitalized, and the remainder is in 
lowercase. 

Single-Quoted Strings

Perl also enables you to enclose strings using the ' (single quotation mark) character: 

$text = 'This is a string in single quotes';

There are two differences between double-quoted strings and single-quoted strings. The 
first difference is that scalar variables are replaced by their values in double-quoted 
strings but not in single-quoted strings. The following is an example: 

$string = "a string";

$text = "This is $string";  # becomes "This is a string"

$text = 'This is $string';  # remains 'This is $string'

The second difference is that the backslash character, \, does not have a special meaning 
in single-quoted strings. This means that the statement 

$text = 'This is a string.\n';

assigns the following string to $text: 



This is a string.\n

The \ character is special in only two instances for single-quoted strings. The first is 
when you want to include a single-quote character ' in a string. 

$text = 'This string contains \', a quote character';

The preceding line of code assigns the following string to $text: 

This string contains ', a quote character

The second instance is to escape the backslash itself. 

$text = 'This string ends with a backslash \\';

The preceding code line assigns the following string to $text: 

This string ends with a backslash \

As you can see, the double backslash makes it possible for the backslash character (\) to 
be the last character in a string.

Single-quoted strings can be spread over multiple lines. 
The statement

$text = 'This is two
lines of text

'; 

is equivalent to the statement

$text = "This is two\nlines of text\n"; 

This means that if you forget the closing ' for a string, 
the Perl interpreter is likely to get quite confused 
because it won't detect an error until after it starts 



processing the next line 

Interchangeability of Strings and Numeric Values

As you've seen, you can use a scalar variable to store a character string, an integer, or a 
floating-point value. In scalar variables, a value that was assigned as a string can be 
used as an integer whenever it makes sense to do so, and vice versa. In the following 
example: 

$string = "43";

$number = 28;

$result = $string + $number;

the value of $string is converted to an integer and added to the value of $number. The 
result of the addition, 71, is assigned to $result. 

Another instance in which strings are converted to integers is when you are reading a 
number from the standard input file. The following is some code similar to code you've 
seen before: 

$number = <STDIN>;

chop ($number);

$result = $number + 1;

This is what is happening: When $number is assigned a line of standard input, it really is 
being assigned a string. For instance, if you enter 22, $number is assigned the string 22\n 
(the \n represents the newline character). The chop function removes the \n, leaving the 
string 22, and this string is converted to the number 22 in the arithmetic expression.



If a string contains characters that are not digits, the 
string is converted to 0 when used in an integer context. 
For example: 

$result = "hello" * 5; 

# this assigns 0 to $result, since "hello" becomes 

0 

This is true even if the string is a valid hexadecimal 
integer if the quotes are removed, as in the following:

$result = "0xff" + 1; 

In cases like this, Perl does not tell you that anything 
has gone wrong, and your results might not be what you 
expect.

Also, strings containing misprints might not contain 
what you expect. For example:

$result = "12O34"; # the letter O, not the number 0 

When converting from a string to an integer, Perl starts 
at the left and continues until it sees a letter that is 
not a digit. In the preceding instance, 12O34 is converted 
to the integer 12, not 12034 

Initial Values of Scalar Variables

In Perl, all scalar variables have an initial value of the null string, "". This means that 
you do not need to define a value for a scalar variable. 

#!/usr/local/bin/perl

$result = $undefined + 2;   # $undefined is not defined

print ("The value of \$result is $result.\n");

This short program is perfectly legal Perl. The output is 

The value of $result is 2.



Because $undefined is not defined, the Perl interpreter assumes that its value is the 
null string. This null string is then converted to 0, because it is being used in an 
addition operation. The result of the addition, 2, is assigned to $result. 

TIP

Although you can use uninitialized variables in your 
Perl programs, you shouldn't. If your Perl program gets 
to be large (as many complicated programs do), it might be 
difficult to determine whether a particular variable is 
supposed to be appearing for the first time or whether it 
is a spelling mistake that should be fixed. To avoid 
ambiguity and to make life easier for yourself, initialize 
every scalar variable before using it

Summary

Perl supports three kinds of scalar values: integers, floating-point numbers, and 
character strings. 

Integers can be in three notations: standard (decimal) notation, octal notation, and 
hexadecimal notation. Octal notation is indicated by a leading 0, and hexadecimal 
notation is indicated by a leading 0x. Integers are stored as floating-point values and 
can be as long as the machine's floating-point precision (usually 16 digits or so). 

Floating-point numbers can consist of a string of digits that contain a decimal point and 
an optional exponent. The exponent's range can be anywhere from about e-309 to e+308. 
(This value might be different on some machines.) When possible, floating-point numbers 
are displayed without the exponent; failing that, they are displayed in scientific 
notation (one digit before the decimal point). 

When you use floating-point arithmetic, be alert for round-off errors. Performing 
arithmetic operations in the proper order-operating on large numbers first-might yield 
better results. 

You can enclose character strings in either double quotes (") or single quotes ('). If a 
scalar variable name appears in a character string enclosed in double quotes, the value 
of the variable is substituted for its name. Escape characters are recognized in strings 
enclosed in double quotes; these characters are indicated by a backslash (\). 

Character strings in single quotes do not support escape characters, with the exception 
of \\ and \'. Scalar variable names are not replaced by their values. 



Strings and integers are freely interchangeable in Perl whenever it is logically possible 
to do so. 

Q&A

Q: If Perl character strings are not terminated by null characters, how does 
the Perl interpreter know the length of a string? 

A: The Perl interpreter keeps track of the length of a string as well as its contents. 
In Perl, you do not need to use a null character to indicate "end of string." 

Q: Why does Perl use floating-point registers for floating-point arithmetic 
even though they cause round-off errors? 

A: Basically, it's a performance issue. It's possible to write routines that store 
floating-point numbers as strings and convert parts of these strings to numbers 
as necessary; however, you often don't need more than 16 or so digits of precision 
anyway.
Applications that need to do high-speed arithmetic calculations of great 
precision usually run on special computers designed for that purpose. 

Q: What happens if I forget to call chop when reading a number from the 
standard input file? 

A: As it happens, nothing. Perl is smart enough to ignore white space at the end of a 
line that consists only of a number. However, it's a good idea to get into the 
habit of using chop to get rid of a trailing newline at all times, because the 
trailing newline becomes significant when you start doing string comparisons. 
(You'll learn about string comparisons on Day 4, "More Operators.") 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define the following terms:
a    round-off error
b    octal notation 
c    precision

d    scientific notation 
2.  Convert the following numbers from octal notation to decimal: 

a    0377
b    06

c    01131 
3.  Convert the following numbers from hexadecimal notation to decimal notation:



a    0xff
b    0x11

c    0xbead 
4.  What does the following line print?

print ("I am bored\b\b\b\b\bhappy!\n"); 
5.  Suppose the value of $num is 21. What string is assigned to $text in each of the 

following cases?
a    $text = "This string contains $num.";
b    $text = "\\$num is my favorite number.";

c    $text = 'Assign \$num to this string.'; 
6.  Convert the following numbers to scientific notation:

a    43.71
b    0.000006e-02 
c    3

d    -1.04 

Exercises

1.  Write a program that prints every number from 0 to 1 that has a single digit after 
the decimal place (that is, 0.1, 0.2, and so on). 

2.  Write a program that reads a line of input and prints out the following: 
❍     1 if the line consists of a non-zero integer 
❍     0 if the line consists of 0 or a string 

(Hint: Remember that character strings are converted to 0 when they are 
converted to integers.) 

3.  Write a program that asks for a number and keeps trying until you enter the 
number 47. At that point, it prints Correct! and rings a bell. 

4.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl
$inputline = <STDIN>;

print ('here is the value of \$inputline\', ": $inputline"); 
5.  BUG BUSTER: What is wrong with the following code fragment? 

$num1 = 6.02e+23;
$num2 = 11.4;
$num3 = 5.171e+22;
$num4 = -2.5;

$result = $num1 + $num2 - $num3 + $num4; 
6.  BUG BUSTER: What is wrong with the following statement? 

$result = "26" + "0xce" + "1"; 

    



Chapter 4

More Operators

CONTENTS

●     Using the Arithmetic Operators 
❍     Exponentiation 
❍     The Remainder Operator 
❍     Unary Negation 

●     Using Comparison Operators 
❍     Integer-Comparison Operators 
❍     String-Comparison Operators 
❍     String Comparison Versus Integer Comparison 
❍     Comparison and Floating-Point Numbers 

●     Using Logical Operators 
❍     Evaluation Within Logical Operators 
❍     Logical Operators as Subexpressions 

●     Using Bit-Manipulation Operators 
❍     What Bits Are and How They Are Used 
❍     The Bit-Manipulation Operators 

●     Using the Assignment Operators 
❍     Assignment Operators as Subexpressions 

●     Using Autoincrement and Autodecrement 
❍     The Autoincrement Operator Pre-Increment 
❍     The Autoincrement Operator Post-Increment 
❍     The Autodecrement Operator 
❍     Using Autoincrement With Strings 

●     The String Concatenation and Repetition Operators 
❍     The String-Concatenation Operator 
❍     The String-Repetition Operator 
❍     Concatenation and Assignment 

●     Other Perl Operators 
❍     The Comma Operator 
❍     The Conditional Operator 

●     The Order of Operations 
❍     Precedence 
❍     Associativity 



❍     Forcing Precedence Using Parentheses 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

On Day 2, "Basic Operators and Control Flow," you learned about the following 
operators: 

●     The arithmetic operators +, -, *, and / 
●     The comparison operator == 
●     The assignment operator = 

Today, you learn about the rest of the operators that Perl provides, as well as about 
operator associativity and precedence. The operators are 

●     The arithmetic operators **, %, and - (unary negation) 
●     The other integer- and string-comparison operators 
●     The logical operators 
●     The bit-manipulation operators 
●     The assignment operators 
●     Autoincrement and autodecrement 
●     Concatenating and repeating strings 
●     The comma and conditional operators 

Using the Arithmetic Operators

The arithmetic operators that you have seen so far-the +, -, *, and / operators-work the 
way you expect them to: They perform the operations of addition, subtraction, 
multiplication, and division. 

Perl also supports three other arithmetic operations: 

●     Exponentiation 
●     The modulo or remainder operation 
●     Unary negation 

Although these operators aren't as intuitively obvious as the ones you've already seen, 
they are quite easy to use. 

Exponentiation



The exponentiation operator, **, provides a convenient way to multiply a number by itself 
repeatedly. For example, here is a simple Perl statement that uses the exponentiation 
operator: 

$x = 2 ** 4;

The expression 2 ** 4 means "take four copies of two and multiply them." This statement 
assigns 16 to the scalar variable $x. 

Note that the following statements are equivalent, but the first statement is much more 
concise: 

$x = 2 ** 7;

$x = 2 * 2 * 2 * 2 * 2 * 2 * 2;

When an exponentiation operator is employed, the base value (the value to the left of 
the **) is the number to be repeatedly multiplied. The number to the right, called the 
exponent, is the number of times the multiplication is to be performed. Here are some other 
simple examples of the exponentiation operator: 

$x = 9 ** 2;        # 9 squared, or 81

$x = 2 ** 3;        # 2 * 2 * 2, or 8

$x = 43 ** 1;       # this is just 43

The ** operator also works on the values stored in variables: 

$x = $y ** 2;

Here, the value stored in $y is multiplied by itself, and the result is stored in $x. $y is not 
changed by this operation. 

$x = 2 ** $y;

In this case, the value stored in $y becomes the exponent, and $x is assigned 2 multiplied 
by itself $y times. 



You can use the exponent operator with non-integer or negative exponents: 

2 ** -5             # this is the fraction 1/32

5 ** 2.5            # this is 25 * the square root of 5

Listing 4.1 shows an example of a simple program that uses the exponential operator. It 
prompts for a number, $exponent, and prints out 2 ** $exponent. 

 

Listing 4.1. A program that prints out the powers of two.

1:  #!/usr/local/bin/perl

2:  

3:  # this program asks for a number, n, and prints 2 to the

4:  # exponent n

5:  

6:  print ("Enter the exponent to use:\n");

7:  $exponent = <STDIN>;

8:  chop ($exponent);

9:  print ("Two to the power $exponent is ",

10:        2 ** $exponent, "\n");

 

$ program4_1

Enter the exponent to use:

16

Two to the power 16 is 65536



$

 The program shown in Listing 4.1 is useful if you have to use, or be aware of, 
numbers such as 4,294,967,295 (the largest number that can be stored in a 32-bit unsigned 
integer) and 2,147,483,647 (the largest number that can be stored in a 32-bit signed 
integer). The former is equivalent to 2 ** 32 - 1, and the latter is equivalent to 2 ** 
31 - 1

DON'T use the exponent operator with a negative base 
and a non-integer exponent: 

(-5) ** 2.5 # error 

The result of this expression is a complex (non-real) 
number (just as, for instance, the square root of -2 is a 
complex number). Perl does not understand complex 
numbers.

DON'T produce a result that is larger than the largest 
floating-point number your machine can understand: 

10 ** 999999 # error 

In this example, the exponent is too large to be stored on 
most machines.

The Remainder Operator

The remainder operator retrieves the remainder resulting from the division of one integer 
by another. Consider the following simple example: 

$x = 25 % 4;

In this case, 25 divided by 4 yields 6, with a remainder of 1. The remainder, 1, is assigned to 
$x. 

The % operator does not work on values that are not integers. Non-integers are 
converted to integers, as follows: 



$x = 24.77 % 4.21;  # same as 25 % 4

Because division by 0 is impossible, you can't put a 0 to the right of a % operator. 

$x = 25 % 0;        # error: can't divide by 0

$x = 25 % 0.1;      # error: 0.1 is converted to 0

Unary Negation

The unary negation operator is a - character in front of a single value. (This distinguishes it 
from the subtraction operator, which appears between two values.) It is equivalent to 
multiplying the value by -1, as illustrated by this example: 

- 5;                # identical to the integer -5

- $y;               # equivalent to $y * -1

Using Comparison Operators

On Day 2, "Basic Operators and Control Flow," you learned about the equality 
comparison operator (==), which compares two values and tests whether they are equal. 

$x = $a == $b;

Recall that the value of $x depends on the values stored in $a and $b: 

●     If $a equals $b, $a == $b is true, and $x is assigned a nonzero value. 
●     If $a is not equal to $b, $a == $b is false, and $x is assigned 0. 

The == operator is an example of a comparison operator. Comparison operators are most 
commonly used in control statements such as the if statement, as follows: 

if ($a == $b) {

        print("$a is equal to $b\n");

}



In Perl, the comparison operators are divided into two classes: 

●     Comparison operators that work with numbers 
●     Comparison operators that work with strings 

Integer-Comparison Operators

Table 4.1 defines the integer-comparison operators available in Perl.

Table 4.1. Integer-comparison operators.

Operator Description 

< Less than

> Greater than

== Equal to

<= Less than or equal to 

>= Greater than or equal to 

!= Not equal to

<=> Comparison returning 1, 0, or -
1 

Here are simple examples of each of the first six operators in Table 4.1: 

$x < 10             # true if the value of $x is less than 10

$x > 10             # true if $x is greater than 10

$x == 10            # true if $x is equal to 10

$x <= 10            # true if $x is less than or equal to 10

$x >= 10            # true if $x is greater than or equal to 10

$x != 10            # true if $x is not equal to 10

Each of these operators yields one of two values: 

●     True, or nonzero 
●     False, or zero 

The <=> operator is a special case. Unlike the other integer comparison operators, <=> 
returns one of three values: 



●     0, if the two values being compared are equal 
●     1, if the first value is greater 
●     -1, if the second value is greater 

For example, consider the following statement: 

$y = $x <=> 10;

These are the possible results: 

●     If $x is greater than 10, the first value in the comparison is greater, and $y is 
assigned 1. 

●     If $x is less than 10, the second value in the comparison is greater, and $y is 
assigned -1. 

●     If $x is equal to 10, $y is assigned 0. 

Integer Comparisons and Readability

In any given statement, it's best to use the comparison that can be most easily read. For 
example, consider the following: 

if (3.2 < $x) {

        # conditionally executed stuff goes here

}

Although the expression 3.2 < $x< is perfectly valid, it isn't easy to read because 
variables usually appear first in comparisons. Instead, it would be better to use 

if ($x >= 3.2) {

        ...

because this is easier to understand. I'm not sure exactly why this is true; I think it's 
related to the way the English language is spoken. (Normally, we say, "If I had five 
dollars, I'd buy some milk," instead of, "If five dollars had I, I'd buy some milk," even 
though both are correct.) 

String-Comparison Operators



For every numeric-comparison operator, Perl defines an equivalent string-comparison 
operator. Table 4.2 displays each string-comparison operator, the comparison it performs, 
and the equivalent numeric-comparison operator.

Table 4.2. String- and numeric-comparison operators.

String 
operator

Comparison operation Equivalent numeric 
operator

lt Less than < 

gt Greater than > 

eq Equal to == 

le Less than or equal to <= 

ge Greater than or equal to >= 

ne Not equal to != 

cmp Compare, returning 1, 0, 
or -1

<=> 

Perl compares strings by determining their places in an alphabetical order. For example, 
the string aaa is less than the string bbb, because aaa appears before bbb when they are 
sorted alphabetically. 

Here are some examples of string-comparison operators in action: 

$result = "aaa" lt "bbb";    # result is true

$result = "aaa" gt "bbb";    # result is false

$result = "aaa" eq "bbb";    # result is false

$result = "aaa" le "aaa";    # result is true

$result = "aaa" ge "bbb";    # result is false

$result = "aaa" ne "aaa";    # result is false

$result = "aaa" cmp "bbb";   # result is -1

If you are familiar with the C programming language, you might have noticed that the 
behavior of the cmp operator is identical to that of the C function strcmp(). 

String Comparison Versus Integer Comparison

You might be thinking: If strings and integers are equivalent in Perl, why do we need 



two kinds of comparison operators? 

To answer this, consider the strings 123 and 45. The result when these two strings are 
compared depends on whether a string or integer comparison is being performed. 

$result = "123" < "45";

$result = "123" lt "45";

In the first statement, the strings 123 and 45 are converted to integers, and 123 is 
compared to 45. The result is false and $result is assigned 0, because 123 is not less than 
45. 

In the second statement, 123 is alphabetically compared to 45. Because 123 is 
alphabetically less than 45, the result in this case is true, and $result is assigned a 
nonzero value. 

Because these results are different, you must ensure that you are using the proper 
comparison operator every time. If you don't, your program can contain errors that are 
not easy to spot. For instance, consider the following: 

$var1 = "string 1";

$var2 = "string 2";

$result = $var1 == $var2;   # this statement is bad

Because == is a numeric-comparison operator, the values string 1 and string 2 are 
converted to integers before the comparison is performed. Because both strings are non-
numeric, they are both converted to the integer 0, and the following comparison becomes 
true: 

$var1 == $var2

This is probably not what you want. 

Comparison and Floating-Point Numbers

There is one thing to keep in mind when you use comparison operators: Floating-point 
numbers don't always behave properly in comparisons. 

Take a look at Listing 4.2. 



 

Listing 4.2. A program that contains a floating-point comparison. 

1:  #!/usr/local/bin/perl

2:  

3:  $value1 = 14.3;

4:  $value2 = 100 + 14.3 - 100;

5:  if ($value1 == $value2) {

6:          print("value 1 equals value 2\n");

7:  } else {

8:          print("value 1 does not equal value 2\n");

9:  }

 

$ program4_2

value 1 does not equal value 2

$

 At first glance, you might think that $value1 and $value2 are identical. 
However, when you run this program, you get the following: 

value 1 does not equal value 2

What is wrong? To find out, print out the values of $value1 and $value2 before doing the 
comparison. 



#!/usr/local/bin/perl

$value1 = 14.3;

$value2 = 100 + 14.3 - 100;

print("value 1 is $value1, value2 is $value2\n");

if ($value1 == $value2) {

        print("value 1 equals value 2\n");

} else {

        print("value 1 does not equal value 2\n");

}

When you run this program, you get the following output: 

value 1 is 14.300000000000001, value 2 is 14.299999999999997

value 1 does not equal value 2

Well, Perl isn't lying: $value1 and $value2 are different. What happened? 

To understand what's going on, consider what happens when you take an ordinary 
calculator and tell it to divide 8 by 3. The actual answer is 

2.6666666...

with the number of 6s being infinite. Because your calculator can't display an infinite 
number of 6s, what it displays is something like the following: 

2.6666666667

This is as close to the actual number as your calculator can get. The difference between 
the actual number and the number displayed is an example of a round-off error. 

Round-off errors often occur when Perl (or almost any other programming language) 
stores a floating-point number or adds a number to a floating-point number. The 
statement 

$value1 = 14.3;



actually assigns 

14.300000000000001

to $value1, because 14.3 cannot be exactly represented in the machine's floating-point 
storage. When 100 is added to this number and subtracted again, the result is 

14.299999999999997

Note that both numbers are very close to 14.3 but aren't exactly 14.3 due to round-off 
errors. What's worse, each number is affected by a different set of round-off errors, so 
the two numbers are not identical. 

The moral of the story? Be very careful when you use floating-point numbers in 
comparisons, because round-off errors might affect your results. 

Using Logical Operators

The comparison operators you've seen so far are sufficient if you need to test for only 
one condition before executing a particular code segment, as in this example: 

if ($value == 26) {

        # the code to execute if the condition is true

}

Suppose, however, that a particular section of code is to be executed only when a 
variety of conditions are true. You can use a sequence of if statements to test for the 
conditions, as follows: 

if ($value1 == 26) {

        if ($value2 > 0) {

                if ($string1 eq "ready") {

                        print("all three conditions are true!\n");

                }

        }



}

This is tiresome to write and not particularly easy to read. 

Fortunately, Perl provides an easier way to deal with multiple conditions: the logical 
operators. The following logical operators are defined: 

$a || $b            # logical or:  true if either is nonzero

$a && $b            # logical and:  true only if both are nonzero

! $a                # logical not:  true if $a is zero

Perl 5 also defines these logical operators: 

$a or $b            # another form of logical or

$a and $b           # another form of logical and

not $a              # another form of logical not

$a xor $b           # logical xor: true if either $a or $b is nonzero, 
but not both

The or, and, and not operators listed are identical to ||, &&, and !, except that their 
precedence is lower. (Operator precedence determines the order in which operators are 
evaluated, and is discussed later today.) 

In each case, the result of the operation performed by a logical operator is nonzero if 
true and 0 if false. 

$a = 5;

$b = 0;

$a || $b;           # true: $a is not zero

$b || $a;           # also true

$a && $b;           # false: $b is zero

! $a;               # false: $a is nonzero, so ! $a is zero

! $b;               # true: $b is zero, so ! $b is nonzero



These logical operators enable you to test for multiple conditions more conveniently. 
Instead of writing, for example, this code: 

if ($value1 == 26) {

        if ($value2 > 0) {

                if ($string1 eq "ready") {

                        print("all three conditions are true!\n");

                }

        }

}

you now can write this code instead: 

if ($value == 26 && $value2 > 0 && $string1 eq "ready") {

        print("all three conditions are true!\n");

}

In each case, the result is the same: the print operation is performed only when $value is 
26, $value2 is greater than 0, and $string1 is "ready." 

Evaluation Within Logical Operators

When Perl sees a logical AND operator or a logical OR operator, the expression on the 
left side of the operator is always evaluated first. For example, consider the following: 

$a = 0;

$b = 106;

$result = $a && $b;

When Perl is evaluating the expression $a && $b, it first checks whether $a is 0. If $a is 0, 
$a && $b must be false regardless of the value of $b, so Perl doesn't bother checking the 
value of $b. (This is called short-circuit evaluation.) 

Similarly, in the following example, Perl doesn't bother checking $b, because $a is 
nonzero and therefore $a || $b must be true: 



$a = 43;

$b = 11;

$result = $a || $b;

You can take advantage of the order of evaluation of expressions in || or && to 
safeguard your code. 

$x == 0 || $y / $x > 5

Here is how the preceding statement protects you from division-by-zero errors: 

●     If $x is not 0, $x == 0 is false, so Perl evaluates $y / $x > 5. This cannot produce a 
division-by-zero error, because $x is guaranteed to be some value other than 0. 

●     If $x is 0, $x == 0 is true. This means that
$x == 0 || $y / $x > 5

is true, so Perl doesn't bother evaluating the expression to the right of the ||. As 
a result, the expression
$y / $x > 5

is not evaluated when $x is 0, and the division-by-zero error is avoided. 

Logical Operators as Subexpressions

Expressions that contain logical operators can be contained in larger expressions. The 
following is an example: 

$myval = $a || $b || $c;

Here, Perl evaluates the expression $a || $b || $c and assigns its value to $myval. 

To understand the behavior of this statement, recall that the || operator evaluates its 
subexpressions in the order given, and evaluates a subexpression only if the previous 
subexpression is zero. This means that $b is evaluated only if $a is zero. 

When the logical OR operator is used in a larger expression, its value is the last 
subexpression actually evaluated, which is the first subexpression of the logical OR 
operator that is nonzero. This means that 

$myval = $a || $b || $c;



is equivalent to 

if ($a != 0) {

        $myvalue = $a;

} elsif ($b != 0) {

        $myvalue = $b;

} else {

        $myvalue = $c;

}

The logical AND operator works in the same way, but isn't as useful. The statement 

$myval = $a && $b && $c;

is equivalent to 

if ($a == 0) {

        $myvalue = $a;

} elsif ($b == 0) {

        $myvalue = $b;

} else {

        $myvalue = $c;

}

This means that $myval is set to either 0 or the value of $c. 

Using Bit-Manipulation Operators

Perl enables you to manipulate the binary digits (or bits) of an integer. To understand 
how Perl does this, first look at what a bit is and how computers store integers. Once you 
understand how bits work, you can easily figure out how the bit-manipulation operators 
work. (If you are familiar with binary notation and the computer representation of an 
integer, feel free to skip the following section.) 



What Bits Are and How They Are Used

On Day 3, "Understanding Scalar Values," you learned that Perl understands three 
different notations for integers: 

●     Standard notation, or base 10 
●     Octal notation, or base 8 
●     Hexadecimal notation, or base 16 

However, when a computer stores an integer, it uses none of these notations; instead, it 
uses base 2, or binary notation. 

In binary notation, every number is represented as a series of 0s and 1s. For instance, the 
number 124 is represented as 

01111100

To understand how to get from base-10 notation to binary notation, recall what the 
number 124 represents. When we write "124," what we really mean is the following: 

●     4 multiplied by 1, plus 
●     2 multiplied by 10, plus 
●     1 multiplied by 100 

In grade school, your teacher probably said these digits represented the "ones place," the 
"tens place," and the "hundreds place." Each "place" is ten times larger than the place to 
its right. This means that you also can think of 124 as follows: 

●     4 multiplied by 1 (or 10 to the exponent 0), plus 
●     2 multiplied by 10 to the exponent 1, plus 
●     1 multiplied by 10 to the exponent 2 

In binary notation, you can use this same method, but replace the 10s with 2s. Here's how 
to use this method to figure out that the binary number 01111100 is equivalent to 124 in 
standard notation. Starting from the right, you have: 

●     0 multiplied by 2 to the exponent 0, which is 0 
●     0 multiplied by 2 to the exponent 1, which is 0 
●     1 multiplied by 2 to the exponent 2, which is 4 
●     1 multiplied by 2 to the exponent 3, which is 8 
●     1 multiplied by 2 to the exponent 4, which is 16 
●     1 multiplied by 2 to the exponent 5, which is 32 
●     1 multiplied by 2 to the exponent 6, which is 64 



●     0 multiplied by 2 to the exponent 7, which is 0 

Adding 2, 8, 16, 32, and 64 gives you 124. 

Each of the 0s and 1s in the binary number 01111100 is called a bit (which is short for 
binary digit). Each bit can have only two possible values: 0 or 1. 

In computers, integers are stored as a sequence of bits. This sequence of bits is normally 8, 
16, or 32 bits long, depending on the size and configuration of your computer. In the 
examples in today's lesson, 8-bit integers are assumed; to convert an 8-bit binary number 
to a 16-bit binary number, just add eight zeros to the left. For example, the following 
numbers are equivalent: 

01111100            # 124 as an 8-bit integer

0000000001111100    # 124 as a 16-bit integer

The examples in today's lesson use 8-bit integers. The Perl bitwise operators will work on 
integers of any size. 

The Bit-Manipulation Operators

The following bit-manipulation operators are supported in Perl: 

●     The & (bitwise AND) operator 
●     The | (bitwise OR) operator 
●     The ^ (bitwise XOR or "exclusive or") operator 
●     The ~ (bitwise NOT) operator 
●     The << (left shift) and >> (right shift) operators 

The Bitwise AND Operator

In Perl, the & operator represents the bitwise AND operation. This operation works as 
follows: 

●     The value to the left side of the & (also called the left operand of the & operation) 
is converted to an integer, if necessary. 

●     The value to the right side of the & (the right operand) also is converted to an 
integer. 

●     Each bit of the left operand is compared to the corresponding bit of the right 
operand. 

●     If a pair of corresponding bits both have the value 1, the corresponding bit of the 
result is set to 1. Otherwise, the corresponding bit of the result is set to 0. 



This might sound complicated, but when you take a look at an example, you'll see that 
it's pretty easy to figure out. For instance, consider the following: 

$result = 124.3 & 99;

First, the left operand, 124.3, is converted to an integer, becoming 124. (The right 
operand, 99, does not need to be converted.) Next, take a look at the binary 
representations of 124 and 99: 

01111100            # this is 124 in binary

01100011            # this is 99 in binary

When you examine each pair of bits in turn, you can see that only the second and third 
pairs (from the left) are both 1. Thus, the & operation yields the following binary result: 

01100000

This is 96 in standard notation. As a consequence, the statement 

$result = 124.3 & 99;

assigns 96 to $result. 

DO use the & operator with strings, provided the strings 
can be converted to numbers, as follows: 

$result = "124.3" & "99"; 

Remember: Strings and integers are interchangeable in 
Perl.

DON'T confuse the & operator with the && operator. The 
&& operator performs a logical AND operation, not a 
bitwise AND operation. For example, the statement 

$result = 124.3 && 99; 



assigns a nonzero value to $result (because 124.3 and 99 
are both nonzero). This nonzero value is not likely to be 
the result you want. 

DON'T use the & operator with negative integers, because 
Perl will convert them to unsigned integers, and you 
won't get the result you want. 

The Bitwise OR Operator

The bitwise OR operator, |, also compares two integers one bit at a time. However, in the 
bitwise OR operation, a result bit is 1 if either of the corresponding bits in the operands is 
1. 

To see how this works, look at another example: 

$result = 124.3 | 99;

Here's how this operation is performed: 

●     As before, the two operands are converted to integers if necessary. The operands 
become 124 and 99; in binary representation, these are, as before, 

01111100

01100011

●     Each bit of the left operand is compared with the corresponding bit in the right 
operand. If either of the corresponding bits is 1, the corresponding result bit is 1. 

In this example, every bit becomes 1 except the first one, because at least one of each of 
the other pairs is a 1. Therefore, the result is 

01111111

which translates to 127. This means that the following statement assigns 127 to $result: 

$result = 124.3 | 99;



DO make sure you are using the proper bitwise operator. 
It's easy to slip and assume you want bitwise OR when you 
really want bitwise AND. (Trust me.) 

DON'T confuse the | operator (bitwise OR) with the || 
operator (logical OR). 

The Bitwise XOR Operator

The bitwise XOR ("exclusive or") operator, ^, is similar to the bitwise OR operator, but it's 
a little more demanding. In the bitwise OR operation, a result bit is 1 if either of the 
corresponding bits in the operands is 1. In the bitwise XOR operation, a result bit is 1 if 
exactly one of the corresponding bits in the operands is 1. 

Here is an example of the bitwise XOR operation: 

$result = 124.3 ^ 99;

This works as follows: 

●     As before, 124.3 is converted to 124, and the binary representations of the two 
operands are as follows: 

01111100            # this is 124

01100011            # this is 99

●     Each bit of the left operand is compared with the corresponding bit of the right 
operand. The corresponding result bit is set to 1 if exactly one of the bits in the 
operands is 1. 

In this case, the result is 

00011111

which is 31. To work through how you get this result, consider the following: 



●     The first bit of the left operand and the first bit of the right operand are both 0. 
This means the first bit of the result is 0. 

●     The second bit of the left operand and the second bit of the right operand both are 
1. Therefore, the second bit of the result is 0, not 1. 

●     The same applies for the third bits: Both are 1, so the result bit is 0. 
●     The fourth bit of the left operand is 1, and the fourth bit of the right operand is 0. 

Here, exactly one of the bits is 1, so the result bit becomes 1. 
●     Same for the fifth and sixth pairs: The first bit is 1 and the second is 0, so the result 

is 1. 
●     The seventh bit of the left operand is 0, and the seventh bit of the right operand is 

1. Again, exactly one of the bits is 1, and the result bit is also 1. 
●     Same for the eighth pair: The first bit is 0, the second is 1, so the result is 1. 

From this, you can determine that the following statement assigns 31 to $result: 

$result = 124.3 ^ 99;

The Bitwise NOT Operator

Unlike the other bitwise operators you've seen so far, the bitwise NOT operator, ~, is a 
unary operator, meaning it works on only one operand. 

The way it works is straightforward, as follows: 

●     The operand is converted to an integer, if necessary. 
●     Each bit of the operand is examined. If a bit is 0, the corresponding result bit is set 

to 1, and vice versa. 

For example, consider the following: 

$result = ~99;

The binary representation of 99 is 

01100011

Applying the bitwise NOT operation to this number produces 

10011100



This number, in standard notation, is 156. Therefore, the following statement assigns 156 
to $result: 

$result = ~99;

Note that the number of bits used to store an integer affects the results produced by the 
~ operator. For example, if integers are stored in 16 bits on your computer, the number 99 
is represented as 

0000000001100011

This means that applying ~ to this number yields 

1111111110011100

which is 65436 in standard notation. As a consequence, the statement 

$result = ~99;

assigns 65436, not 156, to $result. (On a computer with 32-bit integers, the value assigned 
is 4294967196.) 

The Shift Operators

Perl enables you to shift the bits of an integer using the << (shift left) and >> (shift 
right) operators. For example, in the statement 

$result = $x >> 1;

every bit of the value stored in $x is shifted one place to the right, and the result is 
assigned to $result ($x itself is not changed). 

To see how this works, consider the following example: 

$result = 99 >> 1;

As you saw earlier, the binary representation of 99 is 



01100011

Shifting every bit right one place yields 

00110001

Note that a 0 is added at the far left, and the bit at the far right disappears. 

Because 00110001 in binary notation is the same as 49 in standard notation, the 
following statement assigns 49 to $result: 

$result = 99 >> 1;

The <<, or shift-left, operator works in the same way: 

$result = 99 << 1;

The shift-left operator works as follows: 

01100011            # the binary representation of 99

11000110            # after shifting left 1 bit

The result of the shift is 198, which is assigned to $result. 



DO remember that when you use the >> operator, the bits 
on the right are lost. For example: 

$result1 = 17 >> 1;

$result2 = 16 >> 1; 

In this case, $result1 and $result2 are the same value, 8. 
This is because the rightmost bit is shifted out in both 
cases. 

DON'T shift left too far, or you might not get the result 
you want. For example, if you are using 16-bit integers, 
the statement 

$result = 35000 << 1; 

does not assign 70000 to $result as you might think it 
would because the largest value that can be stored in a 
16-bit integer is 65536. 

Shifting and Powers of 2

In the following statement, the variable $result is assigned the value 49: 

$result = 99 / 2;

Take a look at the binary representations of 99 and 49: 

01100011            # 99 in binary form

00110001            # 49 in binary form

As you can see, dividing by 2 is identical to shifting right one bit-in each case, every bit is 
moved one place to the right. Similarly, shifting right two bits is equivalent to dividing 
by 4: 

$result = 99 / 4;   # $result is assigned 24

01100011            # 99 in binary

00011000            # 24 in binary



Multiplying by 4 is similar to shifting left two bits: 

$result = 17 * 4;   # $result is assigned 68

00010001            # 17 in binary

01000100            # 68 in binary

The general rules are as follows: 

●     Shifting left n bits, where n is some number greater than 0, is equivalent to 
multiplying by 2**n. 

●     Shifting right n bits, where n is some number greater than 0, is equivalent to 
dividing by 2**n. 

In the early days of programming, many programmers used shift operators in place of 
multiplication and division wherever possible, because the shift operations were usually 
more efficient. (In fact, some compilers would optimize their code by converting 
multiplication and division to shifts.) Today, it's usually best to use the shift operators 
when you are manipulating bits, and to use the multiplication and division operators 
when you're actually doing arithmetic. This will make your programs easier to 
understand. 

Using the Assignment Operators

As you saw on Day 2, the assignment operator = associates, or assigns, a value to a 
variable. For example, the statement 

$result = 42;

assigns the value 42 to the variable $result. 

The = operator can appear more than once in a single statement. For example, in the 
statement 

$value1 = $value2 = "a string";

the character string a string is assigned to both $value1 and $value2. 

Perl also supports other assignment operators, each of which combines an assignment 



with another operation. For example, suppose that you want to add a value to a scalar 
variable and assign the result to the following variable: 

$var = $var + 1;

Another way to write this is with the += assignment operator: 

$var += 1;

This statement adds the value 1 to the existing value of $var. 

An assignment operator exists for just about every bitwise operator and arithmetic 
operator that Perl supports. Table 4.3 lists the assignment operators supported in Perl.

Table 4.3. The assignment operators.

Operator Operations performed 

= Assignment only

+= Addition and assignment 

-= Subtraction and assignment 

*= Multiplication and 
assignment 

/= Division and assignment 

%= Remainder and assignment 

**= Exponentiation and 
assignment 

&= Bitwise AND and assignment 

|= Bitwise OR and assignment 

^= Bitwise XOR and assignment 

Table 4.4 shows examples of the assignment operators, along with equivalent statements 
that use operators you've seen earlier. 

Table 4.4. Examples of assignment operators.

Statement 
using

Equivalent Perl 
assignment operator 
statement 



$a = 1; none (basic assignment)

$a -= 1; $a = $a - 1; 

$a *= 2; $a = $a * 2; 

$a /= 2; $a = $a / 2; 

$a %= 2; $a = $a % 2; 

$a **= 2; $a = $a ** 2; 

$a &= 2; $a = $a & 2; 

$a |= 2; $a = $a | 2; 

$a ^= 2; $a = $a ^ 2; 

Assignment Operators as Subexpressions

Any expression that contains an assignment operator can appear on the left side of 
another assignment operator. The following is an example: 

($a = $b) += 3;

In cases such as this, the assignment enclosed in parentheses is performed first. This 
assignment is then treated as a separate subexpression whose value is the variable to 
which it is being assigned. For example, $a = $b has the value $a. 

This means that the statement shown previously is equivalent to the following two 
statements: 

$a = $b;

$a += 3;

TIP

Don't use assignments in this way unless you absolutely 
have to. At first glance, the statement
($a = $b) += 3; 

appears to add 3 to $b as well as to $a. 

Using Autoincrement and Autodecrement



So far, you've seen two ways to add 1 to a scalar variable: 

$a = $a + 1;

$a += 1;

The first method uses the standard assignment operator = and the addition operator +, 
and the second method uses the addition assignment operator +=. 

Perl also supports a third method of adding 1 to a scalar variable: the autoincrement 
operator, or ++. Here are some examples of the ++ operator in action: 

$a++;

++$a;

$result = $a++;

$result2 = ++$a;

In each case, the ++ operator tells Perl to add 1 to the value stored in $a. 

In some of the examples, the ++ is in front of the variable it is affecting, whereas in 
others the ++ follows the variable. If the ++ is first, the operation is a pre-increment 
operation; if the ++ follows, the operation is a post-increment operation. 

The Autoincrement Operator Pre-Increment

To understand how the pre-increment operation works, first recall that you can use a 
single statement to assign a value to more than one variable, as follows: 

$var1 = 43;

$var2 = $var1 += 1;

Here, the original value stored in $var1, 43, has 1 added to it. The result, 44, becomes the 
new value of $var1. This new value of 44 is then assigned to $var2. 

The pre-increment operation works in the same way: 

$var1 = 43;



$var2 = ++$var1;

The following code fragment tells Perl to add 1 to $var1 before doing anything else: 

++$var1

As a result, $var1 becomes 44 before the value of $var1 is assigned to $var2. Therefore, 
$var2 is assigned 44. 

The ++ operator is most frequently used in while statements. Listing 4.3 provides an 
example of a simple program that uses the ++ operator in a while statement. 

 

Listing 4.3. A program that uses the pre-increment operation. 

1:  #!/usr/local/bin/perl

2:  $value = 0;

3:  while (++$value <= 5) {

4:          print("value is now $value\n");

5:  }

6:  print("all done\n");

 

$ program4_3

value is now 1

value is now 2

value is now 3

value is now 4



value is now 5

all done

$

 Note that the pre-increment operation enables you to add 1 to $value and test 
it all at the same time. This means that you no longer have to remember to add the 
following: 

$value = $value + 1;

at the bottom of the while statement, which means that you are less likely to write a 
while statement that goes on forever. 

Now see what happens when you change 

while (++$value <= 5) {

to this: 

while (++$value <= 0) {

and then run the program again. This time, you get the following: 

all done

Because the ++ operator is in front of $value, 1 is added to $value before testing. This 
means that $value is not less than or equal to 0 when the while statement is executed 
for the first time; as a result, the code inside the while statement is never executed. 

The Autoincrement Operator Post-Increment

The post-increment operator also adds 1 to the variable with which it is associated. 
However, its behavior is slightly different: 

$var1 = 43;

$var2 = $var1++;



When the ++ operator appears after the variable, the ++ operator is performed after every- 
thing else is finished. This means that the original value of $var1, 43, is assigned to $var2. 
After this assignment is completed, 1 is added to $var1 and the new value of $var1 
becomes 44. 

To see how this works in while statements, examine Listing 4.4. Although it is similar to 
Listing 4.3, it performs a post-increment operation instead of a pre-increment operation. 

 

Listing 4.4. A program that uses the post-increment operation. 

1:  #!/usr/local/bin/perl

2:  $value = 0;

3:  while ($value++ <= 5) {

4:          print("value is now $value\n");

5:  }

6:  print("all done\n");

 

$ program4_4

value is now 1

value is now 2

value is now 3

value is now 4

value is now 5

value is now 6

all done



$

 You are probably wondering why the output of Listing 4.4 contained the 
following line: 

value is now 6

To figure out what happened, examine the value stored in $value each time the condition 
in the while statement is tested. Table 4.5 lists the contents of $value when the 
condition is tested, the result of the test, and $value immediately after the condition is 
tested (after the ++ operator is applied).

Table 4.5. Condition evaluation.

$value at time of 
test

Result $value after 
test 

0 true (0 <= 5) 1

1 true (1 <= 5) 2

2 true (2 <= 5) 3

3 true (3 <= 5) 4

4 true (4 <= 5) 5

5 true (5 <= 5) 6

6 false (6 <= 
5) 

7 (exit while) 

As you know, when the condition at the top of a while statement is true, the code inside 
the statement is executed, which in this case is 

print("value is now $value\n");

This is why the line 

value is now 6

appears-$value is 5 at the time the condition is tested, so the result is true. 

To fix this problem, change the while condition to the following and run the program 



again: 

while ($value < 5) {

This is the output you get from the changed program: 

value is now 1

value is now 2

value is now 3

value is now 4

value is now 5

all done

Now, when $value is 5, the statement 

while ($value++ < 5)

is false, and the code inside the while is not executed. 

The Autodecrement Operator

As you've seen, the ++ operator adds 1 to the value of the variable it is associated with 
and can appear either before or after the variable. The -- operator, or autodecrement 
operator, works in the same way, but it subtracts 1 from the value of the variable it is 
associated with, as follows: 

$a--;

--$a;

$result = $a--;

$result2 = --$a;

When the -- operator is in front of the variable, the operation is a pre-decrement 
operation, which means that 1 is subtracted from the variable before anything else 
happens. 



$var1 = 56;

$var2 = --$var1;

This subtracts 1 from $var1 and assigns the result, 55, back to $var1. The value 55 is then 
assigned to $var2. 

When the -- operator follows the variable, the operation is a post-decrement operation, 
which means that 1 is subtracted from the variable after everything else happens. 

$var1 = 56;

$var2 = $var1--;

This assigns 56 to $var2 and then subtracts 1 from $var1, which means that $var1 now has 
the value 55.

DO be careful when you use the autoincrement and 
autodecrement operators. As you've seen, it's easy to get 
confused and tell your program to loop one too many 
times or one too few. 

I tend not to use these operators in while statements 
except in very simple cases, because they can get 
confusing. A better solution is to use the for statement, 
which you'll learn about on Day 8, "More Control 
Structures." 

DON'T use ++ or -- on both sides of a single variable, as 
in this statement, because it isn't allowed in Perl: 

++$var1--; 

DON'T use autoincrement or autodecrement on a 
variable and then use the variable again in the same 
statement. 

$var1 = 10;

$var2 = $var1 + ++$var1; 



Is $var2 now 20, 21, or 22? It's impossible to tell. Even 
different versions of Perl can produce different results! 

Using Autoincrement With Strings

If a string value contains only alphabetic characters, the ++ operator can be used to 
"add one" to a string. In other words, the operator replaces the last character of the 
string with the next letter of the alphabet. The following is an example: 

$stringvar = "abc";

$stringvar++;

Here, $stringvar now contains abd. 

Note that this works only with ++, not --: 

$stringvar = "abc";

$stringvar--;

The -- operator treats abc as a number, which means that it is equivalent to 0. The 
resulting value of $stringvar is, therefore, -1. 

Auto-incrementing strings using ++ also works on capital letters. 

$stringvar = "aBC";

$stringvar++;

The value stored in $stringvar is now aBD. 

If the last letter of the string is z or Z, ++ converts this letter to a or A, and then "adds 
one" to the second-to-last character of the string: 

$stringvar = "abz";

$stringvar++;          # $stringvar now contains "aca"

$stringvar = "AGZZZ";



$stringvar++;          # $stringvar now contains "AHAAA" 

This also works if the string contains one or more trailing digits. 

$stringvar = "ab4";

$stringvar++;          # $stringvar now contains "ab5"

As in numeric operations, incrementing a string that ends in 9 carries over to the next 
character of the string. This works regardless of whether the next character is a digit 
or alphabetic character. 

$stringvar = "bc999";

$stringvar++;          # $stringvar now contains "bd000" 

Incrementing string values using ++ works only if the 
variable has not already been converted to a number. 

$stringvar = "abc";
$stringvar += 5;

$stringvar++; 

Here, the value of $stringvar is 6 because abc is 
converted to 0 by the += operator in the second 
statement. 

Also note that this does not work if the string value 
contains any character other than a letter or digit, or if 
a digit is located in the middle of the string.

$stringvar = "ab*c";
$stringvar++;
$stringvar = "ab5c";

$stringvar++; 

In both of these cases, the value stored in $stringvar is 
converted to its numeric equivalent, 0, before the ++ 
operation is performed. This means that $stringvar is 



assigned the value 1. 

The String Concatenation and Repetition Operators

So far, the Perl operators you've seen operate only on integers. (To be exact, they can 
also operate on strings, but they convert the strings to integers first.) Perl also supports 
the following special operators that manipulate strings: 

●     The . operator, which concatenates (joins together) two strings 
●     The x operator, which repeats a string 
●     The .= operator, which combines concatenation and assignment 

The String-Concatenation Operator

The string-concatenation operator, ., joins two strings together. For example, the 
following statement assigns the string potatohead to $newstring: 

$newstring = "potato" . "head";

You can use the . operator with variables as in this example: 

$string1 = "potato";

$string2 = "head";

$newstring = $string1 . $string2;

This also assigns potatohead to $newstring. Note that the values of $string1 and 
$string2 are not changed by the . operator: $string1 still has the value potato, and 
$string2 still has the value head. 

The String-Repetition Operator

The string-repetition operator, x (literally the letter x), makes multiple copies of a 
string and joins the copies together, as shown in this example: 

$newstring = "t" x 5;

This statement takes five copies of the string t and joins them together, producing the 



string ttttt. This string is then assigned to the variable $newstring. 

You can use variables as operands for the x operator, if you like, as follows: 

$copystring = "t";

$repeats = 5;

$newstring = $copystring x $repeats;

The only restriction is that the variable on the right of the x must contain an integer or 
a value that can be converted to an integer.

DO make sure you leave a space between the x operator 
and the values or variables on either side: 

$newstring = $oldstring x 5; # this is correct
$newstring = $oldstringx 5; # incorrect

$newstring = $oldstring x5; # also incorrect 

Normally, you don't need to put spaces between an 
operator and its operands.

$x = $x + 1; # this is OK

$x=$x+1; # this is also OK 

You need spaces around the x because the letter x can 
appear in variable names. (For example, $oldstringx is a 
perfectly valid variable name.) 

Concatenation and Assignment

The .= operator combines the operations of string concatenation and assignment. For 
example, the following statements: 

$a = "be";

$a .= "witched";            # $a is now "bewitched"

are equivalent to these statements: 



$a = "be";

$a = $a . "witched";

You can use the .= operator to write a very simple program that reads multiple lines of 
input and joins them into a single string. This program is shown in Listing 4.5. 

 

Listing 4.5. A program that reads input lines and concatenates them.

1:  #!/usr/local/bin/perl

2:  $resultstring = "";

3:  print("Enter your input - type an empty line to quit\n");

4:  $input = <STDIN>;

5:  chop ($input);

6:  while ($input ne "") {

7:          $resultstring .= $input;

8:          $input = <STDIN>;

9:          chop ($input);

10: }

11: print ("Here is the final string:\n");

12: print ("$resultstring\n");

 

$ program4_5

Enter your input - type an empty line to quit

this



is

a

test

Here is the final string:

thisisatest

$

 As you can see from the output of Listing 4.5, the four input lines are joined 
and have become a single string. 

Note that there is a much simpler way to do this in Perl: using the built-in function 
join(). You'll learn about join() on Day 5, "Lists and Array Variables." 

Other Perl Operators

Perl also supports two other operators that do not fit into any of the preceding 
categories: 

●     The comma operator 
●     The conditional operator 

The Comma Operator

The comma operator (,) is an operator borrowed from the C programming language. It 
guarantees that a particular part of an expression (the part before the ,) is evaluated 
first. 

Here is an example of a simple statement that uses the , operator: 

$var1 += 1, $var2 = $var1;

Because the , operator indicates that the left operand is to be performed first, 1 is added 
to $var1 before $var1 is assigned to $var2. In effect, the , operator breaks a statement 
into two separate statements, as follows: 

$var1 += 1;



$var2 = $var1;

In fact, the only real reason to use the , operator is when two operations are so closely 
tied together that it is easier to understand the program if they appear as part of the 
same expression. 

The comma operator is often used in conjunction with the = operator, as follows: 

$val = 26;

$result = (++$val, $val + 5);

In this statement, the 

++$val

operation is performed first, because it appears before the , operator. This adds 1 to $val, 
which means that $val now has the value 27. Then this new value of $val has 5 added to 
it, and the result, 32, is assigned to $result. 

Note that the following expression is enclosed in parentheses: 

++$val, $val + 5

This indicates that this set of operations is to be performed first. Had the parentheses not 
been present, the statement would have been 

$result = ++$val, $val + 5;

In this case, everything before the comma would be performed first: 

$result = ++$val

This means that $result would be assigned 27, not 32. 

You'll learn more about parentheses and the order of operations later today, in the 
section titled "The Order of Operations." 



The Conditional Operator

The conditional operator also is borrowed from the C programming language. Unlike the 
other operators you've seen, the conditional operator requires three operands, as 
follows: 

●     A condition to test 
●     A value that is to be used when the test condition is true (evaluates to a nonzero 

value) 
●     A value that is to be used when the test condition is false (evaluates to zero) 

The first two operands are separated by the character ?, and the second and third 
operands are separated by the character :. 

Here is a simple example of an expression that uses the conditional operator: 

$result = $var == 0 ? 14 : 7;

Here, the test condition is the expression 

$var == 0

If this expression is true, the value 14 is assigned to $result. If it is false, the value 7 is 
assigned to $result. 

As you can see, the conditional operator behaves just like the if and else statements. 
The expression 

$result = $var == 0 ? 14 : 7;

is identical to the following: 

if ($var == 0) {

        $result = 14;

} else {

        $result = 7;

}



The difference between the conditional operator and the if-else construct is that the 
conditional operator can appear in the middle of expressions. For example, the 
conditional operator can be used as another way to prevent division by 0, as follows: 

$result = 43 + ($divisor == 0 ? 0 : $dividend / $divisor);

Here, $result is assigned the value 43 plus the result of $dividend divided by $divisor, 
unless $divisor is 0. If $divisor is 0, the result of the division is assumed to be 0, and 
$result is assigned 43. 

Listing 4.6 is a simple program that reads from the standard input file and compares the 
input line with a predetermined password. 

 

Listing 4.6. A very simple password checker.

1:  #!/usr/local/bin/perl

2:  print ("Enter the secret password:\n");

3:  $password = "bluejays";

4:  $inputline = <STDIN>;

5:  chop ($inputline);

6:  $outputline = $inputline eq $password ?

7:          "Yes, that is the correct password!\n" :

8:          "No, that is not the correct password.\n";

9:  print ($outputline);

 

$ program4_6



Enter the secret password:

orioles

No, that is not the correct password.

$

 When you run program4_6 and type in a random password, you get the results 
shown in the Input-Output example. 

The advantage of using the conditional operator here is that the assignment to 
$outputline occurs in only one place, and the statement is much more concise. If you use 
if and else, you need two assignments to $outputline and five lines, as follows: 

if ($inputline eq $password) {

        $outputline = "Yes, that is the correct password!\n";

} else {

        $outputline = "No, that is not the correct password.\n");

}

Of course, the if and else statements are easier to use when things get more complex. 
Consider the following example: 

if ($var1 == 47) {

        print("var1 is already 47\n");

        $is_fortyseven = 1;

} else {

        $var1 = 47;

        print("var1 set to 47\n");

        $is_fortyseven = 0;

}

You can write this using the conditional operator if you use the comma operator, as 
follows: 



$var1 == 47 ? (print("var1 is already 47\n"), $is_fortyseven = 1) :

        ($var1 = 47, print("var1 set to 47\n"), $is_fortyseven = 0);

As you can see, this is difficult to understand. The basic rules are as follows: 

●     Use the conditional operator for very simple conditional statements. 
●     Use if and else for everything else. 

Conditional Operators on the Left Side of Assignments

In Perl 5, you can use the conditional operator on the left side of an assignment. This 
enables you to assign a value to either of two variables, depending on the result of a 
conditional expression. 

$condvar == 43 ? $var1 : $var2 = 14;

This statement checks whether $condvar has the value 43. If it does, $var1 is assigned 14. 
If it doesn't, $var2 is assigned 14. 

Normally, you won't want to use conditional operators in this way because your code 
will become difficult to follow. Although the following code is a little less efficient, 
it performs the same task in a way that is easier to understand: 

$condvar == 43 ? $var1 = 14 : $var2 = 14;

The Order of Operations

Perl, like all programming languages, has a clearly defined set of rules that determine 
which operations are to be performed first in a particular expression. The following 
three concepts help explain these rules: 

●     The concept of precedence 
●     The concept of associativity 
●     The ability to override precedence and associativity using parentheses 

Precedence

In grade school, you learned that certain arithmetic operations always are performed 
before other ones. For example, multiplication and division always are performed before 
addition and subtraction. 



4 + 5 * 3

Here, the multiplication is performed first, even though the addition is encountered first 
when the statement is read from left to right. Because multiplication always is 
performed first, it has higher precedence than addition. 

Table 4.6 defines the precedence of the operators in Perl. The items at the top of the 
table have the highest precedence, and the items at the bottom have the lowest.

Table 4.6. Operator precedence.

Operator Operation Performed 

++, -- Autoincrement and 
autodecrement

-, ~, ! Operators with one operand

** Exponentiation

=~, !~ Pattern-matching operators

*, /, %, x Multiplication, division, 
remainder, repetition 

+, -, . Addition, subtraction, 
concatenation

<<, >> Shifting operators

-e, -r, etc. File-status operators

<, <=, >, >=, lt, le, gt, 
ge 

Inequality-comparison operators

==, !=, <=>, eq, ne, cmp Equality-comparison operators

& Bitwise AND

|, ^ Bitwise OR and XOR

&& Logical AND

|| Logical OR

.. List-range operator

? and : Conditional operator (together)

=, +=, -=, *=, Assignment operators

and so on  

, Comma operator

not Low-precedence logical NOT



and Low-precedence logical AND

or, xor Low-precedence logical OR and 
XOR

Using this table, you can determine the order of operations in complicated expressions. 
For example: 

$result = 11 * 2 + 6 ** 2 << 2;

To determine the order of operations in this expression, start at the top of Table 4.6 and 
work down. The first operator you see is **, which means that it is performed first, 
leaving 

$result = 11 * 2 + 36 << 2;

The next operation you find in the table is the * operator. Performing the multiplication 
leaves the following: 

$result = 22 + 36 << 2;

The + operator is next: 

$result = 58 << 2;

Next up is the << operator: 

$result = 232;

The = operator is last on the list and assigns 232 to $result. 

You might have noticed that Table 4.6 contains some operators that you've not yet seen 
and which you'll learn about later: 

●     The list-range operator, defined on Day 5 
●     The file-status operators, defined on Day 6, "Reading from and Writing to Files" 
●     The pattern-matching operators, =~ and !~, defined on Day 7, "Pattern Matching" 



Associativity

The rules of operator precedence enable you to determine which operation to perform 
first when an expression contains different operators. But what should you do when an 
expression contains two or more operators that have the same precedence? 

In some cases, it doesn't matter what order you perform the operations in. For example: 

$result = 4 + 5 + 3;

Here, $result gets 12 no matter which addition is performed first. However, for some 
operations the order of evaluation matters. 

$result = 2 ** 3 ** 2;

If you perform the leftmost exponentiation first, $result is assigned 8 ** 2, or 64. If you 
perform the rightmost exponentiation first, $result is assigned 2 ** 9, or 512. 

Because the order of operations is sometimes important, Perl defines the order in which 
operations of the same precedence are to be performed. Operations that are performed 
right-to-left (with the rightmost operation performed first) are said to be right associative. 
Operations that are performed left-to-right (with the leftmost operation performed 
first) are left associative. 

Table 4.7 lists the associativity for each of the Perl operators. The operators are sorted 
according to precedence (in the same order as Table 4.6).

Table 4.7. Operator associativity.

Operator Associativity 

++, -- Not applicable

-, ~, ! Right-to-left

** Right-to-left

=~, !~ Left-to-right

*, /, %, x Left-to-right

+, -, . Left-to-right

<<, >> Left-to-right

-e, -r, Not applicable and so on



<, <=, >, >=, lt, le, gt, ge Left-to-right

==, !=, <=>, eq, ne, cmp Left-to-right

& Left-to-right

|, ^ Left-to-right

&& Left-to-right

|| Left-to-right

.. Left-to-right

? and : Right-to-left

=, +=, -=, *=, Right-to-left

and so on  

, Left-to-right

not Left-to-right

and Left-to-right

or, xor Left-to-right

From Table 4.7, you see that the exponentiation operator is right associative. This means 
that in the following: 

$result = 2 ** 3 ** 2;

$result is assigned 512, because the rightmost ** operation is performed first. 

Forcing Precedence Using Parentheses

Perl enables you to force the order of evaluation of operations in expressions. To do 
this, use parentheses as follows: 

$result = 4 * (5 + 3);

In this statement, 5 is added to 3 and then multiplied by 4, yielding 32. 

You can use as many sets of parentheses as you like: 

$result = 4 ** (5 % (8 - 6));

Here, the result is 4: 



●     8 - 6 is performed, leaving 4 ** (5 % 2) 
●     5 % 2 is performed, leaving 4 ** 1 
●     4 ** 1 is 4 

DO use parentheses whenever you aren't sure whether a 
particular operation is to be evaluated first. For 
example, I don't know many programmers who remember 
that addition operators are evaluated before shifts: 

$result = 4 << 2 + 3; 

And virtually no one remembers that && has higher 
precedence than ||: 

if ($value == 0 || $value == 2 && $value2 == 
"hello") {
print("my condition is true\n");

} 

You can make life a lot easier for people who read your 
code if you use parentheses when the order of evaluation 
is not obvious. For example:

$result = 4 << (2 + 3);
if ($value == 0 || ($value == 2 && $value2 == 
"hello")) {
print("my condition is true\n");

} 

DO use multiple lines, extra spaces, and indentation to 
make complicated expressions easier to read. For example: 

if ($value == 0 ||

($value == 2 && $value2 == "hello")) { 

Here, it's obvious that there are two main conditions to 
be tested and that one of them contains a pair of 
subconditions.

DON'T leave out closing parentheses by mistake. 

$result = 4 + (2 << ($value / 2); # error 



This statement will be flagged as erroneous because you 
are missing a closing parenthesis.

A handy way of checking whether you have enough 
parentheses in complicated expressions is to use this 
simple trick:

●     Start at the left end of your expression. 
●     Starting from 0, add 1 for every left parenthesis you see. 
●     Subtract 1 for every closing parenthesis you see. 

If your final result is 0, you've got enough opening and 
closing parentheses. (This doesn't guarantee that you've 
put the parentheses in the right places, but at least you 
now know that you have enough of them.)

Summary

Today you learned about the operators that Perl supports. Each operator requires one 
or more operands, which are the values on which the operator operates. A collection of 
operands and operators is known as an expression. 

The operators you learned how to use are as follows: 

●     The arithmetic operators +, -, *, /, %, **, and unary negation 
●     The integer-comparison operators ==, !=, <, >, <=, >=, and <=> 
●     The string-comparison operators eq, ne, lt, gt, le, ge, and cmp 
●     The logical operators ||, &&, and ! 
●     The bit-manipulation operators |, &, ^, ~, <<, and >> 
●     The assignment operators =, +=, -=, *=, /=, %=, **=, !=, &=, ^=, and .= 
●     The autoincrement operator ++ 
●     The autodecrement operator -- 
●     The string-concatenation operator . 
●     The string-repetition operator x 
●     The comma operator , 
●     The conditional operator (? and : together) 

You also learned about operator precedence and associativity, two concepts that tell 
you which operators in an expression usually are performed first. Operator precedence 
and associativity can be controlled by putting parentheses around the operations you 
want to perform first. 

Q&A



Q: Is there a limit on how large my expressions can be? 

A: Effectively, no. There is a limit, but it's so large that no one would possibly want 
to create an expression that long, because it would be impossible to read or 
understand.***It's easier to understand expressions if they are shorter. 

Q: Is it better to use += or ++ when adding 1 to a variable? 

A: It's best to use ++ when using a variable as a counter in a while statement (or in 
other loops, which you learn about on Day 8, "More Control Structures"). For 
other addition operations, you should use +=. 

Q: Why are some operators left associative and others right associative? 

A: Most operators are left associative, because we normally read from left to right. 
Assignment is right associative because it's easier to read. For instance:
$var1 = $var2 = 5;

If assignment happened to be left associative, $var1 would be assigned the old 
value of $var2, not 5. This would not be obvious to a casual reader of the 
program.Exponentiation is right associative because that's how exponentiation is 
performed in mathematics.Other operators that are right associative are easier to 
read from right to left. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define the following terms:
a.    operator
b.    operand
c.    expression
d.    precedence
e.    associativity 

2.  What operations are performed by the following operators? 
a.   &&
b.   & 
c.   ^ 
d.   ne 
e.   . 

3.  What operators perform the following operations?
a.    string-equality comparison
b.    remainder
c.    string duplication
d.    bitwise OR



e.    numeric greater-than-or-equal-to 
4.  What is the binary representation of the following numbers? 

a.   171
b.   1105
c.   0 

5.  What is the standard (base-10) representation of the following numbers?
a.   01100100
b.   00001111
c.   01000001 

6.  What is the value of the following expressions?
a.   17 * 2 ** 3 / 9 % 2 << 2
b.   0 && (171567 * 98275 / 1174.5 ** 4)
c.   1171 ^ 904
d.   "abc" . "de" x 2 

Exercises

1.  Write a program that uses the << operator to print out the first 16 powers of 2. 
2.  Rewrite the following statement using the conditional operator: 

if ($var1 == 5 || $var2 == 7) {
$result = $var1 * $var2 + 16.5;
} else {
print("condition is false\n");
$result = 0;

} 
3.  Rewrite the following expression using the if and else statements: 

$result = $var1 <= 26 ? ++$var2 : 0; 
4.  Write a program that reads two integers from standard input (one at a time), 

divides the first one by the second one, and prints out the quotient (the result) 
and the remainder. 

5.  Why might the following statement not assign the value 5.1 to $result?
$result = 5.1 + 100005.2 - 100005.2; 

6.  Determine the order of operations in the following statement, and add 
parentheses to the statement to indicate this order:
$result = $var1 * 2 << 5 + 3 || $var2 ** 3, $var3; 

7.  What value is assigned to $result by the following code?
$var1 = 43;
$var2 = 16;
$result = ++$var2 == 17 ? $var1++ * 2 - 5 : ++$var1 * 3 - 11; 

8.  BUG BUSTER: Find and fix the bugs in the following program:
#!/usr/local/bin/perl

$num = <STDIN>;
chop ($num);
$x = "";
$x += "hello";
if ($x != "goodbye" | $x == "farewell") { 
$result = $num eq 0 ? 43;



} else {
$result = ++$num++;
}

print("the result is $result\n"); 

    



Chapter 5

Lists and Array Variables

CONTENTS

●     Introducing Lists 
●     Scalar Variables and Lists 

❍     Lists and String Substitution 
●     Storing Lists in Array Variables 
●     Accessing an Element of an Array Variable 

❍     More Details on Array Element Names 
●     Using Lists and Arrays in Perl Programs 

❍     Using Brackets and Substituting for Variables 
●     Using List Ranges 

❍     Expressions and List Ranges 
●     More on Assignment and Array Variables 

❍     Copying from One Array Variable to Another 
❍     Using Array Variables in Lists 
❍     Substituting for Array Variables in Strings 
❍     Assigning to Scalar Variables from Array Variables 

●     Retrieving the Length of a List 
●     Using Array Slices 

❍     Using List Ranges in Array-Slice Subscripts 
❍     Using Variables in Array-Slice Subscripts 
❍     Assigning to Array Slices 
❍     Overlapping Array Slices 
❍     Using the Array-Slice Notation as a Shorthand 

●     Reading an Array from the Standard Input File 
●     Array Library Functions 

❍     Sorting a List or Array Variable 
❍     Reversing a List or Array Variable 
❍     Using chop on Array Variables 
❍     Creating a Single String from a List 
❍     Splitting a String into a List 
❍     Other List-Manipulation Functions 

●     Summary 
●     Q&A 



●     Workshop 
❍     Quiz 
❍     Exercises 

The Perl programs you have seen so far deal with scalar values, which are single units of 
data, and scalar variables, which can store one piece of information. 

Perl also enables you to define an ordered collection of values, known as a list; this 
collection of values can be stored in variables known as array variables. 

Today's lesson describes lists and array variables, and it shows you what you can do 
with them. Today, you learn about the following: 

●     What lists are 
●     The relationship between scalar variables and lists 
●     Storing lists in array variables 
●     Accessing an element of an array variable or list 
●     How to use list ranges 
●     Assigning to array variables 
●     Assigning to scalar variables from array variables 
●     Retrieving the length of a list 
●     Using array slices 
●     Using an array to store input 
●     Sorting a list or array variable 
●     Reversing a list or array variable 
●     Creating a string from a list 
●     Creating a list from a string 

Introducing Lists

A list is a sequence of scalar values enclosed in parentheses. The following is a simple 
example of a list: 

(1, 5.3, "hello", 2)

This list contains four elements, each of which is a scalar value: the numbers 1 and 5.3, 
the string hello, and the number 2. 

Lists can be as long as needed, and they can contain any scalar value. A list can have 
no elements at all, as follows: 



()

This list also is called an empty list.

NOTE

A list with one element and a scalar value are different 
entities. For example, the list
(43.2) 

and the scalar value
43.2 

are not the same thing. This is not a severe limitation 
because one can be converted to or assigned to the 
other. See the section titled "Assigning to Scalar 
Variables from Array Variables" later today.

Scalar Variables and Lists

A scalar variable name can always be included as part of a list. In this case, the current 
value of the scalar variable becomes the list element value. For example: 

(17, $var, "a string")

If $var has been assigned the value 26, the second element of the list becomes 26. (It 
remains 26 even if a different value is assigned to $var.) 

Similarly, you can use the value of an expression as an element of a list. For example: 

(17, 26 << 2)

This list contains two elements: 17 and 104 (which is 26 left-shifted two places). 
Expressions in lists, like other expressions, can contain scalar variables. 

(17, $var1 + $var2)

Here, the expression $var1 + $var2 is evaluated and its value becomes the second 



element of the list. 

Lists and String Substitution

Because character strings are scalar values, they can be used in lists, as follows: 

("my string", 24.3, "another string")

You can substitute for scalar variable names in character strings in lists, as follows: 

($value, "The answer is $value")

This list contains two elements: the value of the scalar variable $value, and a string 
containing the name of $value. If the current value of $value is 26, the two elements of 
the list are 26 and The answer is 26. 

Storing Lists in Array Variables

Perl enables you to store lists in special variables designed for that purpose. These 
variables are called array variables (or arrays for short). 

The following is an example of a list being assigned to an array variable: 

@array = (1, 2, 3);

Here, the list (1, 2, 3) is assigned to the array variable @array. 

Note that the name of the array variable starts with the character @. This enables Perl 
to distinguish array variables from other kinds of variables-for example, scalar 
variables, which start with the character $. As with scalar variables, the second 
character of the variable name must be a letter, while subsequent characters of the 
name can be letters, numbers, or underscores. Array variable names can be as long as 
you want. 

The following are legal array-variable names: 

@my_array

@list2



@a_very_long_array_name_with_lots_of_underscores

The following are not legal array-variable names: 

@1array         # can't start with a number

@_array         # can't start with an underscore

@a.new.array    # . is not a legal variable-name character

When an array variable is first created (that is, seen for the first time), it is assumed to 
contain the empty list () unless it is assigned to.

NOTE

Because Perl uses @ and $ to distinguish array variables 
from scalar variables, the same name can be used in an 
array variable and in a scalar variable. For example:
$var = 1;

@var = (11, 27.1, "a string"); 

Here, the name var is used in both the scalar variable 
$var and the array variable @var. These are two 
completely separate variables. 

Normally, you won't want to use the same name in both 
an array and a scalar variable, because this is confusing.

Accessing an Element of an Array Variable

After you have assigned a list to an array variable, you can refer to any element of the 
array variable as if it is a scalar variable. 

For example, to assign the first element of the array variable @array to the scalar 
variable $scalar, use the following statement: 

$scalar = $array[0];

The character sequence [0] is an example of a subscript. A subscript indicates a particular 
element of an array. In this case, 0 refers to the first element of the array. Similarly, 
the subscript 1 refers to the second element of the array, as follows: 



$scalar = $array[1];

Here, the second element of the array @array is assigned to $scalar. The general rule is 
this: 

An array subscript n, where n is any non-negative integer, always refers to array 
element n+1. 

This notation is employed to ensure compatibility with the C programming language, 
which also starts its array subscripting with 0. 

You can assign a scalar value to an individual array element in the same way: 

@array = (1, 2, 3, 4);

$array[3] = 5;

After the second assignment, the value of @array becomes 

(1, 2, 3, 5)

This is because the fourth element of the array has been replaced. 

NOTE

If you try to access an array element that does not 
exist, the Perl interpreter uses the null string (which is 
equivalent to zero).
@array = (1, 2, 3, 4);

$scalar = $array[4]; 

Here, $array[4] refers to the fifth element of @array, 
which does not exist. In this case, $scalar is assigned the 
null string. 

NOTE



The same thing happens when the subscript is a negative 
number, as follows:

$scalar = $array[-1]; 

Once again, the null string is assigned to $scalar. 

Note also that arrays automatically grow when a 
previously unreferenced element is assigned to for the 
first time:
@array = (1, 2, 3, 4);

$array[6] = 17; 

Because the seventh element of @array is assigned 17, the 
value of @array is now 

(1, 2, 3, 4, "", "", 17) 

The missing fifth and sixth elements now contain the 
null string.

You can use the value of a scalar variable as a subscript, as follows: 

$index = 1;

$scalar = $array[$index];

Here, the value of $index, 1, becomes the subscript. This means that the second element 
of @array is assigned to $scalar.



When you use a scalar variable as a subscript, make sure 
that the value stored in the scalar variable corresponds 
to an array element that exists. For example:
@array = (1, 2, 3, 4);
$index = 4;

$scalar = $array[$index]; 

Here, the third statement tries to access the fifth 
element of @array, which does not exist. In this case, 
$scalar is assigned the null string, and the Perl 
interpreter doesn't tell you that anything went wrong. 

More Details on Array Element Names

Note that the first character of an array-element variable name is the $ character, not 
the @ character. For example, to refer to the first element of the array @potato, use 

$potato[0]

and not 

@potato[0]

The basic rule is as follows: 

Things that reference one value-such as scalar variables and array elements-must start 
with a $.

NOTE



Even though references to elements of array variables 
start with a $, the Perl interpreter still has no trouble 
distinguishing scalar variables from array-variable 
elements. For example, if you have defined a scalar 
variable $potato and an array variable @potato, the 
Perl interpreter uses the subscript to distinguish 
between the scalar variable and the array-variable 
element. 

$result = $potato; # the scalar variable $potato
$result = $potato[0]; # the first element of 

@potato 

Using Lists and Arrays in Perl Programs

Now that you have seen how lists and array variables work, it's time to take a look at a 
simple program that uses them. Listing 5.1 is a simple program that prints the elements of 
a list. 

 

Listing 5.1. A program that prints the elements of a list. 

1:  #!/usr/local/bin/perl

2:  

3:  @array = (1, "chicken", 1.23, "\"Having fun?\"", 9.33e+23);

4:  $count = 1;

5:  while ($count <= 5) {

6:          print ("element $count is $array[$count-1]\n");

7:          $count++;

8:  }

 



$ program5_1

element 1 is 1

element 2 is chicken

element 3 is 1.23

element 4 is "Having fun?"

element 5 is 9.3300000000000005+e23

$

 Line 3 assigns a list containing five elements to the array variable @array. 

Line 5 tests whether $count is less than or equal to 5. This conditional expression 
ensures that the while statement loops five times. 

Line 6 prints the current value of $count and the corresponding element of @array. Note 
that the expression used in the subscript is $count-1, not $count, because subscripting 
starts from 0. For example, when count is 3, the subscript is 2, which means that the third 
element of @array is printed. 

When you examine line 6, you see that Perl lets you substitute for array elements in 
character strings. When the Perl interpreter sees $array[$count-1] in the character 
string, it replaces this array element name with its corresponding value. 

Listing 5.2 is another example of a program that uses arrays. This one is a little more 
interesting; it uses the built-in functions rand and int to generate random integers 
between 1 and 10. 

 

Listing 5.2. A program that generates random integers between 1 and 10.

1:  #!/usr/local/bin/perl

2:  

3:  # collect the random numbers



4:  $count = 1;

5:  while ($count <= 100) {

6:          $randnum = int( rand(10) ) + 1;

7:          $randtotal[$randnum] += 1;

8:          $count++;

9:  }

10: 

11: # print the total of each number

12: $count = 1;

13: print ("Total for each number:\n");

14: while ($count <= 10) {

15:         print ("\tnumber $count: $randtotal[$count]\n");

16:         $count++;

17: }

 

$ program5_2

Total for each number:

        number 1: 11

        number 2: 8

        number 3: 13

        number 4: 6

        number 5: 10

        number 6: 9

        number 7: 12

        number 8: 11

        number 9: 11



        number 10: 9

$

 This program is divided into two parts: the first part collects the random 
numbers, and the second part prints them. 

Line 5 ensures that the loop iterates (is performed) 100 times. You can just as easily have 
the program generate any other quantity of random numbers just by changing the value 
in this conditional expression. 

Line 6 generates a random number between 1 and 10 and assigns it to the scalar variable 
$randnum. To see how it does this, first note that the code fragment 

int ( rand (10) )

actually is two function calls, one inside another. When the Perl interpreter sees this, 
it first calls the inner one, which is rand. The value returned by rand becomes the 
argument to the library function int. 

Here's how line 6 generates a random number: 

1.  First, it calls the Perl library function rand. This function generates a floating-
point random number between 0 and 1 and then multiplies it by the argument it is 
passed. In this program, rand is passed 10, which means that the random number is 
multiplied by 10 and is now a floating-point number that is greater than 0 and 
less than 10. 

2.  The value returned by rand is then passed to the library function int, which takes 
a floating-point number and gets rid of the non-integer part. This operation is 
known as truncation. The integer produced by this truncation operation becomes 
the return value of the function. For example, the following returns 5:
int (5.7)

In this program, int truncates the random number returned by rand and returns 
the resulting integer, which is now a random number between 0 and 9. 

3.  The value 1 is added to the number returned by int, resulting in a random number 
between 1 and 10. 

4.  This number is assigned to the scalar variable $randnum. 

Line 7 now adds 1 to the element of the array @randtotal corresponding to the number 
generated. For example, if the random number is 7, the array element $randtotal[7] has 
1 added to it.



NOTE

As you can see, line 7 works even though @randtotal is 
not initialized. When the program refers to an array 
element for the first time, the Perl interpreter assumes 
that the element has an initial value of the null string 
"". This null string is converted to 0, which means that 
adding 1 for the first time produces the result 1, which is 
what you want. 

The second part of the program, which prints the total of each random number, starts 
with lines 12 and 13. These lines get things started by resetting the counter variable 
$count to 1 and printing an introductory message. 

The conditional expression in line 14 ensures that the loop iterates 10 times-once for 
each possible random number. 

Line 15 prints the total for a particular random number. 

Using Brackets and Substituting for Variables

As you have just seen, Perl lets you substitute for array-element variable names in 
strings, as follows: 

print ("element $count is $array[ $count-1]\n");

This might lead to problems if you want to include the characters [ and ] in character 
strings. For example, suppose that you have defined the scalar variable $var and the 
array variable @var. The character string 

"$var[0]"

substitutes the value of the first element of @var in the string. To substitute the value 
of $var and keep the [0] as it is, you must use one of the following: 

"${var}[0]"

"$var\[0]"

"$var" . "[0]"



The character string 

"${var}[0]"

uses the brace characters { and } to keep var and [ separate; this tells the Perl 
interpreter to substitute for the variable $var, not $var[0]. After the substitution, the 
brace characters are not included in the string. 

NOTE

To include a brace character after a $, use a backslash, 
as follows: 

"$\{var}" 

This character string contains the text ${var}. 

The character string 

"$var\[0]"

uses \ to indicate that the [ character is to be given a different meaning than normal; 
in this case, this means that [ is to be treated as a printable character and not as part of 
the variable name to be substituted. 

The expression 

"$var" . "[0]"

consists of two character strings joined together by the . operator. Here, the Perl 
interpreter replaces the first character string with the current value of $var. 

Using List Ranges

Suppose that you want to define a list consisting of the numbers 1 through 10, inclusive. 
You can do this by typing each of the numbers in turn. 

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)



However, there is a simpler way to do it: Use the list-range operator, which is .. (two 
consecutive period characters). The following is an example of a list created using the 
list-range operator: 

(1..10)

This tells Perl to define a list that has a first value of 1, a second value of 2, and so on 
up to 10. 

The list-range operator can be used to define part of a list. 

(2, 5..7, 11)

This list consists of five elements: the numbers 2, 5, 6, 7, and 11. 

List-range operators can be used with floating-point values. For example: 

(2.1..5.3)

This list consists of four elements: 2.1, 3.1, 4.1, and 5.1. Each element of the list is one 
greater than the previous element, and the last element of the list is the largest 
possible number less than or equal to the number to the right of the .. operator. Here, 
5.1 is less than 5.3, so it is included in the list; however, 6.1 is greater than 5.3, so it is 
not included. 

NOTE

If the value to the left of the .. operator is greater 
than the value to the right, an empty list is created. 

(4.5..1.6) 

Because 4.5 is greater than 1.6, this list is empty. 

If the two values are equal, a one-element list is 
created.

(3..3) 



This is equivalent to the list (3). 

List-range operators can specify ranges of strings. For example, the list ("aaa", "aab", 
"aac", "aad") can be expressed as ("aaa".."aad"). Similarly, the list ("BCY", "BCZ", 
"BDA", "BDB") is equivalent to ("BCY".."BDB"), and the statement @alphabet = 
("a".."z"); creates a list consisting of the 26 lowercase letters of the alphabet and 
assigns this list to the array variable @alphabet. 

List ranges also enable you to use strings to specify numbers that contain leading zeros. 

@day_of_month = ("01".."31");

This statement creates a list consisting of the strings 01, 02, 03 and so on, up to 31, and 
then assigns this list to @day_of_month. Because each string contains two characters, 
this array is suitable for use when you are printing a date in a format such as 08-June-
1960. 

Expressions and List Ranges

The values that define the range of a list-range operator can be expressions, and these 
expressions can contain scalar variables. For example: 

($var1..$var2+5)

This list consists of all values between the current value of $var1 and the current 
value of the expression $var2+5. 

Listing 5.3 is an example of a program that uses list ranges. This program asks for a start 
number and an end number, and it prints all the numbers between them. 

 

Listing 5.3. A program that uses list ranges to print a list of numbers.

1:  #!/usr/local/bin/perl

2:  



3:  print ("Enter the start number:\n");

4:  $start = <STDIN>;

5:  chop ($start);

6:  print ("Enter the end number:\n");

7:  $end = <STDIN>;

8:  chop ($end);

9:  @list = ($start..$end);

10: $count = 0;

11: print ("Here is the list:\n");

12: while ($list[$count] != 0 || $list[$count-1] == -1 ||

13:         $list[$count+1] == 1) {

14:         print ("$list[$count]\n");

15:         $count++;

16: }

 

$ program5_3

Enter the start number:

-2

Enter the end number:

2

Here is the list:

-2

-1

0

1

2



$

 Lines 3 through 5 retrieve the start of the range to be printed. Line 3 
retrieves the number from the standard input file. Line 4 assigns the resulting number 
to the scalar variable $start. Line 5 chops the trailing newline character. 

Lines 6 through 8 repeat the same process for the end of the range, assigning the end of 
the range to the scalar variable $end. 

Line 9 creates a list that consists of the numbers between $start and $end, and stores 
the list in the array variable @list. 

Line 10 initializes the counter variable $count to 0. 

Line 11 is a print statement that indicates that the list is about to be printed. 

Lines 12 and 13 are the start of the loop that prints the range. The conditional 
expression to be evaluated consists of three subexpressions that are operands for the 
logical or operator ||. If any of these subexpressions are true, the loop continues. 

The first subexpression tests for the end of the range. To do this, it takes advantage of 
the fact that an unidentified list element is equal to the null string and that the null 
string is equivalent to 0. When the list element $list[$count] is undefined, the 
following subexpression is false: 

$list[$count] != 0

The second and third subexpressions cover the cases in which 0 is actually a part of the 
list. If the list to be printed contains 0, one or both of the following conditions must be 
true: 

●     The number 1 must be the next element in the list. 
●     The number -1 must be the previous element in the list. 

The second and third subexpressions test for these conditions. If either or both of these 
conditions is true, at least one of the following subexpressions also must be true: 

$list[$count-1] == -1

$list[$count+1] == 1



This ensures that the loop continues. Of course, this doesn't cover the case in which the 
list consists of just 0; however, that's not a meaningful case. (If you want to be finicky, 
you can add a special chunk of code that prints 0 if $start and $end are both 0, but 
that's not really worth bothering with.) 

After this, the rest of the program is straightforward. Line 14 prints a number in the 
range, line 15 adds one to the counter variable $count, and line 16 ends the while 
statement.

TIP

One of the problems with Perl is that it is sometimes 
difficult to distinguish the following scalar variable or 
array-element values: 

●     The null string "", which is converted to 0 in 
numeric expressions 

●     An undefined variable or element, which defaults 
to the null string, which in turn is converted to 0 
in numeric expressions 

●     The string 0, which is converted to the number 0 in 
numeric expressions 

●     A non-numeric string such as string, which is 
converted to 0 in numeric expressions 

There are several ways of dealing with this confusion: 

1.  Retrieve the length of the list stored in an array 
variable before processing it. This ensures that 
you don't go past the end of the list. See the 
section titled "Retrieving the Length of a List" 
later in today's lesson for more details on how to 
do this. 

2.  Compare the value with the string 0 rather than 
the number 0, as follows:
if ($value eq "0") ...

This handles the strings that convert to 0 in 
numeric expressions that are not 0 itself. (It 
doesn't handle strings such as 0000 or 0.0, which 
you might want your program to consider 
equivalent to 0; to deal with these, see the 
discussion of the split function later in today's 
lesson.) 

3.  Initialize the scalar variable or array element to 
a value other than 0 that you know is not going 
to appear naturally in your program, such as -



99999. 

Which particular method is best depends on 
the program you want to write, the input it 
expects, and how "bulletproof" the program 
needs to be.

More on Assignment and Array Variables

So far, you've seen that you can assign lists to array variables. 

@array = (1, 2, 3, 4, 5);

You've also seen that you can assign an element of an array to a scalar variable. 

$scalar = $array[3];

The following sections describe the other ways you can use assignment with lists and 
array variables. 

Copying from One Array Variable to Another

You also can assign one array variable to another. 

@result = @original;

Here, the list currently stored in the array variable @original is copied to the array 
variable @result. Each element of the new array @result is the same as the 
corresponding element of the array @original. Listing 5.4 shows that this is true. 

 

Listing 5.4. A program that copies an array and compares the elements 
of the two arrays.



1:  #!/usr/local/bin/perl

2:  

3:  @array1 = (14, "cheeseburger", 1.23, -7, "toad");

4:  @array2 = @array1;

5:  $count = 1;

6:  while ($count <= 5) {

7:          print("element $count: $array1[$count-1] ");

8:          print("$array2[$count-1]\n");

9:          $count++;

10: }

 

$ program5_4

element 1: 14 14

element 2: cheeseburger cheeseburger

element 3: 1.23 1.23

element 4: -7 -7

element 5: toad toad

$

 Line 3 assigns the list 

(14, "cheeseburger", 1.23, -7, "toad")

to the array variable @array1. Line 4 then copies this array into a second array variable, 
@array2. 

The rest of the program prints the elements of each array, as follows: 



●     Line 5 initializes the counter variable $count to 1. 
●     The conditional expression in line 6 ensures that the loop is performed five times. 
●     Lines 7 and 8 print the matching element of each array. (Note that the subscript is 
$count-1, not $count, because the subscript 0 is the first element of the array.) 

●     Line 9 adds one to the counter variable $count. 

NOTE

You can assign to multiple arrays in one statement. For 
example:

@array1 = @array2 = (1, 2, 3); 

This assigns a copy of the list (1, 2, 3) to both @array1 
and @array2. 

Using Array Variables in Lists

As you've already seen, lists can contain scalar variables. For example: 

@list = (1, $scalar, 3);

Here, the value of the scalar variable $scalar becomes the second element of the list 
assigned to @list. 

You also can specify that the value of an array variable is to appear in a list, as 
follows: 

@list1 = (2, 3, 4);

@list2 = (1, @list1, 5);

Here, the value of the array variable @list1-the list (2, 3, 4)-is substituted for the 
name @list1, and the resulting list (1, 2, 3, 4, 5) is assigned to @list2. 

Listing 5.5 shows an example of a list being contained in another list. 

 



Listing 5.5. A program that assigns a list as part of another list.

1:  #!/usr/local/bin/perl

2:  

3:  @innerlist = " never ";

4:  @outerlist = ("I", @innerlist, "fail!\n");

5:  print @outerlist;

 

$ program5_5

I never fail!

$

 Although this program is quite simple, it contains a couple of new tricks. The 
first of these is in line 3. Here, a scalar value, " never " (note the surrounding spaces), 
is assigned to the array variable @innerlist. This works because the Perl interpreter 
automatically converts the scalar value into a one-element list before assigning it to 
the array variable. 

Line 4 assigns a list to the array variable @outerlist. This list is assembled by taking the 
following list: 

("I", @innerlist, "fail!\n")

and substituting in the current value of the array variable @innerlist. As a result, the 
list assigned to @outerlist is 

("I", " never ", "fail!\n")

Line 5 prints the list. To do this, it calls the library function print and passes it the 
array variable @outerlist. When print is given an array variable or a list to print, it 



prints each element in turn. This means that the following is written to the standard 
output file: 

I never fail!

Note that print doesn't leave any spaces between the elements of the list when it prints 
them. The only reason the output is readable is because the character string contains 
spaces around never. This means that print isn't usually used to print a list of numbers 
in this way: 

@list = (1, 2, 3);

print @list;

This prints the following, which isn't quite what you want: 

123

TIP

In Listing 5.5, the argument passed to the print function 
is not enclosed in parentheses. This is perfectly 
acceptable. In Perl, the parentheses enclosing 
arguments to functions are optional. For example, when 
you call the library function chop, instead of writing 

chop ($number); 

you can write

chop $number; 

Although this saves a few extra keystrokes, it makes 
things a little less readable (in this author's opinion)

Besides, eliminating the parentheses can lead to 
problems. Consider the following example

$fred = "Fred";

print (("Hello, " . $fred . "!\n") x 2); 



This code prints

Hello, Fred!

Hello, Fred! 

In this case, the parentheses enclosing the arguments to 
print are absolutely necessary. Without them, you have 

print ("Hello, " . $fred . "!\n") x 2; 

When the Perl interpreter sees this statement, it assumes 
that print is being called with the following argument, 
which is not what you want: 

"Hello, " . $fred . "!\n" 

As always in programming, the basic rule to follow is 
this: Do whatever makes your program easier to work 
with, and use your best judgment.

Substituting for Array Variables in Strings

As you have seen, Perl does not leave spaces if you pass an array variable to print: 

@array = (1, 2, 3);

print (@array, "\n");

This prints the following on your screen: 

123

To get around this problem, put the array you want to print into a string: 

print ("@array\n");

When the Perl interpreter sees the array variable inside the string, it substitutes the 
values of the list assigned to the array variables, and leaves a space between each pair 
of elements. For example: 



@array = (1, 2, 3);

print ("@array\n");

This prints the following on your screen: 

1 2 3

Assigning to Scalar Variables from Array Variables

Consider the following assignment, which you've already seen: 

@array = ($var1, $var2);

Here, the values of the scalar variables $var1 and $var2 are used to form a two-element 
list that is assigned to the array variable @array. 

Perl also enables you to take the current value of an array variable and assign its 
components to a group of scalar variables. For example: 

@array = (5, 7);

($var1, $var2) = @array;

Here, the first element of the list currently stored in @array, 5, is assigned to $var1. The 
second element, 7, is assigned to $var2. 

Additional elements in an array, if they exist, are ignored. For example: 

@array = (5, 7, 11);

($var1, $var2) = @array;

Here, 5 is assigned to $var1, 7 is assigned to $var2, and 11 is not assigned to anything. 

If there are more scalar variables than elements in an array variable, the excess scalar 
variables are assigned the null string, as follows: 



@array = (5, 7);

($var1, $var2, $var3) = @array;

This assigns 5 to $var1 and 7 to $var2. Because there are not enough elements in @array 
to assign anything to $var3, $var3 is assigned the null string "".

NOTE

You also can assign to several scalar variables using a 
list. For example:

($var1, $var2, $var3) = ("one", "two", "three"); 

This assigns one to $var1, two to $var2, and three to 
$var3. 

As with array variables, extra values in the list are 
ignored and extra scalar variables are assigned the null 
string, as follows:

($var1, $var2) = (1, 2, 3); # 3 is ignored

($var1, $var2, $var3) = (1, 2); # $var3 is now "" 

Retrieving the Length of a List

As you've seen, lists and array variables can be any length you want. As a consequence, 
Perl provides a way of determining the length of the list assigned to an array variable. 

Here's how it works: If an array variable (or list) appears anywhere that a scalar value 
is expected, the Perl interpreter obtains a scalar value by calculating the length of 
the list assigned to the array variable. 

Consider the following example: 

@array = (1, 2, 3);

$scalar = @array;

In the assignment to $scalar, the Perl interpreter replaces @array with the length of 
the list currently assigned to @array, which is 3. $scalar, therefore, is assigned the 
value 3.



NOTE

Note that the following two statements are not 
equivalent:

$scalar = @array;

($scalar) = @array; 

In the first statement, the length of the list in @array is 
assigned to $scalar. In the second statement, the first 
element of @array is assigned to $scalar. 

It is always important to remember that $scalar and 
($scalar) are not the same thing. $scalar is a scalar 
variable, and ($scalar) is a one-element list containing 
$scalar. 

Being able to access the length of an array is useful if you want to write a loop that 
performs an operation on every element of an array. Listing 5.6 is an example of a 
program that does just that. 

 

Listing 5.6. A program that prints every element of an array. 

1:  #!/usr/local/bin/perl

2:  

3:  @array = (14, "cheeseburger", 1.23, -7, "toad");

4:  $count = 1;

5:  while ($count <= @array) {

6:          print("element $count: $array[$count-1]\n");

7:          $count++;

8:  }



 

$ program5_6

element 1: 14

element 2: cheeseburger

element 3: 1.23

element 4: -7

element 5: toad

$

 The only new feature of this program is line 5, which compares the counter 
variable $count to the length of the array @array. Because the list assigned to @array 
contains five elements, the conditional expression 

$count <= @array

ensures that the loop iterates five times. 

Once again, note that the subscript in line 6 is $count-1, not $count. This caution bears 
repeating: It is very easy to forget to subtract 1 when you use a value as a subscript. 

If you like, you can write your loop in a different way and use $count as a subscript. For 
example: 

$count = 0;

while ($count < @array) {

        print ("element $count+1: $array[ $count]\n");

}

As you can see, this isn't any easier to follow because you now have to remember these 
two things: 

1.  The conditional expression now must use the < operator, not the <= operator. If 



you use <= here, the loop iterates six times, not five. 
2.  The value of $count is now not the same as the element you are referring to. For 

example, if you are printing the third element of the array, $count has the value 
2. This means that references to $count, such as
element $count+1:

must add one to the value of $count to get the result you want. 

As you can see, there is no intuitive or obvious way of writing programs that loop 
through arrays. Generally, it's best to pick the way that is easiest for you to remember.

You cannot retrieve the length of a list without first 
assigning the list to an array variable. For example:

@array = (10, 20, 30);

$scalar = @array; 

This assigns 3 to $scalar. Compare this with the 
following statement: 

$scalar = (10, 20, 30); 

This statement actually assigns 30 to $scalar, not 3. In 
this statement, the subexpression 

(10, 20, 30) 

is treated as three scalar values separated by comma 
operators.

For more details on the comma operator, refer to "The 
Comma Operator" in Day 4.

Using Array Slices

As you've seen, array subscripting enables you to change or access one element of an 
array. For example: 

$var = $array[2];

$array[2] = $var;



Perl enables you to access more than one element of an array at a time in much the same 
way. Following is a simple example: 

@subarray = @array[0,1];

Here, the code fragment 

@array[0,1]

refers to the first two elements of the list stored in the array variable. This portion of 
the array is known as an array slice. An array slice is treated just like any other list. In 
the statement 

@subarray = @array[0,1];

the list consisting of the first two elements of @array is assigned to the array variable 
@subarray. 

Here is another example: 

@slice = @array[1,2,3];

This statement assigns the array slice consisting of the second, third, and fourth 
elements of @array to the array variable @slice.



Although single elements of an array are referenced 
using the $ character, array slices are referenced using 
@: 

$var = $array[0];

@subarray = @array[0,1]; 

The basic rules are as follows:

●     References to single items, such as scalar variables or single 
array elements, start with a $. 

●     References to array variables or array slices, which refer to 
lists, start with a @. 

Listing 5.7 shows a simple example of an array slice. 

 

Listing 5.7. A program that demonstrates the use of an array slice.

1:  #!/usr/local/bin/perl

2:  

3:  @array = (1, 2, 3, 4);

4:  @subarray = @array[1,2];

5:  print ("The first element of subarray is $subarray[0]\n");

6:  print ("The second element of subarray is $subarray[1]\n");

 

$ program5_7

The first element of subarray is 2

The second element of subarray is 3



$

 Line 3 of this program assigns the following list to the array variable @array: 

(1, 2, 3, 4)

Line 4 assigns a slice of the array variable @array to the array variable @subarray. The 
array slice 

@array[1,2]

specifies that the second and third elements of the array are to be treated as a list and 
assigned to @subarray.

NOTE

In array slices, as in references to single elements of an 
array, subscripts start from zero. For example, the array 
slice

@array[1,2] 

refers to the second and third elements of an array.

The final two lines of the program print the two elements of the array variable 
@subarray. As you can see, these elements are identical to the second and third elements 
of @array. 

Using List Ranges in Array-Slice Subscripts

Perl provides a convenient way to refer to large array slices. Instead of writing 

@array[0,1,2,3,4]

to refer to the first five elements of array @array, you can use the list range operator, 
as follows: 



@array[0..4]

This enables you to assign large array slices easily: 

@subarray = @array[0..19];

This assigns the first 20 elements of @array to @subarray. 

Using Variables in Array-Slice Subscripts

You can use the value of a scalar variable in a list range in an array slice subscript. The 
following is an example: 

$endrange = 19;

@subarray = @array[0..$endrange];

Here, the scalar variable $endrange contains the upper limit of the array slice, which in 
this case is 19. This means that the array slice to assign is 

@array[0..19]

which assigns the first 20 elements of @array to @subarray. 

You can also use the list stored in an array variable to define an array slice. Listing 5.8 
shows how this works. 

 

Listing 5.8. A program that uses an array variable as an array-slice 
subscript.

1:  #!/usr/local/bin/perl

2:  

3:  @array = ("one", "two", "three", "four", "five");



4:  @range = (1, 2, 3);

5:  @subarray = @array[@range];

6:  print ("The array slice is: @subarray\n");

 

$ program5_8

The array slice is: two three four

$

 Line 3 of this program assigns the following list to the array variable @array: 

("one", "two", "three", "four", "five")

Line 4 assigns the list (1, 2, 3) to the array variable @range, which is to serve as the 
list range. 

Line 5 uses the value of @range as the array subscript for an array slice. Because @range 
contains (1, 2, 3), the slice of @array that is selected consists of the second, third, and 
fourth elements. These elements are then assigned to the array variable @subarray. 

Line 6 prints the selected array slice. When the Perl interpreter sees the variable name 
@subarray in the character string to be printed, it substitutes the value of @subarray 
for its name. Because @subarray is inside a character string, the Perl interpreter leaves 
a space between each pair of elements when printing. 

Compare line 6 with the following: 

print (@subarray, "\n");

Here, print leaves no spaces between the elements of @subarray, which means that it 
prints 



twothreefour

Which outcome you want depends, of course, on what you want your program to do. 

Assigning to Array Slices

You can assign to array slices using the notation you have just seen. The following is an 
example: 

@array[0,1] = ("string", 46);

Here, the first two elements of the array @array become string and 46, respectively. 

You can use list-range operators and variables when you assign to array slices as well. 
The following is an example: 

@array[0..3] = (1, 2, 3, 4);

@array[0..$endrange] = (1, 2, 3, 4);

If there are more items in the array slice than in the list, the extra items in the array 
slice are assigned the null string, as follows: 

@array[0..2] = ("string1", "string2");

The third element of @array now holds the null string. 

If there are fewer items in the array slice than in the list, the extra items in the list are 
ignored, as in the following: 

@array[0..2] = (1, 2, 3, 4);

In this assignment, the fourth element in the list, 4, is not assigned to anything. 

When an array slice is assigned to, the remainder of the array is not changed. Listing 5.9 
shows how this works. 

 



Listing 5.9. A program that assigns to an array slice.

1:  #!/usr/local/bin/perl

2:  

3:  @array = ("old1", "old2", "old3", "old4");

4:  @array[1,2] = ("new2", "new3");

5:  print ("@array\n");

 

$ program5_9

old1 new2 new3 old4

$

 In the preceding program, the only statement that did not appear in previous 
programs is line 4, which assigns the list ("new2", "new3") to the array slice of @array 
consisting of the second and third elements. This assignment changes the value of 
@array from 

("old1", "old2", "old3", "old4")

to 

("old1", "new2", "new3", "old4")

Line 5 then prints the changed array. 

Overlapping Array Slices



As you've seen, Perl enables you to use array slices on either side of an assignment 
statement. The following is an example: 

@newarray = @array[2,3,4];

@array[2,3,4] = @newarray;

This means that you can assign from one array slice to another, even if the two slices 
overlap, as in the following: 

@array[1,2,3] = @array[2,3,4];

The Perl interpreter has no problem with this statement because it copies the list stored
in @array[2,3,4] into a temporary location (invisible to you) before assigning it to 
@array[1,2,3]. 

Listing 5.10 provides an example of overlapping array slices in use. 

 

Listing 5.10. A program containing overlapping array slices. 

1:  #!/usr/local/bin/perl

2:  

3:  @array = ("one", "two", "three", "four", "five");

4:  @array[1,2,3] = @array[2,3,4];

5:  print ("@array\n");

 

$ program5_10

one three four five five



$

 Line 4 is an example of an assignment with overlapping array slices. At the 
time of assignment, the array slice @array[2,3,4] contains the list 

("three", "four", "five")

This list consists of the last three elements of @array. Assigning this list to 
@array[1,2,3] means that the list stored in @array changes from 

("one", "two", "three", "four", "five")

to 

("one", "three", "four", "five", "five")

NOTE

Overlapping array slices of varying lengths are dealt 
with in the same way as other array slice assignments of 
non-matching lengths. For example:

@array = (1, 2, 3, 4, 5);

@array[0..2] = @array[3,4]; 

This assignment assigns the array slice @array[3,4], 
which is the list (4, 5), to the array slice @array[0..2]. 
After this assignment, the value of @array is the list 

(4, 5, "", 4, 5) 

The third element of @array is now the null string 
because there are only two elements in the array slice 
being assigned. 

Using the Array-Slice Notation as a Shorthand



So far, I've been using the following array-slice notation to refer to consecutive 
elements of an array: 

@array[0,1]

In Perl, however, there is no real difference between an array slice and a list 
containing consecutive elements of the same array. For example, the following 
statements are equivalent: 

@subarray = @array[0,1];

@subarray = ($array[0], $array[1]);

Because of this, you can use the array-slice notation to refer to any elements of an 
array, regardless of whether they are in order. For example, the following two 
statements are equivalent: 

@subarray = ($array[4], $array[1], $array[3]);

@subarray = @array[4,1,3];

In both cases, the array variable @subarray is assigned a list consisting of three 
elements: the fifth, second, and fourth elements of @array. 

You can use this array-slice notation in a variety of ways. For example, you can assign 
one element of an array multiple times: 

@subarray = @array[0,0,0];

This creates a list consisting of three copies of the first element of @array, and then 
assigns this list to @subarray. 

The array-slice notation provides an easy way to swap elements in a list. The following 
is an example: 

@array[1,2] = @array[2,1];

This statement swaps the second and third elements of @array. As with the overlapping 
array slices you saw earlier, the Perl interpreter copies @array[2,1] into a temporary 



location before assigning it, which ensures that the assignment takes place properly. 

For an example of a program that swaps array elements, look at Listing 5.11, which sorts 
the elements in an array using a simple sort algorithm. 

 

Listing 5.11. A program that sorts an array.

1:  #!/usr/local/bin/perl

2:  

3:  # read the array from standard input one item at a time

4:  print ("Enter the array to sort, one item at a time.\n");

5:  print ("Enter an empty line to quit.\n");

6:  $count = 1;

7:  $inputline = <STDIN>;

8:  chop ($inputline);

9:  while ($inputline ne "") {

10:         @array[$count-1] = $inputline;

11:         $count++;

12:         $inputline = <STDIN>;

13:         chop ($inputline);

14: }

15: 

16: # now sort the array

17: $count = 1;

18: while ($count < @array) {

19:         $x = 1;

20:         while ($x < @array) {

21:                 if ($array[$x - 1] gt $array[$x]) {



22:                         @array[$x-1,$x] = @array[$x,$x-1];

23:                 }

24:                 $x++;

25:         }

26:         $count++;

27: }

28: 

29: # finally, print the sorted array

30: print ("@array\n");

 

$ program5_11

Enter the array to sort, one item at a time.

Enter an empty line to quit.

foo

baz

dip

bar

bar baz dip foo

$

 This program is divided into three parts: 

●     Reading the array 
●     Sorting the array 
●     Printing the array 

Lines 3-14 read the array into the variable @array. The conditional expression in line 9, 



$inputline ne "", is true as long as the line is not empty. (Recall that an empty line 
consists of just the newline character, which the library function chop removes.) In this 
example, the list foo baz dip bar is read into the array variable @array. 

Lines 17-27 perform the sort. The sort consists of two loops, one inside the other. The 
inner loop works like this: 

●     Line 21 compares the first item in the list with the item next to it. If the first item 
is greater, line 22 swaps the two items. Otherwise, the two items are left where 
they are. In this example, foo is greater than baz, so foo becomes the second 
element in the list. At this point, the list is
baz foo dip bar 

●     The program then loops back to line 21, which now compares the second pair in the 
list (the second and third elements). The new second element, foo, is compared to 
dip. foo is greater, so foo becomes the new third element, and dip becomes the 
second element:
baz dip foo bar 

●     Line 20 terminates the loop when the last pair is compared. (Note that the 
conditional expression compares the inner counting variable $x with the length 
of the array variable @array. When $x becomes equal to @array, every pair of 
elements in the list has been compared.) 

At this point, the largest element in the list is at the far end of the list: 

baz dip bar foo

The largest value in the list, foo, has been moved to the far right end of the list, where 
it belongs. The other elements have been displaced to make room. 

Lines 17-19 and 26-27 contain the outer loop. This outer loop just makes sure that the 
inner loop is repeated n-1 times, where n is the number of elements in the list. When the 
inner loop is repeated a second time, the second-largest element moves up to the second 
position from the right: 

baz bar dip foo

The final pass through the inner loop sorts the final two elements: 

bar baz dip foo

Line 30 then prints the sorted list.



NOTE

You'll never need to write a program that sorts values 
in a list because Perl has a library function, sort, that 
does it for you. See the section "Array Library 
Functions" later today for more details. 

Reading an Array from the Standard Input File

In the programs you have seen so far, single lines of input are read from the standard 
input file and stored in scalar variables. For example: 

$var = <STDIN>;

In this case, every appearance of <STDIN> means that another line of input is obtained 
from the standard input file. 

Perl also provides a quicker approach: If you assign <STDIN> to an array variable instead 
of a scalar variable, the Perl interpreter reads in all of the data from the standard 
input file at once and assigns it. For example, the statement 

@array = <STDIN>;

reads everything typed in and assigns it all to the array variable @array. The variable 
@array now contains a list; each element of the list is a line of input. 

Listing 5.12 is an example of a simple program that reads its input data into an array. 

 

Listing 5.12. A program that reads data into an array and writes the 
array.

1:  #!/usr/local/bin/perl

2:  



3:  @array = <STDIN>;

4:  print (@array);

 

$ program5_12

Here is my first line of data.

Here is another line.

Here is the last line.

^D

Here is my first line of data.

Here is another line.

Here is the last line.

$

 As you can see, this program is very short. Line 3 reads the input from the 
standard input file. In this example, the input that is entered consists of the three lines 

Here is my first line of data.

Here is another line.

Here is the last line.

followed by the Ctrl+D key combination. Ctrl+D produces a special character that 
indicates end of file; when the Perl interpreter sees this, it knows that there is no more 
input.

NOTE



A blank line is perfectly acceptable input and does not 
terminate the reading of input from the standard input 
file. Only the Ctrl+D character can do that.

Also note that the Ctrl+D character is a non-printing 
character. When you type it, nothing appears on the 
screen. In the examples in this book, control characters 
that are part of the input, such as Ctrl+D, are 
represented by the ^ character followed by the letter 
typed. For example, Ctrl+D is represented as 

^D 

This representation is the standard one used in the 
computing world.

After line 3 is executed, the array variable @array contains a list comprising three 
elements: the three lines of input you just entered. The last character of each input 
line is the newline character (because you didn't call chop to get rid of it). 

Line 4 prints the lines of input you just read. Note that you do not need to separate the 
lines with spaces or newline characters because each line in @array is terminated by a 
newline character.

When you use the following statement:

@array = <STDIN>; 

every line of input you enter is stored in @array all at 
once. If you enter a lot of input, @array can get very 
large. 

Use this statement only when you really need to work 
with the entire input file at once.

Array Library Functions

Perl provides a number of library functions that work on lists and array variables. You 



can use them to do the following: 

●     Sort array elements in alphabetical order 
●     Reverse the elements of an array 
●     Remove the last character from all elements of an array 
●     Merge the elements of an array into a single string 
●     Split a string into array elements 

The following sections describe these array library functions. 

Sorting a List or Array Variable

The library function sort sorts the elements of an array in alphabetical order and 
returns the sorted list. 

The syntax for the sort library function is 

retlist = sort (array);

In this syntax, array is the list to sort, and retlist is the sorted list. 

Here are some examples: 

@array = ("this", "is", "a", "test");

@array2 = sort (@array);

After sort is called, the value of @array2 is the list 

("a", "is", "test", "this")

Note that sort does not modify the original list. The statement 

@array2 = sort (@array);

does not change the value of @array. To replace the contents of an array variable with 
the sorted list, put the array variable on both sides of the assignment, as follows: 



@array = sort (@array);

Here, the sorted list is put back in @array.

The sorted list must be assigned to an array variable in 
order to be used. The statement

sort (@array); 

doesn't do anything useful because the sorted list is not 
assigned to anything.

Note that sort treats its items as strings, not integers; items are sorted in alphabetical, 
not numeric, order. For example: 

@array = (70, 100, 8);

@array = sort (@array);

In this case, sort produces 

(100, 70, 8)

not 

(8, 70, 100)

Because sort is treating the elements of the list as strings, the strings to be sorted are 
70, 100, and 8. When sorting characters that are not alphabetic, sort looks at the 
internal representation of the characters to be sorted. If you are not familiar with 
ASCII (which will be described shortly), this might sound complicated, but it's not too 
difficult to understand. 

Here's how it works: When Perl (or any other programming language) stores a character 
such as r or 1, what it actually does is store a unique eight-bit number that corresponds 
to this character. For example, the letter r is represented by the number 114, and 1 is 



represented by the number 49. Every possible character has its own unique number. 

The sort function uses these unique numbers to determine how to sort character 
strings. When sorting 70, 100, and 8, sort looks at the unique numbers corresponding to 
7, 1, and 8, which are the first characters in each of the strings. As it happens, the 
unique number for 1 is less than that for 7, which is less than that for 8 (which makes 
sense when you think of it). This means that 100 is "less than" 70, and 70 is "less than" 8. 

Of course, if two strings have identical first characters, sort then compares the second 
characters. For example, when sort sorts 72 and 7$, the first characters are identical; 
sort then compares the unique number representing 2 with the number representing $. As 
it happens, the number for $ is smaller, so 7$ is "less than" 72.

NOTE

The set of unique numbers that correspond to the 
characters understood by the computer is known as the 
ASCII character set. 

Most computers today use the ASCII character set, with 
a couple of exceptions as follows: 

●     Some IBM computers use an IBM-developed 
character set called EBCDIC. EBCDIC works the 
same way as ASCII. In both cases, a character such 
as r or 1 is translated into a number that 
represents it. The only difference between 
EBCDIC and ASCII is that the translated numbers 
are different. 

●     Computers that print a variety of spoken 
languages, or which deal with languages such as 
Japanese or Chinese, use a more complicated 16-bit 
code to represent the wide variety of characters 
they understand. 

You don't really need to worry about what character 
set your machine uses, except to take note of the sorting 
order. A complete listing of the ASCII characters can be 
found in Appendix B, "ASCII Character Set."

Using Other Sort Keys

Normally, sort sorts in alphabetical order. You can tell the Perl interpreter to sort 
using any criterion you like. To learn more about sort keys, refer to Day 9, "Using 



Subroutines." 

Reversing a List or Array Variable

The library function reverse reverses the order of the elements of a list or array 
variable, and returns the reversed list. 

The syntax for the reverse library function is 

retlist = reverse (array);

array is the list to reverse, and retlist is the reversed list. 

Here is an example: 

@array = ("backwards", "is", "array", "this");

@array2 = reverse(@array);

The value assigned to @array2 is the list 

("this", "array", "is", "backwards")

As with sort, reverse does not change the original array. 

If you like, you can sort and reverse the same list by passing the list returned by sort to 
reverse. Listing 5.13 shows an example of this. It reads lines of data from the standard 
input file and sorts them in reverse order. 

 

Listing 5.13. A program that sorts input lines in reverse order. 

1:  #!/usr/local/bin/perl

2:  

3:  @input = <STDIN>;



4:  @input = reverse (sort (@input));

5:  print (@input);

 

$ program5_13

foo

bar

dip

baz

^D

foo

dip

baz

bar

$

 Line 3 reads all the input lines from the standard input file into the array 
variable @input. Each element of input consists of a single line of input terminated with 
a newline character. 

Line 4 sorts and reverses the input line. First, sort is called to sort the input lines in 
alphabetical order. (Recall that when one library function appears inside another, the 
innermost one is called first.) The list returned by sort is then passed to reverse, which 
reverses the order of the elements of the list. The result is a list sorted in reverse 
order, which is then assigned to @input. 

Line 5 prints the sorted lines. Because each line is terminated by a newline character, 
no extra spaces or newline characters need to be added to make the output readable.

NOTE



If you like, you can omit the parentheses to the call to 
reverse. This gives you the following statement: 

@input = reverse sort (@input); 

Here is a case where eliminating a set of parentheses 
actually makes the code more readable; it is obvious 
that the statement sorts @input in reverse order. 

Using chop on Array Variables

As you've seen, the chop library function removes the last character from a character 
string. The following is an example: 

$var = "bathe";

chop ($var);      # $var now contains "bath"

The chop function also can work on lists in array variables. If you pass an array 
variable to chop, it removes the last character from every element in the list stored in 
the array variable. For example: 

@list = ("rabbit", "12345", "quartz");

chop (@list);

After chop is called, the list stored in @list is 

("rabbi", "1234", "quart")

The chop function often is used on arrays read from the standard input file, as shown in 
the following: 

@array = <STDIN>;

chop (@array);

This call to chop removes the newline character from each input line. In the following 
section, you will see programs in which this is helpful. 



Creating a Single String from a List

The library function join creates a single string from a list of strings, which then can 
be assigned to a scalar variable. 

The syntax for the join library function is 

string = join (array);

array is the list to join together, and string is the resulting character string. 

The following is an example using join: 

$string = join(" ", "this", "is", "a", "string");

The first element of the list supplied to join contains the characters that are to be 
used to join the parts of the created string together. In this example, $string becomes 
this is a string. 

join can specify other join strings besides " ". For example, the following statement 
uses a pair of colons to join the strings: 

$string = join("::", "words", "and", "colons");

In this statement, $string becomes words::and::colons. 

You can use any list or array variable as part or all of the argument to join. For 
example: 

@list = ("here", "is", "a");

$string = join(" ", @list, "string");

This assigns here is a string to $string. 

Listing 5.14 is a simple program that uses join. It joins together all the input lines from 
the standard input file. 



 

Listing 5.14. A program that takes its input and joins it into a single 
string.

1:  #!/usr/local/bin/perl

2:  

3:  @input = <STDIN>;

4:  chop (@input);

5:  $string = join(" ", @input);

6:  print ("$string\n");

 

$ program5_14

This

is

my

input

^D

This is my input

$

 Line 3 reads all of the input lines into the array variable @input. Each 
element of @input is a single line of input terminated by a newline character. 

Line 4 passes the array variable @input to the library function chop, which removes the 
last character from each element of the list stored in @input. This removes all of the 
trailing newline characters. 



Line 5 calls join, which joins all the input lines into a single string. The first argument 
passed to join is " ", which tells join to put one space between each pair of lines. This 
turns the list 

("This", "is", "my", "input")

into the string 

This is my input

Line 6 prints the string produced by join. Note that the call to print has to specify a 
newline character because all the newline characters in the input lines have been 
removed by the call to chop. 

Splitting a String into a List

As you've seen, the library function join creates a character string from a list. To undo 
the effects of join-to split a character string into separate items-call the function 
split. 

The syntax for the library function split is 

array = split (string);

string is the character string to split, and array is the resulting array. 

The following is a simple example of the use of split: 

$string = "words::separated::by::colons";

@array = split(/::/, $string);

The first argument passed to split tells it where to break the string into separate 
parts. In this example, the first argument is :: (two colons); because there are three 
pairs of colons in the string, split breaks the string into four separate parts. The result 
is the list 

("words", "separated", "by", "colons")



which is assigned to the array variable @array.

NOTE

The / characters surrounding the :: in the call to split 
indicate that the :: is a pattern to be matched. Perl 
supports a wide variety of special pattern-matching 
sequences, which you will learn about on Day 7, 
"Pattern Matching." 

The split function is used in a variety of applications. Listing 5.15 uses split to count 
the number of words in the standard input file. 

 

Listing 5.15. A simple word-count program.

1:  #!/usr/local/bin/perl

2:  

3:  $wordcount = 0;

4:  $line = <STDIN>;

5:  while ($line ne "") {

6:          chop ($line);

7:          @array = split(/ /, $line);

8:          $wordcount += @array;

9:          $line = <STDIN>;

10: }

11: print ("Total number of words: $wordcount\n");

 



$ program5_15

Here is some input.

Here are some more words.

Here is my last line.

^D

Total number of words: 14

$

 When you enter a Ctrl+D (End-of-File) character and read it using <STDIN>, 
the resulting line is the null string. Line 5 of this program tests for this null string. 

Note that line 5 has no problem distinguishing the end of file from a blank input line 
because a blank input line contains the newline character, and chop has not yet been 
called. Once the Perl interpreter knows that the program is not at the end of file, line 
6 can be called; it chops the newline character off the end of the input line. 

Line 7 splits the input line into words. The first argument to split, / /, indicates that 
the line is to be broken whenever the Perl interpreter sees a space. The resulting list is 
stored in @array. 

Because each element of the list in @array is one word in the input line, the total 
number of words in the line is equivalent to the number of elements in the array. Line 8 
takes advantage of this to count the number of words in the input line. Here's how line 
8 works: 

●     When an array variable appears in a place where the Perl interpreter normally 
expects a scalar value, the number of elements in the list stored in the array 
variable is substituted for the variable name. In this program, when the Perl 
interpreter sees @array, it replaces it with the number of elements in @array. 

●     Because the number of elements in the array is the same as the number of words in 
the input line, the statement
$wordcount += @array;

actually adds the number of words in the line to $wordcount. 

NOTE



Listing 5.15 does not work properly if an input line 
contains more than one space between words. The 
following is an example:

This is a line 

Because there are two spaces between This and is, the 
split function breaks 

This is 

into three words: This, an empty word "", and is. 
Because of this, the line 

This is a line 

appears to contain five words when it really contains 
only four.

To get around this problem, what you need is a pattern 
that matches one or more spaces. To learn about special 
patterns such as this, see Day 7.

Listing 5.16 is an example of a program that uses split, join, and reverse to reverse the 
word order of the input read from the standard input file. 

 

Listing 5.16. A program that reverses the word order of the input file.

1:  #!/usr/local/bin/perl

2:  

3:  @input = <STDIN>;

4:  chop (@input);

5:  

6:  # first, reverse the order of the words in each line



7:  $currline = 1;

8:  while ($currline <= @input) {

9:          @words = split(/ /, $input[$currline-1]);

10:         @words = reverse(@words);

11:         $input[$currline-1] = join(" ", @words, "\n");

12:         $currline++;

13: }

14: 

15: # now, reverse the order of the input lines and print them

16: @input = reverse(@input);

17: print (@input);

 

$ program5_16

This sentence

is in

reverse order.

^D

order. reverse

in is

sentence This

$

 Line 3 reads all of the standard input file into the array @input. Line 4 then 
removes the trailing newline characters from the input lines. 

Lines 7-13 reverse each individual line. Line 7 compares the current line number, stored 
in $currline, with the number of lines of input. (Recall that the number of elements in 
the list is used whenever an array variable appears where a scalar value is expected.) 



Line 9 splits a line of input into words. The first argument to split, / /, indicates that a 
split is to occur every time a space is seen. The list of words is stored in the array 
variable @words. 

Line 10 reverses the order of the list of words stored in @words. After the list has been 
reversed, line 11 joins the input line back together again. Note that line 11 appends a 
newline character to the input line. 

Now that the words in each individual line have been reversed, all that the program 
needs to do is reverse the order of the lines themselves. Line 16 accomplishes this. 

Line 17 prints the reversed input file. Note that the period character (.) appears at the 
end of the first word; this is because the reversing program isn't smart enough to detect 
and get rid of it. (You can use split to get rid of this, too, if you want.) 

Other List-Manipulation Functions

Perl provides several other list-manipulation functions also. To learn about these, 
refer to Day 14, "Scalar-Conversion and List-Manipulation Functions." 

Summary

In today's lesson, you learned about lists and array variables. A list is an ordered 
collection of scalar values. A list can consist of any number of scalar values. 

Lists can be stored in array variables, which are variables whose names begin with the 
character @. 

Individual elements of array variables can be accessed using subscripts. The subscript 0 
refers to the first element of the list stored in the array variable, the subscript 1 refers 
to the second element, and so on. If an array element is not defined, it is assumed to hold 
the null string "". If a previously undefined array element is assigned to, the array 
grows appropriately. 

The list-range operator provides a convenient way to create a list containing 
consecutive numbers. 

You can copy lists from one array variable to another. In addition, you can include an 
array variable in a list, which means that the list stored in the array variable is copied 
into the list containing the array-variable name. 

Array-variable names can appear in character strings; in this case, the elements of the 
list are included in place of the variable name, with a space separating each pair of 



elements. 

You can assign values to scalar variables from array variables, and vice versa. 

If an array variable appears in a place where a scalar variable is expected, the length of 
the list stored in the array variable is used. 

You can access any part of a list stored in an array variable by using the array-slice 
notation. You can assign values to array slices, and they can be used anywhere a list is 
expected. 

The entire contents of the standard input file can be stored in a single array variable. 

The library functions sort and reverse sort and reverse lists, respectively. The 
function chop removes the last character from each element of a list. The function 
split breaks a single string into a collection of list elements. The function join takes a 
collection of list elements and joins them into a single string. 

Q&A

Q: How can I tell whether a reference to an array variable such as @array 
refers to the stored list or to the length of the list? 

A: It's usually pretty easy to tell. In a lot of places, using a list makes no sense: 
$result = $number + @array;

For example, it makes no sense here to add a list to $number, so the length of the 
list stored in @array is used. 

Q: Why do array elements use $ for the first character of the element name, 
and not @? Wouldn't it make more sense to refer to an array element as 
@array[2]

because we all know that the @ indicates an array variable? 

A: This relates to the first question. The Perl interpreter needs to know as soon as 
possible whether a variable reference is a scalar value or a list. The $ indicates 
right away that the upcoming item is a scalar value. 
Eventually, you'll get used to this notation. 

Q: Is there a difference between an undefined array variable and an array 
variable containing the empty list? 

A: No. By default, all array variables contain the empty list. Note, however, that 
the empty list is not the same as a list containing the null string:
@array = ("");

This list contains one element, which happens to be a null string. 

Q: How large an input file can I read in using the following statement?
@array = <STDIN>; 



A: Perl imposes no limit on the size of arrays. Your computer, however, has a finite 
amount of memory, which limits how large your arrays can be. 

Q: Why does Perl add spaces when you substitute for an array variable in a 
string? 

A: The most common use of string substitution is in the print statement. Normally, 
when you print a list you don't want to have the elements of the list running 
together, because you want to see where one element stops and the next one 
starts. 
To print the elements of a string without spaces between them, pass the list to 
print without enclosing it in a string, as follows:
print ("Here is my list", @list, "\n"); 

Q: Why does $ appear before 1 in the ASCII character set? 

A: The short answer is: Just because. (This reasoning occurs more often in computing 
than you might think.) 
Here's a more detailed explanation: On early machines that used the ASCII 
character set, performance was more efficient if there was a relationship 
between, for instance, the location of the uppercase alphabetic characters and 
the lowercase alphabetic characters. (In fact, if you add 0x20, or 20 hexadecimal, 
to the ASCII representation of an uppercase letter, you get the corresponding 
lowercase letter.)
Establishing relationships such as these meant that gaps existed between, for 
example, the representation of Z (which is 90) and the representation of a (which 
is 97). These gaps are filled by printable non-alphanumeric characters; for 
example, the representation of [ is 91.
As for why $ appears before 1, as opposed to ?, which appears after 1, the 
explanation is: Just because. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define the following terms:
a.   list
b.   empty list
c.   array variable
d.   subscript
e.   array slice 

2.  Assume the following assignments have been performed:
@list = (1, 2, 3);
$scalar1 = "hello";



$scalar2 = "there";

What is assigned to the array variable @newlist in each of the following cases?
a.   @newlist = @list;
b.   @newlist = reverse(@list[1,2]);
c.   @newlist = ($scalar1, @list[1,1]); 
d.   ($dummy, @newlist) = @list;
e.   @newlist[2,1,3] = @list[1,2,1];
f.   @newlist = <STDIN>; 

3.  Assume that the following assignments have been performed: 
@list1 = (1, 2, 3, 4);
@list2 = ("one", "two", "three");

What is the value of $result in each of the following cases?
($dummy, $result) = @list1;
$result = @list1;
($result) = @list2;
($result) = @list1[1..2];
$result = $list2[$list1[$list1[0]]];

$result = $list2[3]; 
4.  What is the difference between a list and an array variable? 
5.  How does the Perl interpreter distinguish between an array element and a scalar 

variable? 
6.  How can you ensure that the @, $, and [ characters are not substituted for in 

strings? 
7.  How can you obtain the length of a list stored in an array variable? 
8.  What happens when you refer to an array element that has not yet been defined? 
9.  What happens when you assign to an array element that is larger than the 

current length of the array? 

Exercises

1.  Write a program that counts all occurrences of the word the in the standard 
input file. 

2.  Write a program that reads lines of input containing numbers, each of which is 
separated by exactly one space, and prints out the following:
a.   The total for each line
b.   The grand total 

3.  Write a program that reads all input from the standard input file and sorts all 
the words in reverse order, printing out one word per line with duplicates 
omitted. 

4.  BUG BUSTER: What is wrong with the following statement? 
$result = @array[4]; 

5.  BUG BUSTER: What is wrong with the following program? (See if you can figure 
out what's wrong without checking the listings in today's lesson.)
#!/usr/local/bin/perl

@input = <STDIN>;
$currline = 1;



while ($currline < @input) {
@words = split(/ /, $input[$currline]);
@words = sort(@words);
$input[$currline] = join(" ", @words);
$currline++;
}

print (@input); 

    



Chapter 6

Reading from and Writing to Files

CONTENTS

●     Opening a File 
❍     The File Variable 
❍     The Filename 
❍     The File Mode 
❍     Checking Whether the Open Succeeded 

●     Reading from a File 
❍     File Variables and the Standard Input File 
❍     Terminating a Program Using die 
❍     Reading into Array Variables 

●     Writing to a File 
❍     The Standard Output File Variable 
❍     Merging Two Files into One 

●     Redirecting Standard Input and Standard Output 
●     The Standard Error File 
●     Closing a File 
●     Determining the Status of a File 

❍     File-Test Operator Syntax 
❍     Available File-Test Operators 
❍     More on the -e Operator 
❍     Testing for Read Permission-the -r Operator 
❍     Checking for Other Permissions 
❍     Checking for Empty Files 
❍     Using File-Test Operators with File Variables 

●     Reading from a Sequence of Files 
❍     Reading into an Array Variable 

●     Using Command-Line Arguments as Values 
❍     ARGV and the <> Operator 

●     Opening Pipes 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 



❍     Exercises 

So far, you've learned to read input from the standard input file, which stores data 
that is entered from the keyboard. You've also learned how to write to the standard 
output file, which sends data to your screen. In today's lesson, you'll learn the 
following: 

●     How to open a file 
●     How to read from and write to an opened file 
●     How to redirect standard input and standard output and how to use the standard 

error file 
●     How to close a file 
●     About file-test operators, which determine the status of a file 
●     How to read from multiple files 
●     How to use command-line arguments 
●     How to open pipes 

Opening a File

Before you can read from or write to a file, you must first open the file. This operation 
tells the operating system that you are currently accessing the file and that no one 
else can change it while you are working with it. To open a file, call the library 
function open. 

The syntax for the open library function is 

open (filevar, filename);

When you call open, you must supply two arguments: 

●     filevar represents the name you want to use in your Perl program to refer to the 
file. 

●     filename represents the location of the file on your machine. 

The File Variable

The first argument passed to open is the name that the Perl interpreter uses to refer to 
the file. This name is also known as the file variable (or the file handle). 

A file-variable name can be any sequence of letters, digits, and underscores, as long as 
the first character is a letter. 



The following are legal file-variable names: 

filename

MY_NAME

NAME2

A_REALLY_LONG_FILE_VARIABLE_NAME

The following are not legal file-variable names: 

1NAME

A.FILE.NAME

_ANOTHERNAME

if

if is not a valid file-variable name because it has another meaning: as you've seen, it 
indicates the start of an if statement. Words such as if that have special meanings in 
Perl are known as reserved words and cannot be used as names.

Tip

It's a good idea to use all uppercase letters for your file-
variable names. This makes it easier to distinguish file-
variable names from other variable names and from 
reserved words.

The Filename

The second item passed to open is the name of the file you want to open. For example, if 
you are running Perl on a UNIX file system, and your current working directory 
contains a file named file1 that you would like to open, you can open it as follows: 

open(FILE1, "file1");

This statement tells Perl that you want to open the file file1 and associate it with the 
file variable FILE1. 



If you want to open a file in a different directory, you can specify the complete 
pathname, as follows: 

open(FILE1, "/u/jqpublic/file1");

This opens the file /u/jqpublic/file1 and associates it with the file variable FILE1.

NOTE

If you are running Perl on a file system other than 
UNIX, use the filename and directory syntax that is 
appropriate for your system. The Perl interpreter 
running on that system will be able to figure out where 
your file is located.

The File Mode

When you open a file, you must decide how you want to access the file. There are three 
different file-access modes (or, simply, file modes) available in Perl:

read mode Enables the program to read the existing contents of 
the file but does not enable it to write into the file 

write mode Destroys the current contents of the file and 
overwrites them with the output supplied by the 
program 

append mode Appends output supplied by the program to the existing 
contents of the file 

By default, open assumes that a file is to be opened in read mode. To specify write mode, 
put a > character in front of the filename that you pass to open, as follows: 

open (OUTFILE, ">/u/jqpublic/outfile");

This opens the file /u/jqpublic/outfile for writing and associates it with the file 
variable OUTFILE. 

To specify append mode, put two > characters in front of the filename, as follows: 



open (APPENDFILE, ">>/u/jqpublic/appendfile");

This opens the file /u/jqpublic/appendfile in append mode and associates it with the file 
variable APPENDFILE. 

NOTE

Here are a few things to remember when opening files: 

●     When you open a file for writing, any existing 
contents are destroyed. 

●     You cannot read from and write to the same file 
at the same time. 

●     When you open a file in append mode, the existing 
contents are not destroyed, but you cannot read 
the file while writing to it. 

Checking Whether the Open Succeeded

Before you can use a file opened by the open function, you should first check whether 
the open function actually is giving you access to the file. The open function enables 
you to do this by returning a value indicating whether the file-opening operation 
succeeded: 

●     If open returns a nonzero value, the file has been opened successfully. 
●     If open returns 0, an error has occurred. 

As you can see, the values returned by open correspond to the values for true and false 
in conditional expressions. This means that you can use open in if and unless statements. 
The following is an example: 

if (open(MYFILE, "/u/jqpublic/myfile")) {

        # here's what to do if the file opened

}

The code inside the if statement is executed only if the file has been successfully 
opened. This ensures that your programs read or write only to files that you can access.

NOTE



If open returns false, you can find out what went wrong 
by using the file-test operators, which you'll learn 
about later today. 

Reading from a File

Once you have opened a file and determined that the file is available for use, you can 
read information from it. 

To read from a file, enclose the file variable associated with the file in angle brackets 
(< and >), as follows: 

$line = <MYFILE>;

This statement reads a line of input from the file specified by the file variable MYFILE 
and stores the line of input in the scalar variable $line. 

Listing 6.1 is a simple program that reads input from a file and writes it to the standard 
output file. 

 

Listing 6.1. A program that reads lines from a file and prints them.

1:  #!/usr/local/bin/perl

2:  

3:  if (open(MYFILE, "file1")) {

4:          $line = <MYFILE>;

5:          while ($line ne "") {

6:                  print ($line);

7:                  $line = <MYFILE>;

8:          }

9:  }



 

$ program6_1

Here is a line of input.

Here is another line of input.

Here is the last line of input.

$

 Line 3 opens the file file1 in read mode, which means that the file is to be 
made available for reading. file1 is assumed to be in the current working directory. The 
file variable MYFILE is associated with the file file1. 

If the call to open returns a nonzero value, the conditional expression 

open(MYFILE, "file1")

is assumed to be true, and the code inside the if statement is executed. 

Lines 4-8 print the contents of file1. The sample output shown here assumes that file1 
contains the following three lines: 

Here is a line of input.

Here is another line of input.

Here is the last line of input.

Line 4 reads the first line of input from the file specified by the file variable MYFILE, 
which is file1. This line of input is stored in the scalar variable $line. 

Line 5 tests whether the end of the file specified by MYFILE has been reached. If there 
are no more lines left in MYFILE, $line is assigned the empty string. 

Line 6 prints the text stored in $line, which is the line of input read from MYFILE. 



Line 7 reads the next line of MYFILE, preparing for the loop to start again. 

File Variables and the Standard Input File

Now that you have seen how Perl programs read input from files in read mode, take 
another look at a statement that reads a line of input from the standard input file. 

$line = <STDIN>;

Here's what is actually happening: The Perl program is referencing the file variable 
STDIN, which represents the standard input file. The < and > on either side of STDIN tell 
the Perl interpreter to read a line of input from the standard input file, just as the < 
and > on either side of MYFILE in 

$line = <MYFILE>;

tell the Perl interpreter to read a line of input from MYFILE. 

STDIN is a file variable that behaves like any other file variable representing a file in 
read mode. The only difference is that STDIN does not need to be opened by the open 
function because the Perl interpreter does that for you. 

Terminating a Program Using die 

In Listing 6.1, you saw that the return value from open can be tested to see whether the 
program actually has access to the file. The code that operates on the opened file is 
contained in an if statement. 

If you are writing a large program, you might not want to put all of the code that 
affects a file inside an if statement, because the distance between the beginning of the 
if statement and the closing brace (}) could get very large. For example: 

if (open(MYFILE, "file1")) {

        # this could be many pages of statements!

}

Besides, after a while, you'll probably get tired of typing the spaces or tabs you use to 
indent the code inside the if statement. Perl provides a way around this using the 
library function die. 



The syntax for the die library function is 

die (message);

When the Perl interpreter executes the die function, the program terminates 
immediately and prints the message passed to die. 

For example, the statement 

die ("Stop this now!\n");

prints the following on your screen and terminates the program: 

Stop this now!

Listing 6.2 shows how you can use die to smoothly test whether a file has been opened 
correctly. 

 

Listing 6.2. A program that uses die when testing for a successful file 
open operation.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(MYFILE, "file1")) {

4:          die ("cannot open input file file1\n");

5:  }

6:  

7:  # if the program gets this far, the file was

8:  # opened successfully

9:  $line = <MYFILE>;



10: while ($line ne "") {

11:         print ($line);

12:         $line = <MYFILE>;

13: }

 

$ program6_2

Here is a line of input.

Here is another line of input.

Here is the last line of input.

$

 This program behaves the same way as the one in Listing 6.1, except that it 
prints out an error message when it can't open the file. 

Line 3 opens the file and tests whether the file opened successfully. Because this is an 
unless statement, the code inside the braces ({ and }) is executed unless the file opened 
successfully. 

Line 4 is the call to die that is executed if the file does not open successfully. This 
statement prints the following message on the screen and exits: 

cannot open input file file1

Because line 4 terminates program execution when the file is not open, the program can 
make it past line 5 only if the file has been opened successfully. 

The loop in lines 9-13 is identical to the loop you saw in Listing 6.1. The only difference 
is that this loop is no longer inside an if statement.

NOTE



Here is another way to write lines 3-5:

open (MYFILE, "file1") || die ("Could not open 

file"); 

Recall that the logical OR operator only evaluates the 
expression on its right if the expression on its left is 
false. This means that die is called only if open returns 
false (if the open operation fails). 

Printing Error Information Using die

If you like, you can have die print the name of the Perl program and the line number of 
the statement containing the call to die. To do this, leave off the trailing newline 
character in the character string, as follows: 

die ("Missing input file");

If the Perl program containing this statement is called myprog, and this statement is line 
14 of myprog, this call to die prints the following and exits: 

Missing input file at myprog line 14.

Compare this with 

die ("Missing input file\n");

which simply prints the following before exiting: 

Missing input file

Specifying the program name and line number is useful in two cases: 

●     If the program contains many similar error messages, you can use die to specify the 
line number of the message that actually appeared. 

●     If the program is called from within another program, you can use die to indicate 
that this program generated the error. 



Reading into Array Variables

Perl enables you to read an entire file into a single array variable. To do this, assign 
the file variable to the array variable, as follows: 

@array = <MYFILE>;

This reads the entire file represented by MYFILE into the array variable @array. Each 
line of the file becomes an element of the list that is stored in @array. 

Listing 6.3 is a simple program that reads an entire file into an array. 

 

Listing 6.3. A program that reads an entire input file into an array.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(MYFILE, "file1")) {

4:          die ("cannot open input file file1\n");

5:  }

6:  @input = <MYFILE>;

7:  print (@input);

 

$ program6_3

Here is a line of input.

Here is another line of input.

Here is the last line of input.



$

 Lines 3-5 open the file, test whether the file has been opened successfully, 
and terminate the program if the file cannot be opened. 

Line 6 reads the entire contents of the file represented by MYFILE into the array 
variable @input. @input now contains a list consisting of the following three elements: 

("Here is a line of input.\n",

 "Here is another line of input.\n",

 "Here is the last line of input.\n")

Note that a newline character is included as the last character of each line. 

Line 7 uses the print function to print the entire file. 

Writing to a File

After you have opened a file in write or append mode, you can write to the file you have 
opened by specifying the file variable with the print function. For example, if you have 
opened a file for writing using the statement 

open(OUTFILE, ">outfile");

the following statement: 

print OUTFILE ("Here is an output line.\n");

writes the following line to the file specified by OUTFILE, which is the file called 
outfile: 

Here is an output line.

Listing 6.4 is a simple program that reads from one file and writes to another. 

 



Listing 6.4. A program that opens two files and copies one into another.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(INFILE, "file1")) {

4:          die ("cannot open input file file1\n");

5:  }

6:  unless (open(OUTFILE, ">outfile")) {

7:          die ("cannot open output file outfile\n");

8:  }

9:  $line = <INFILE>;

10: while ($line ne "") {

11:         print OUTFILE ($line);

12:         $line = <INFILE>;

13: }

 

This program writes nothing to the screen because all output is directed to the file 
called outfile.

 Lines 3-5 open file1 for reading. If the file cannot be opened, line 4 is 
executed, which prints the following message on the screen and terminates the program: 

cannot open input file file1

Lines 6-8 open outfile for writing; the > in >outfile indicates that the file is to be 
opened in write mode. If outfile cannot be opened, line 7 prints the message 



cannot open output file outfile

on the screen and terminates the program. 

The only other line in the program that you have not seen in other listings in this 
lesson is line 11, which writes the contents of the scalar variable $line on the file 
specified by OUTFILE. 

Once this program has completed, the contents of file1 are copied into outfile. 

Here is a line of input.

Here is another line of input.

Here is the last line of input.

Make sure that files you open in write mode contain 
nothing valuable. When the open function opens a file 
in write mode, any existing contents are destroyed. 

The Standard Output File Variable

If you want, your program can reference the standard output file by referring to the 
file variable associated with the output file. This file variable is named STDOUT. 

By default, the print statement sends output to the standard output file, which means 
that it sends the output to the file associated with STDOUT. As a consequence, the 
following statements are equivalent: 

print ("Here is a line of output.\n");

print STDOUT ("Here is a line of output.\n");

NOTE



You do not need to open STDOUT because Perl 
automatically opens it for you. 

Merging Two Files into One

In Perl, you can open as many files as you like, provided you define a different file 
variable for each one. (Actually, there is an upper limit on the number of files you can 
open, but it's fairly large and also system-dependent.) For an example of a program that 
has multiple files open at one time, take a look at Listing 6.5. This program merges two 
files by creating an output file consisting of one line from the first file, one line from 
the second file, another line from the first file, and so on. For example, if an input file 
named merge1 contains the lines 

a1

a2

a3

and another file, merge2, contains the lines 

b1

b2

b3

then the resulting output file consists of 

a1

b1

a2

b2

a3

b3

 



Listing 6.5. A program that merges two files.

1:  #!/usr/local/bin/perl

2:  

3:  open (INFILE1, "merge1") ||

4:          die ("Cannot open input file merge1\n");

5:  open (INFILE2, "merge2") ||

6:          die ("Cannot open input file merge2\n");

7:  $line1 = <INFILE1>;

8:  $line2 = <INFILE2>;

9:  while ($line1 ne "" || $line2 ne "") {

10:         if ($line1 ne "") {

11:                 print ($line1);

12:                 $line1 = <INFILE1>;

13:         }

14:         if ($line2 ne "") {

15:                 print ($line2);

16:                 $line2 = <INFILE2>;

17:         }

18: }

 

$ program6_5

a1

b1

a2



b2

a3

b3

$

 Lines 3 and 4 show another way to write a statement that either opens a file 
or calls die if the open fails. Recall that the || operator first evaluates its left 
operand; if the left operand evaluates to true (a nonzero value), the right operand is 
not evaluated because the result of the expression is true. 

Because of this, the right operand, the call to die, is evaluated only when the left 
operand is false-which happens only when the call to open fails and the file merge1 
cannot be opened. 

Lines 5 and 6 repeat the preceding process for the file merge2. Again, either the file is 
opened successfully or the program aborts by calling die. 

The program then loops repeatedly, reading a line of input from each file each time. The 
loop terminates only when both files have been exhausted. If one file is empty but the 
other is not, the program just copies the line from the non-empty file to the standard 
output file. 

Note that the output from this program is printed on the screen. If you decide that you 
want to send this output to a file, you can do one of two things: 

●     You can modify the program to write its output to a different file. To do this, open 
the file in write mode and associate it with a file variable. Then, change the print 
statements to refer to this file variable. 

●     You can redirect the standard output file on the command line. 

For a discussion of the second method, see the following section. 

Redirecting Standard Input and Standard Output

When you run programs on UNIX, you can redirect input and output using < and >, 
respectively, as follows: 

myprog <input >output



Here, when you run the program called myprog, the input for the program is taken from 
the file specified by input instead of from the keyboard, and the output for the program 
is sent to the file specified by output instead of to the screen. 

When you run a Perl program and redirect input using <, the standard input file 
variable STDIN now represents the file specified with <. For example, consider the 
following simple program: 

#!/usr/local/bin/perl

$line = <STDIN>;

print ($line);

Suppose this program is named myperlprog and is called with the command 

myperlprog <file1

In this case, the statement 

$line = <STDIN>;

reads a line of input from file1 because the file variable STDIN represents file1. 

Similarly, specifying > on the command file redirects the standard output file from the 
screen to the specified file. For example, consider this command: 

myperlprog <file1 >outfile

It redirects output from the standard output file to the file called outfile. Now, the 
following statement writes a line of data to outfile: 

print ($line);

The Standard Error File

Besides the standard input file and the standard output file, Perl also defines a third 
built-in file variable, STDERR, which represents the standard error file. By default, text 



sent to this file is written to the screen. This enables the program to send messages to 
the screen even when the standard output file has been redirected to write to a file. As 
with STDIN and STDOUT, you do not need to open STDERR because it automatically is 
opened for you. 

Listing 6.6 provides a simple example of the use of STDERR. The output shown in the input-
output example assumes that the standard input file and standard output file have been 
redirected to files using < and >, as in 

myprog <infile >outfile

Therefore, the only output you see is what is written to STDERR. 

 

Listing 6.6. A program that writes to the standard error file. 

1:  #!/usr/local/bin/perl

2:  

3:  open(MYFILE, "file1") ||

4:          die ("Unable to open input file file1\n");

5:  print STDERR ("File file1 opened successfully.\n");

6:  $line = <MYFILE>;

7:  while ($line ne "") {

8:          chop ($line);

9:          print ("\U$line\E\n");

10:         $line = <MYFILE>;

11: }

 



$ program6_6

File file1 opened successfully.

$

 This program converts the contents of a file into uppercase and sends the 
converted contents to the standard output file. 

Line 3 tries to open file1. If the file cannot be opened, line 4 is executed. This calls die, 
which prints the following message and terminates: 

Unable to open input file file1

NOTE

The function die sends its messages to the standard 
error file, not the standard output file. This means that 
when a program terminates, the message printed by die 
always appears on your screen, even when you have 
redirected output to a file. 

If the file is opened successfully, line 5 writes a message to the standard error file, 
which indicates that the file has been opened. As you can see, the standard error file is 
not reserved solely for errors. You can write anything you want to STDERR at any time. 

Lines 6-11 read one line of file1 at a time and write it out in uppercase (using the escape 
characters \U and \E, which you learned about on Day 3, "Understanding Scalar 
Values"). 

Closing a File

When you are finished reading from or writing to a file, you can tell the Perl 
interpreter that you are finished by calling the library function close. 

The syntax for the close library function is 

close (filevar);



close requires one argument: the file variable representing the file you want to close. 
Once you have closed the file, you cannot read from it or write to it without invoking 
open again. 

Note that you do not have to call close when you are finished with a file: Perl 
automatically closes the file when the program terminates or when you open another 
file using a previously defined file variable. For example, consider the following 
statements: 

open (MYFILE, ">file1");

print MYFILE ("Here is a line of output.\n");

open (MYFILE, ">file2");

print MYFILE ("Here is another line of output.\n");

Here, when file2 is opened for writing, file1 automatically is closed. The file variable 
MYFILE is now associated with file2. This means that the second print statement sends 
the following to file2: 

Here is another line of output.

DO use the <> operator, which is an easy way to read 
input from several files in succession. See the section 
titled "Reading from a Sequence of Files," later in this 
lesson, for more information on the <> operator. 

DON'T use the same file variable to represent multiple 
files unless it is absolutely necessary. It is too easy to 
lose track of which file variable belongs to which file, 
especially if your program is large or has many nested 
conditional statements. 

Determining the Status of a File

Many of the example programs in today's lesson call open and test the returned result 
to see whether the file has been opened successfully. If open fails, it might be useful to 



find out exactly why the file could not be opened. To do this, use one of the file-test 
operators. 

Listing 6.7 provides an example of the use of a file-test operator. This program is a slight 
modification of Listing 6.6, which is an uppercase conversion program. 

 

Listing 6.7. A program that checks whether an unopened file actually 
exists.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(MYFILE, "file1")) {

4:          if (-e "file1") {

5:                 die ("File file1 exists, but cannot be opened.\n");

6:          } else {

7:                 die ("File file1 does not exist.\n");

8:          }

9:  }

10: $line = <MYFILE>;

11: while ($line ne "") {

12:         chop ($line);

13:         print ("\U$line\E\n");

14:         $line = <MYFILE>;

15: }

 

$ program6_7



File file1 does not exist.

$

 Line 3 attempts to open the file file1 for reading. If file1 cannot be opened, 
the program executes the if statement starting in line 4. 

Line 4 is an example of a file-test operator. This file-test operator, -e, tests whether its 
operand, a file, actually exists. If the file file1 exists, the expression -e "file1" 
returns true, the message File file1 exists, but cannot be opened. is displayed, and 
the program exits. If file1 does not exist, -e "file1" is false, and the library function 
die prints the following message before exiting: 

File file1 does not exist.

File-Test Operator Syntax

All file-test operators have the same syntax as the -e operator used in Listing 6.7. 

The syntax for the file-test operators is 

-x expr

Here, x is an alphabetic character and expr is any expression. The value of expr is 
assumed to be a string that contains the name of the file to be tested. 

Because the operand for a file-test operator can be any expression, you can use scalar 
variables and string operators in the expression if you like. For example: 

$var = "file1";

if (-e $var) {

        print STDERR ("File file1 exists.\n");

}

if (-e $var . "a") {

        print STDERR ("File file1a exists.\n");



}

In the first use of -e, the contents of $var, file1, are assumed to be the name of a file, 
and this file is tested for existence. In the second case, a is appended to the contents of 
file1, producing the string file1a. The -e operator then tests whether a file named 
file1a exists.

NOTE

The Perl interpreter does not get confused by the 
expression

-e $var . "a" 

because the . operator has higher precedence than the -
e operator. This means that the string concatenation is 
performed first. 

The file-test operators have higher precedence than the 
comparison operators but lower precedence than the 
shift operators. To see a complete list of the Perl 
operators and their precedences, refer to Day 4, "More 
Operators."

The string can be a complete path name, if you like. The following is an example: 

if (-e "/u/jqpublic/file1") {

        print ("The file exists.\n");

}

This if statement tests for the existence of the file /u/jqpublic/file1. 

Available File-Test Operators

Table 6.1 provides a complete list of the file-test operators available in Perl. In this 
table, name is a placeholder for the name of the operand being tested.

Table 6.1. The file-test operators.



Operator Description 

-b Is name a block device? 

-c Is name a character device? 

-d Is name a directory? 

-e Does name exist? 

-f Is name an ordinary file? 

-g Does name have its setgid bit set? 

-k Does name have its "sticky bit" set? 

-l Is name a symbolic link? 

-o Is name owned by the user? 

-p Is name a named pipe? 

-r Is name a readable file? 

-s Is name a non-empty file? 

-t Does name represent a terminal? 

-u Does name have its setuid bit set? 

-w Is name a writable file? 

-x Is name an executable file? 

-z Is name an empty file? 

-A How long since name accessed? 

-B Is name a binary file? 

-C How long since name's inode accessed? 

-M How long since name modified? 

-O Is name owned by the "real user" only?* 

-R Is name readable by the "real user" only?* 

-S Is name a socket? 

-T Is name a text file? 

-W Is name writable by the "real user" only?* 

-X Is name executable by the "real user" only?* 

* In this case, the "real user" is the userid specified at login, as 
opposed to the effective user ID, which is the userid under which you 
currently are working. (On some systems, a command such as 
/user/local/etc/suid enables you to change your effective user ID.) 

The following sections describe some of the more common file-test operators and show 
you how they can be useful. (You'll also learn about more of these operators on Day 12, 



"Working with the File System.") 

More on the -e Operator 

When a Perl program opens a file for writing, it destroys anything that already exists 
in the file. This might not be what you want. Therefore, you might want to make sure 
that your program opens a file only if the file does not already exist. 

You can use the -e file-test operator to test whether or not to open a file for writing. 
Listing 6.8 is an example of a program that does this. 

 

Listing 6.8. A program that tests whether a file exists before opening it 
for writing.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(INFILE, "infile")) {

4:          die ("Input file infile cannot be opened.\n");

5:  }

6:  if (-e "outfile") {

7:          die ("Output file outfile already exists.\n");

8:  }

9:  unless (open(OUTFILE, ">outfile")) {

10:         die ("Output file outfile cannot be opened.\n");

11: }

12: $line = <INFILE>;

13: while ($line ne "") {

14:         chop ($line);

15:         print OUTFILE ("\U$line\E\n");

16:         $line = <INFILE>;

17: }



 

$ program6_8

Output file outfile already exists.

$

 This program is the uppercase conversion program again; most of it should be 
familiar to you. 

The only difference is lines 6-8, which use the -e file-test operator to check whether 
the output file outfile exists. If outfile exists, the program aborts, which ensures that 
the existing contents of outfile are not lost. 

If outfile does not exist, the following expression fails: 

-e "outfile"

and the program knows that it is safe to open outfile because it does not already exist. 

Using File-Test Operators in Expressions

If you don't need to know exactly why your program is failing, you can combine all of 
the tests in Listing 6.8 into a single statement, as follows: 

open(INFILE, "infile") && !(-e "outfile") &&

     open(OUTFILE, ">outfile") || die("Cannot open files\n");

Can you see how this works? Here's what is happening: The && operator, logical AND, is 
true only if both of its operands are true. In this case, the two && operators indicate 
that the subexpression up to, but not including, the || is true only if all three of the 
following are true: 



open(INFILE, "infile")

!(-e "outfile")

open(OUTFILE, ">outfile")

All three are true only when the following conditions are met: 

●     The input file infile can be opened. 
●     The output file outfile does not already exist. 
●     The output file outfile can be opened. 

If any of these subexpressions is false, the entire expression up to the || is false. This 
means that the subexpression after the || (the call to die) is executed, and the program 
aborts. 

Note that each of the three subexpressions associated with the && operators is 
evaluated in turn. This means that the subexpression 

!(-e "outfile")

is evaluated only if 

open(INFILE, "infile")

is true, and that the subexpression 

open(OUTFILE, ">outfile")

is evaluated only if 

!(-e "outfile")

is true. This is exactly the same logic that Listing 6.8 uses. 

If any of the subexpressions is false, the Perl interpreter doesn't evaluate the rest of 
them because it knows that the final result of 

open(INFILE, "infile") && !(-e "outfile") &&



     open(OUTFILE, ">outfile")

is going to be false. Instead, it goes on to evaluate the subexpression to the right of the 
||, which is the call to die. 

This program logic is somewhat complicated, and you shouldn't use it unless you feel 
really comfortable with it. The if statements in Listing 6.8 do the same thing and are 
easier to understand; however, it's useful to know how complicated statements such as 
the following one work because many Perl programmers like to write code that works in 
this way: 

open(INFILE, "infile") && !(-e "outfile") &&

     open(OUTFILE, ">outfile") || die("Cannot open files\n");

In the next few days, you'll see several more examples of code that exploits how 
expressions work in Perl. "Perl hackers"-experienced Perl programmers-often enjoy 
compressing multiple statements into shorter ones, and they delight in complexity. Be 
warned. 

Testing for Read Permission-the -r Operator

Before you can open a file for reading, you must have permission to read the file. The -r 
file-test operator tests whether you have permission to read a file. 

Listing 6.9 checks whether the person running the program has permission to access a 
particular file. 

 

Listing 6.9. A program that tests for read permission on a file.

1:  #!/usr/local/bin/perl

2:  

3:  unless (open(MYFILE, "file1")) {

4:          if (!(-e "file1")) {

5:                  die ("File file1 does not exist.\n");



6:          } elsif (!(-r "file1")) {

7:                  die ("You are not allowed to read file1.\n");

8:          } else {

9:                  die ("File1 cannot be opened\n");

10:         }

11: }

 

$ program6_9

You are not allowed to read file1.

$

 Line 3 of this program tries to open file1. If the call to open fails, the 
program tries to find out why. 

First, line 4 tests whether the file actually exists. If the file exists, the Perl 
interpreter executes line 6, which tests whether the file has the proper read permission. 
If it does not, die is called; it then prints the following message and exits: 

You are not allowed to read file1.

NOTE

You do not need to use the -e file-test operator before 
using the -r file-test operator. If the file does not exist, -
r returns false because you can't read a file that isn't 
there. 

The only reason to use both -e and -r is to enable your 
program to determine exactly what is wrong. 



Checking for Other Permissions

You can use file-test operators to test for other permissions as well. To check whether 
you have write permission on a file, use the -w file-test operator. 

if (-w "file1") {

        print STDERR ("I can write to file1.\n");

} else {

        print STDERR ("I can't write to file1.\n");

}

The -x file-test operator checks whether you have execute permission on the file (in 
other words, whether the system thinks this is an executable program, and whether you 
have permission to run it if it is), as illustrated here: 

if (-x "file1") {

        print STDERR ("I can run file1.\n");

} else {

        print STDERR ("I can't run file1.\n");

}

NOTE

If you are the system administrator (for example, you are 
running as user ID root) and have permission to access 
any file, the -r and -w file-test operators always return 
true if the file exists. Also, the -x test operator always 
returns true if the file is an executable program. 

Checking for Empty Files

The -z file-test operator tests whether a file is empty. This provides a more refined test 
for whether or not to open a file for writing: if the file exists but is empty, no 
information is lost if you overwrite the existing file. 



Listing 6.10 shows how to use -z. 

 

Listing 6.10. A program that tests whether the file is empty before 
opening it for writing.

1:  #!/usr/local/bin/perl

2:  

3:  if (-e "outfile") {

4:          if (!(-w "outfile")) {

5:                 die ("Missing write permission for outfile.\n");

6:          }

7:          if (!(-z "outfile")) {

8:                  die ("File outfile is non-empty.\n");

9:          }

10: }

11: # at this point, the file is either empty or doesn't exist,

12: # and we have permission to write to it if it exists

 

$ program6_10

File outfile is non-empty.

$

 Line 3 checks whether the file outfile exists using -e. If it exists, it can only 
be opened if the program has permission to write to the file; line 4 checks for this using -



w. 

Line 7 uses -z to test whether the file is empty. If it is not, line 7 calls die to terminate 
program execution. 

The opposite of -z is the -s file-test operator, which returns a nonzero value if the file 
is not empty. 

$size = -s "outfile";

if ($size == 0) {

        print ("The file is empty.\n");

} else {

        print ("The file is $size bytes long.\n");

}

The -s file-test operator actually returns the size of the file in bytes. It can still be 
used in conditional expressions, though, because any nonzero value (indicating that the 
file is not empty) is treated as true. 

Listing 6.11 uses -s to return the size of a file that has a name which is supplied via the 
standard input file. 

 

Listing 6.11. A program that prints the size of a file in bytes. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the name of the file:\n");

4:  $filename = <STDIN>;

5:  chop ($filename);

6:  if (!(-e $filename)) {

7:          print ("File $filename does not exist.\n");

8:  } else {



9:          $size = -s $filename;

10:         print ("File $filename contains $size bytes.\n");

11: }

 

$ program6_11

Enter the name of the file:

file1

File file1 contains 128 bytes.

$

 Lines 3-5 obtain the name of the file and remove the trailing newline 
character. 

Line 6 tests whether the file exists. If the file doesn't exist, the program indicates this. 

Line 9 stores the size of the file in the scalar variable $size. The size is measured in 
bytes (one byte is equivalent to one character in a character string). 

Line 10 prints out the number of bytes in the file. 

Using File-Test Operators with File Variables

You can use file-test operators on file variables as well as character strings. In the 
following example the file-test operator -z tests the file represented by the file 
variable MYFILE: 

if (-z MYFILE) {

        print ("This file is empty!\n");

}



As before, this file-test operator returns true if the file is empty and false if it is not.

Remember that file variables can be used only after you 
open the file. If you need to test a particular condition 
before opening the file (such as whether the file is 
nonzero), test it using the name of the file.

Reading from a Sequence of Files

Many UNIX utility programs are invoked using the following command syntax: 

programname file1 file2 file3 ...

A program that uses this command syntax operates on all of the files specified on the 
command line in order, starting with file1. When file1 has been processed, the program 
then proceeds on to file2, and so on until all of the files have been exhausted. 

In Perl, it's easy to write programs that process an arbitrary number of files because 
there is a special operator, the <> operator, that does all of the file-handling work for 
you. 

To understand how the <> operator works, recall what happens when you put < and > 
around a file variable: 

$list = <MYFILE>;

This statement reads a line of input from the file represented by the file variable MYFILE 
and stores it in the scalar variable $list. Similarly, the statement 

$list = <>;

reads a line of input and stores it in the scalar variable $list; however, the file from 
which it reads is contained on the command line. Suppose, for example, a program 
containing a statement using the <> operator, such as the statement 



$list = <>;

is called myprog and is called using the command 

$ myprog file1 file2 file3

In this case, the first occurrence of the <> operator reads the first line of input from 
file1. Successive occurrences of <> read more lines from file1. When file1 is exhausted, 
<> reads the first line from file2, and so on. When the last file, file3, is exhausted, <> 
returns an empty string, which indicates that all the input has been read.

NOTE

If a program containing a <> operator is called with no 
command-line arguments, the <> operator reads input 
from the standard input file. In this case, the <> 
operator is equivalent to <STDIN>. 

If a file named in a command-line argument does not 
exist, the Perl interpreter writes the following message 
to the standard error file:

Can't open name: No such file or directory 

Here, name is a placeholder for the name of the file that 
the Perl interpreter cannot find. In this case, the Perl 
interpreter ignores name and continues on with the next 
file in the command line. 

To see how the <> operator works, look at Listing 6.12, which displays the contents of 
the files specified on the command line. (If you are familiar with UNIX, you will 
recognize this as the behavior of the UNIX utility cat.) The output from Listing 6.12 
assumes that files file1 and file2 are specified on the command line and that each file 
contains one line. 

 

Listing 6.12. A program that displays the contents of one or more files.



1:  #!/usr/local/bin/perl

2:  

3:  while ($inputline = <>) {

4:         print ($inputline);

5:  }

 

$ program6_12 file1 file2

This is a line from file1.

This is a line from file2.

$

 Once again, you can see how powerful and useful Perl is. This entire program 
consists of only five lines, including the header comment and a blank line. 

Line 3 both reads a line from a file and tests to see whether the line is the empty string. 
Because the assignment operator = returns the value assigned, the expression 

$inputline = <>

has the value "" (the null string) if and only if <> returns the null string, which 
happens only when there are no more lines to read from any of the input files. This is 
exactly the point at which the program wants to stop looping. (Recall that a "blank 
line" in a file is not the same as the null string because the blank line contains the 
newline character.) Because the null string is equivalent to false in a conditional 
expression, there is no need to use a conditional operator such as ne. 

When line 3 is executed for the first time, the first line in the first input file, file1, is 
read and stored in the scalar variable $inputline. Because file1 contains only one 
line, the second pass through the loop, and the second execution of line 3, reads the 
first line of the second input file, file2. 



After this, there are no more lines in either file1 or file2, so line 3 assigns the null 
string to $inputline, which terminates the loop.

When it reaches the end of the last file on the command 
line, the <> operator returns the empty string. However, 
if you use the <> operator after it has returned the 
empty string, the Perl interpreter assumes that you 
want to start reading input from the standard input 
file. (Recall that <> reads from the standard input file 
if there are no files on the command line.) 

This means that you have to be a little more careful 
when you use <> than when you are reading using 
<MYFILE> (where MYFILE is a file variable). If MYFILE has 
been exhausted, repeated attempts to read using 
<MYFILE> continue to return the null string because 
there isn't anything left to read. 

Reading into an Array Variable

As you have seen, if you read from a file using <STDIN> or <MYFILE> in an assignment to 
an array variable, the Perl interpreter reads the entire contents of the file into the 
array, as follows: 

@array = <MYFILE>;

This works also with <>. For example, the statement 

@array = <>;

reads all the contents all of the files on the command line into the array variable 
@array. 

As always, be careful when you use this because you might end up with a very large 
array. 

Using Command-Line Arguments as Values



As you've seen, the <> operator assumes that its command-line arguments are files. For 
example, if you start up the program shown in Listing 6.12 with the command 

$ program6_12 myfile1 myfile2

the Perl interpreter assumes that the command-line arguments myfile1 and myfile2 are 
files and displays their contents. 

Perl enables you to use the command-line arguments any way you want by defining a 
special array variable called @ARGV. When a Perl program starts up, this variable 
contains a list consisting of the command-line arguments. For example, the command 

$ program6_12 myfile1 myfile2

sets @ARGV to the list 

("myfile1", "myfile2")

NOTE

The shell you are running (sh, csh, or whatever you are 
using) is responsible for turning a command line such as 

program6_12 myfile1 myfile2 

into arguments. Normally, any spaces or tab characters 
are assumed to be separators that indicate where one 
command-line argument stops and the next begins. For 
example, the following are identical:

program6_12 myfile1 myfile2

program6_12 myfile1 myfile2 

In each case, the command-line arguments are myfile1 
and myfile2. 

See your shell documentation for details on how to put 
blank spaces or tab characters into your command-line 
arguments.



As with all other array variables, you can access individual elements of @ARGV. For 
example, the statement 

$var = $ARGV[0];

assigns the first element of @ARGV to the scalar variable $var. 

You even can assign to some or all of @ARGV if you like. For example: 

$ARGV[0] = 43;

If you assign to any or all of @ARGV, you overwrite what was already there, which means 
that any command-line arguments overwritten are lost. 

To determine the number of command-line arguments, assign the array variable to a 
scalar variable, as follows: 

$numargs = @ARGV;

As with all array variables, using an array variable in a place where the Perl 
interpreter expects a scalar variable means that the length of the array is used. In this 
case, $numargs is assigned the number of command-line arguments.

C programmers should take note that the first element 
of @ARGV, unlike argv[0] in C, does not contain the name 
of the program. In Perl, the first element of @ARGV is the 
first command-line argument. 

To get the name of the program, use the system variable 
$0, which is discussed on Day 17, "System Variables." 

To see how you can use @ARGV in a program, examine Listing 6.13. This program assumes 
that its first argument is a word to look for. The remaining arguments are assumed to be 
files in which to look for the word. The program prints out the searched-for word, the 



number of occurrences in each file, and the total number of occurrences. 

This example assumes that the files file1 and file2 are defined and that each file 
contains the single line 

This file contains a single line of input.

This example is then run with the command 

$ programname single file1 file2

where programname is a placeholder for the name of the program. (If you are running the 
program yourself, you can name the program anything you like.) 

 

Listing 6.13. A word-search and counting program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Word to search for: $ARGV[0]\n");

4:  $filecount = 1;

5:  $totalwordcount = 0;

6:  while ($filecount <= @ARGV-1) {

7:          unless (open (INFILE, $ARGV[$filecount])) {

8:                 die ("Can't open input file $ARGV[$filecount]\n");

9:          }

10:         $wordcount = 0;

11:         while ($line = <INFILE>) {

12:                 chop ($line);

13:                 @words = split(/ /, $line);

14:                 $w = 1;



15:                 while ($w <= @words) {

16:                         if ($words[$w-1] eq $ARGV[0]) {

17:                                 $wordcount += 1;

18:                         }

19:                         $w++;

20:                 }

21:         }

22:         print ("occurrences in file $ARGV[$filecount]: ");

23:         print ("$wordcount\n");

24:         $filecount++;

25:         $totalwordcount += $wordcount;

26: }

27: print ("total number of occurrences: $totalwordcount\n");

 

$ program6_13 single file1 file2

Word to search for: single

occurrences in file file1: 1

occurrences in file file2: 1

total number of occurrences: 2

$

 Line 3 prints the word to search for. The program assumes that this word is 
the first argument in the command line and, therefore, is the first element of the array 
@ARGV. 

Lines 7-9 open a file named on the command line. The first time line 7 is executed, the 
variable $filecount has the value 1, and the file whose name is in $ARGV[1] is opened. 



The next time through, $filecount is 2 and the file named in $ARGV[2] is opened, and so 
on. If a file cannot be opened, the program terminates. 

Line 11 reads a line from a file. As before, the conditional expression 

$line = <INFILE>

reads a line from the file represented by the file INFILE and assigns it to $line. If the 
file is empty, $line is assigned the null string, the conditional expression is false, and 
the loop in lines 11-21 is terminated. 

Line 13 splits the line into words, and lines 15-20 compare each word with the search 
word. If the word matches, the word count for this file is incremented. This word count 
is reset when a new file is opened. 

ARGV and the <> Operator

In Perl, the <> operator actually contains a hidden reference to the array @ARGV. Here's 
how it works: 

1.  When the Perl interpreter sees the <> for the first time, it opens the file whose 
name is stored in $ARGV[0]. 

2.  After opening the file, the Perl interpreter executes the following library 
function:
shift(@ARGV);

This library function gets rid of the first element of @ARGV and moves every other 
element over one. This means that element x of @ARGV becomes element x-1. 

3.  The <> operator then reads all of the lines of the file opened in step 1. 
4.  When the <> operator exhausts an input file, the Perl interpreter goes back to 

step 1 and repeats the cycle again. 

If you like, you can modify your program to retrieve a value from the command line and 
then fix @ARGV so that the <> operator can work properly. If you modify Listing 6.13 to do 
this, the result is Listing 6.14. 

 

Listing 6.14. A word-search and counting program that uses <>. 

1:  #!/usr/local/bin/perl



2:  

3:  $searchword = $ARGV[0];

4:  print ("Word to search for: $searchword\n");

5:  shift (@ARGV);

6:  $totalwordcount = $wordcount = 0;

7:  $filename = $ARGV[0];

8:  while ($line = <>) {

9:          chop ($line);

10:         @words = split(/ /, $line);

11:         $w = 1;

12:         while ($w <= @words) {

13:                 if ($words[$w-1] eq $searchword) {

14:                         $wordcount += 1;

15:                 }

16:                 $w++;

17:         }

18:         if (eof) {

19:                 print ("occurrences in file $filename: ");

20:                 print ("$wordcount\n");

21:                 $totalwordcount += $wordcount;

22:                 $wordcount = 0;

23:                 $filename = $ARGV[0];

24:         }

25: }

26: print ("total number of occurrences: $totalwordcount\n");

 



$ program6_14 single file1 file2

Word to search for: single

occurrences in file file1: 1

occurrences in file file2: 1

total number of occurrences: 2

$

 Line 3 assigns the first command-line argument, the search word, to the 
scalar variable $searchword. This is necessary because the call to shift in line 5 
destroys the initial value of $ARGV[0]. 

Line 5 adjusts the array @ARGV so that the <> operator can use it. To do this, it calls the 
library function shift. This function "shifts" the elements of the list stored in @ARGV. 
The element in $ARGV[1] is moved to $ARGV[0], the element in $ARGV[2] is moved to 
$ARGV[1], and so on. After shift is called, @ARGV contains the files to be searched, which 
is exactly what the <> operator is looking for. 

Line 7 assigns the current value of $ARGV[0] to the scalar variable $filename. Because 
the <> operator in line 8 calls shift, the value of $ARGV[0] is lost unless the program 
does this. 

Line 8 uses the <> operator to open the file named in $ARGV[0] and to read a line from 
the file. The array variable @ARGV is shifted at this point. 

Lines 9-16 behave as in Listing 6.13. The only difference is that the search word is now in 
$searchword, not in $ARGV[0]. 

Line 18 introduces the library function eof. This function indicates whether the 
program has reached the end of the file being read by <>. If eof returns true, the next 
use of <> opens a new file and shifts @ARGV again. 

Lines 19-23 prepare for the opening of a new file. The number of occurrences of the 
search word is printed, the current word count is added to the total word count, and 
the word count is reset to 0. Because the new filename to be opened is in $ARGV[0], line 
23 preserves this filename by assigning it to $filename. 

NOTE



You can use the <> operator to open and read any file 
you like by setting the value of @ARGV yourself. For 
example: 

@ARGV = ("myfile1", "myfile2");
while ($line = <>) {
...

} 

Here, when the statement containing the <> is executed 
for the first time, the file myfile1 is opened and its first 
line is read. Subsequent executions of <> each read 
another line of input from myfile1. When myfile1 is 
exhausted, myfile2 is opened and read one line at a time. 

Opening Pipes

On machines running the UNIX operating system, two commands can be linked using a 
pipe. In this case, the standard output from the first command is linked, or piped, to the 
standard input to the second command. 

Perl enables you to establish a pipe that links a Perl output file to the standard input 
file of another command. To do this, associate the file with the command by calling 
open, as follows: 

open (MYPIPE, "| cat >hello");

The | character tells the Perl interpreter to establish a pipe. When MYPIPE is opened, 
output sent to MYPIPE becomes input to the command 

cat >hello

Because the cat command displays the contents of the standard input file when called 
with no arguments, and >hello redirects the standard output file to the file hello, the 
open statement given here is identical to the statement 

open (MYPIPE, ">hello");

You can use a pipe to send mail from within a Perl program. For example: 



open (MESSAGE, "| mail dave");

print MESSAGE ("Hi, Dave!  Your Perl program sent this!\n");

close (MESSAGE);

The call to open establishes a pipe to the command mail dave. The file variable MESSAGE 
is now associated with this pipe. The call to print adds the line 

Hi, Dave!  Your Perl program sent this!

to the message to be sent to user ID dave. 

The call to close closes the pipe referenced by MESSAGE, which tells the system that the 
message is complete and can be sent. As you can see, the call to close is useful here 
because you can control exactly when the message is to be sent. (If you do not call 
close, MESSAGE is closed-and the message is sent-when the program terminates.) 

Summary

Perl accesses files by means of file variables. File variables are associated with files by 
the open statement. 

Files can be opened in any of three modes: read mode, write mode, and append mode. A file 
opened in read mode cannot be written to; a file opened in either of the other modes 
cannot be read. Opening a file in write mode destroys the existing contents of the file. 

To read from an opened file, reference it using <name>, where name is a placeholder for 
the name of the file variable associated with the file. To write to a file, specify its file 
variable when calling print. 

Perl defines three built-in file variables: 

●     STDIN, which represents the standard input file 
●     STDOUT, which represents the standard output file 
●     STDERR, which represents the standard error file 

You can redirect STDIN and STDOUT by specifying < and >, respectively, on the command 
line. Messages sent to STDERR appear on the screen even if STDOUT is redirected to a file. 

The close function closes the file associated with a particular file variable. close 
never needs to be called unless you want to control exactly when a file is to be made 



inaccessible. 

The file-test operators provide a way of retrieving information on a particular file. The 
most common file-test operators are 

●     -e, which tests whether a file exists 
●     -r, -w, and -x, which test whether a file has read, write, and execute permission, 

respectively 
●     -z, which tests whether a file is empty 
●     -s, which returns the size of a file 

You can use -w and -z to ensure that you do not overwrite a non-empty file. 

The <> operator enables you to read data from files specified on the command line. This 
operator uses the built-in array variable @ARGV, whose elements consist of the items 
specified on the command line. 

Perl enables you to open pipes. A pipe links the output from your Perl program to the 
input to another program. 

Q&A

Q: How many files can I have open at one time? 

A: Basically, as many as you like. The actual limit depends on the limitations of 
your operating system. 

Q: Why does adding a closing newline character to the text string affect how 
die behaves? 

A: Perl enables you to choose whether you want the filename and line number of 
the error message to appear. If you add a closing newline character to the 
string, the Perl interpreter assumes that you want to control how your error 
message is to appear. 

Q: Which is better: to use <>, or to use @ARGV and shift when appropriate? 

A: As is often the case, the answer is "It depends." If your program treats almost all 
of the command-line arguments as files, it is better to use <> because the 
mechanics of opening and closing files are taken care of for you. If you are doing 
a lot of unusual things with @ARGV, it is better not to manipulate it to use <>, 
because things can get complicated and confusing. 

Q: Can I open more than one pipe at a time? 

A: Yes. Your operating system keeps all of the various commands and processes 
organized and keeps track of which output goes with which input. 

Q: Can I redirect STDERR? 



A: Yes, but there is (normally) no reason why you should. STDERR's job is to report 
extraordinary conditions, and you usually want to see these, not have them 
buried in a file somewhere. 

Q: How many command-line arguments can I specify? 

A: Basically, as many as your command-line shell can handle. 

Q: Can I write to a file and then read from it later? 

A: Yes, but you can't do both at the same time. To read from a file you have written 
to, close the file by calling close and then open the file in read mode. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define the following terms:
a.    file variable
b.    reserved word
c.    file mode
d.    append mode
e.    pipe 

2.  From where does the <> operator read its data? 
3.  What do the following file-test operators do?

a.  -r
b.  -x
c.  -s 

4.  What are the contents of the array @ARGV when the following Perl program is 
executed?
$ myprog file1 file2 file3 

5.  How do you indicate that a file is to be opened:
a.    In write mode?
b.    In append mode?
c.    In read mode?
d.    As a pipe? 

6.  What is the relationship between @ARGV and the <> operator? 

Exercises

1.  Write a program that takes the values on the command line, adds them together, 
and prints the result. 

2.  Write a program that takes a list of files from the command line and examines 



their size. If a file is bigger than 10,000 bytes, print
File name is a big file!
where name is a placeholder for the name of the big file. 

3.  Write a program that copies a file named file1 to file2, and then appends another 
copy of file1 to file2. 

4.  Write a program that counts the total number of words in the files specified on 
the command line. When it has counted the words, it sends a message to user ID 
dave indicating the total number of words. 

5.  Write a program that takes a list of files and indicates, for each file, whether the 
user has read, write, or execute permission. 

6.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

open (OUTFILE, "outfile"); 

print OUTFILE ("This is my message\n"); 

    



Chapter 7

Pattern Matching

CONTENTS

●     Introduction 
●     The Match Operators 

❍     Match-Operator Precedence 
●     Special Characters in Patterns 

❍     The + Character 
❍     The [] Special Characters 
❍     The * and ? Special Characters 
❍     Escape Sequences for Special Characters 
❍     Matching Any Letter or Number 
❍     Anchoring Patterns 
❍     Variable Substitution in Patterns 
❍     Excluding Alternatives 
❍     Character-Range Escape Sequences 
❍     Matching Any Character 
❍     Matching a Specified Number of Occurrences 
❍     Specifying Choices 
❍     Reusing Portions of Patterns 
❍     Pattern-Sequence Scalar Variables 
❍     Special-Character Precedence 
❍     Specifying a Different Pattern Delimiter 

●     Pattern-Matching Options 
❍     Matching All Possible Patterns 
❍     Ignoring Case 
❍     Treating the String as Multiple Lines 
❍     Evaluating a Pattern Only Once 
❍     Treating the String as a Single Line 
❍     Using White Space in Patterns 

●     The Substitution Operator 
❍     Using Pattern-Sequence Variables in Substitutions 
❍     Options for the Substitution Operator 
❍     Evaluating a Pattern Only Once 
❍     Treating the String as Single or Multiple Lines 



❍     Using White Space in Patterns 
❍     Specifying a Different Delimiter 

●     The Translation Operator 
❍     Options for the Translation Operator 

●     Extended Pattern-Matching 
❍     Parenthesizing Without Saving in Memory 
❍     Embedding Pattern Options 
❍     Positive and Negative Look-Ahead 
❍     Pattern Comments 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

This lesson describes the pattern-matching features of Perl. Today, you learn about the 
following: 

●     How pattern matching works 
●     The pattern-matching operators 
●     Special characters supported in pattern matching 
●     Pattern-matching options 
●     Pattern substitution 
●     Translation 
●     Extended pattern-matching features 

Introduction

A pattern is a sequence of characters to be searched for in a character string. In Perl, 
patterns are normally enclosed in slash characters: 

/def/

This represents the pattern def. 

If the pattern is found, a match occurs. For example, if you search the string redefine 
for the pattern /def/, the pattern matches the third, fourth, and fifth characters. 

redefine



You already have seen a simple example of pattern matching in the library function 
split. 

@array = split(/ /, $line);

Here the pattern / / matches a single space, which splits a line into words. 

The Match Operators

Perl defines special operators that test whether a particular pattern appears in a 
character string. 

The =~ operator tests whether a pattern is matched, as shown in the following: 

$result = $var =~ /abc/;

The result of the =~ operation is one of the following: 

●     A nonzero value, or true, if the pattern is found in the string 
●     0, or false, if the pattern is not matched 

In this example, the value stored in the scalar variable $var is searched for the pattern 
abc. If abc is found, $result is assigned a nonzero value; otherwise, $result is set to 
zero. 

The !~ operator is similar to =~, except that it checks whether a pattern is not matched. 

$result = $var !~ /abc/;

Here, $result is set to 0 if abc appears in the string assigned to $var, and to a nonzero 
value if abc is not found. 

Because =~ and !~ produce either true or false as their result, these operators are 
ideally suited for use in conditional expressions. Listing 7.1 is a simple program that uses 
the =~ operator to test whether a particular sequence of characters exists in a 
character string. 

 



Listing 7.1. A program that illustrates the use of the matching 
operator.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Ask me a question politely:\n");

4:  $question = <STDIN>;

5:  if ($question =~ /please/) {

6:          print ("Thank you for being polite!\n");

7:  } else {

8:          print ("That was not very polite!\n");

9:  }

 

$ program7_1

Ask me a question politely:

May I have a glass of water, please?

Thank you for being polite!

$

 Line 5 is an example of the use of the match operator =~ in a conditional 
expression. The following expression is true if the value stored in $question contains 
the word please, and it is false if it does not: 

$question =~ /please/



Match-Operator Precedence

Like all operators, the match operators have a defined precedence. By definition, the =~ 
and !~ operators have higher precedence than multiplication and division, and lower 
precedence than the exponentiation operator **. 

For a complete list of Perl operators and their precedence, see Day 4, "More Operators." 

Special Characters in Patterns

Perl supports a variety of special characters inside patterns, which enables you to 
match any of a number of character strings. These special characters are what make 
patterns useful. 

The + Character 

The special character + means "one or more of the preceding characters." For example, 
the pattern /de+f/ matches any of the following: 

def

deef

deeef

deeeeeeef

NOTE

Patterns containing + always try to match as many 
characters as possible. For example, if the pattern 

/ab+/ 

is searching in the string

abbc 

it matches abb, not ab. 

The + special character makes it possible to define a better way to split lines into words. 
So far, the sample programs you have seen have used 



@words = split (/ /, $line);

to break an input line into words. This works well if there is exactly one space between 
words. However, if an input line contains more than one space between words, as in 

Here's  multiple   spaces.

the call to split produces the following list: 

("Here's", "", "multiple", "", "spaces.")

The pattern / / tells split to start a new word whenever it sees a space. Because there 
are two spaces between each word, split starts a word when it sees the first space, and 
then starts another word when it sees the second space. This means that there are now 
"empty words" in the line. 

The + special character gets around this problem. Suppose the call to split is changed 
to this: 

@array = split (/ +/, $line);

Because the pattern / +/ tries to match as many blank characters as possible, the line 

Here's  multiple  spaces.

produces the following list: 

("Here's", "multiple", "spaces")

Listing 7.2 shows how you can use the / +/ pattern to produce a count of the number of 
words in a file. 

 



Listing 7.2. A word-count program that handles multiple spaces 
between words.

1:  #!/usr/local/bin/perl

2:  

3:  $wordcount = 0;

4:  $line = <STDIN>;

5:  while ($line ne "") {

6:          chop ($line);

7:          @words = split(/ +/, $line);

8:          $wordcount += @words;

9:          $line = <STDIN>;

10: }

11: print ("Total number of words: $wordcount\n");

 

$ program7_2

Here   is  some input.

Here are   some   more words.

Here      is my  last  line.

^D

Total number of words: 14

$

 This is the same word-count program you saw in Listing 5.15, with only one 
change: The pattern / +/ is being used to break the line into words. As you can see, this 
handles spaces between words properly. 



You might have noticed the following problems with this word-count program: 

●     Spaces at the beginning of a line are counted as a word, because split always 
starts a new word when it sees a space. 

●     Tab characters are counted as a word. 

For an example of the first problem, take a look at the following input line: 

    This line contains leading spaces.

The call to split in line 7 breaks the preceding into the following list: 

("", "This", "line", "contains", "leading", "spaces")

This yields a word count of 6, not the expected 5. 

There can be at most one empty word produced from a line, no matter how many leading 
spaces there are, because the pattern / +/ matches as many spaces as possible. Note also 
that the program can distinguish between lines containing words and lines that are 
blank or contain just spaces. If a line is blank or contains only spaces, the line 

@words = split(/ +/, $line);

assigns the empty list to @words. Because of this, you can fix the problem of leading 
spaces in lines by modifying line 8 as follows: 

$wordcount += (@words > 0 && $words[0] eq "" ? 

               @words-1 : @words);

This checks for lines containing leading spaces; if a line contains leading spaces, the 
first "word" (which is the empty string) is not added to the word count. 

To find out how to modify the program to deal with tab characters as well as spaces, see 
the following section. 

The [] Special Characters 

The [] special characters enable you to define patterns that match one of a group of 



alternatives. For example, the following pattern matches def or dEf: 

/d[eE]f/

You can specify as many alternatives as you like. 

/a[0123456789]c/

This matches a, followed by any digit, followed by c. 

You can combine [] with + to match a sequence of characters of any length. 

/d[eE]+f/

This matches all of the following: 

def

dEf

deef

dEef

dEEEeeeEef

Any combination of E and e, in any order, is matched by [eE]+. 

You can use [] and + together to modify the word-count program you've just seen to 
accept either tab characters or spaces. Listing 7.3 shows how you can do this. 

 

Listing 7.3. A word-count program that handles multiple spaces and 
tabs between words.

1:  #!/usr/local/bin/perl



2:  

3:  $wordcount = 0;

4:  $line = <STDIN>;

5:  while ($line ne "") {

6:          chop ($line);

7:          @words = split(/[\t ]+/, $line);

8:          $wordcount += @words;

9:          $line = <STDIN>;

10: }

11: print ("Total number of words: $wordcount\n");

 

$ program7_3

Here is some input.

Here are some more words.

Here is my last line.

^D

Total number of words: 14

$

 This program is identical to Listing 7.2, except that the pattern is now /[\t 
]+/. 

The \t special-character sequence represents the tab character, and this pattern 
matches any combination or quantity of spaces and tabs.

NOTE



Any escape sequence that is supported in double-quoted 
strings is supported in patterns. See Day 3, 
"Understanding Scalar Values," for a list of the escape 
sequences that are available.

The * and ? Special Characters

As you have seen, the + character matches one or more occurrences of a character. Perl 
also defines two other special characters that match a varying number of characters: * 
and ?. 

The * special character matches zero or more occurrences of the preceding character. 
For example, the pattern 

/de*f/

matches df, def, deef, and so on. 

This character can also be used with the [] special character. 

/[eE]*/

This matches the empty string as well as any combination of E or e in any order.

Be sure not to confuse the * special character with the 
+ special character. If you use the wrong special 
character, you might not get the results that you want. 

For example, suppose that you modify Listing 7.3 to call 
split as follows: 

@words = split (/[\t ]*/, $list); 

This matches zero or more occurrences of the space or 
tab character. When you run this with the input



a line 

here's the list that is assigned to @words: 

("a", "l", "i", "n", "e") 

Because the pattern /[\t ]*/ matches on zero 
occurrences of the space or tab character, it matches 
after every character. This means that split starts a 
word after every character that is not a space or tab. (It 
skips spaces and tabs because /[\t ]*/ matches them.) 

The best way to avoid problems such as this one is to use 
the * special character only when there is another 
character appearing in the pattern. Patterns such as 

/b*[c]/ 

never match the null string, because the matched 
sequence has to contain at least the character c. 

The ? character matches zero or one occurrence of the preceding character. For 
example, the pattern 

/de?f/

matches either df or def. Note that it does not match deef, because the ? character does 
not match two occurrences of a character. 

Escape Sequences for Special Characters

If you want your pattern to include a character that is normally treated as a special 
character, precede the character with a backslash \. For example, to check for one or 
more occurrences of * in a string, use the following pattern: 

/\*+/

The backslash preceding the * tells the Perl interpreter to treat the * as an ordinary 
character, not as the special character meaning "zero or more occurrences." 



To include a backslash in a pattern, specify two backslashes: 

/\\+/

This pattern tests for one or more occurrences of \ in a string. 

If you are running Perl 5, another way to tell Perl that a special character is to be 
treated as a normal character is to precede it with the \Q escape sequence. When the 
Perl interpreter sees \Q, every character following the \Q is treated as a normal 
character until \E is seen. This means that the pattern 

/\Q^ab*/

matches any occurrence of the string ^ab*, and the pattern 

/\Q^ab\E*/

matches ^a followed by zero or more occurrences of b. 

For a complete list of special characters in patterns that require \ to be given their 
natural meaning, see the section titled "Special-Character Precedence," which contains 
a table that lists them.

TIP

In Perl, any character that is not a letter or a digit can 
be preceded by a backslash. If the character isn't a 
special character in Perl, the backslash is ignored.

If you are not sure whether a particular character is a 
special character, preceding it with a backslash will 
ensure that your pattern behaves the way you want it 
to.

Matching Any Letter or Number

As you have seen, the pattern 

/a[0123456789]c/



matches a, followed by any digit, followed by c. Another way of writing this is as 
follows: 

/a[0-9]c/

Here, the range [0-9] represents any digit between 0 and 9. This pattern matches a0c, 
a1c, a2c, and so on up to a9c. 

Similarly, the range [a-z] matches any lowercase letter, and the range [A-Z] matches 
any uppercase letter. For example, the pattern 

/[A-Z][A-Z]/

matches any two uppercase letters. 

To match any uppercase letter, lowercase letter, or digit, use the following range: 

/[0-9a-zA-Z]/

Listing 7.4 provides an example of the use of ranges with the [] special characters. This 
program checks whether a given input line contains a legal Perl scalar, array, or file-
variable name. (Note that this program handles only simple input lines. Later examples 
will solve this problem in a better way.) 

 

Listing 7.4. A simple variable-name validation program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a variable name:\n");

4:  $varname = <STDIN>;

5:  chop ($varname);



6:  if ($varname =~ /\$[A-Za-z][_0-9a-zA-Z]*/) {

7:          print ("$varname is a legal scalar variable\n");

8:  } elsif ($varname =~ /@[A-Za-z][_0-9a-zA-Z]*/) {

9:          print ("$varname is a legal array variable\n");

10: } elsif ($varname =~ /[A-Za-z][_0-9a-zA-Z]*/) {

11:         print ("$varname is a legal file variable\n");

12: } else {

13:         print ("I don't understand what $varname is.\n");

14: }

 

$ program7_4

Enter a variable name:

$result

$result is a legal scalar variable

$

 Line 6 checks whether the input line contains the name of a legal scalar 
variable. Recall that a legal scalar variable consists of the following: 

●     A $ character 
●     An uppercase or lowercase letter 
●     Zero or more letters, digits, or underscore characters 

Each part of the pattern tested in line 6 corresponds to one of the aforementioned 
conditions given. The first part of the pattern, \$, ensures that the pattern matches 
only if it begins with a $ character.

NOTE



The $ is preceded by a backslash, because $ is a special 
character in patterns. See the following section, 
"Anchoring Patterns," for more information on the $ 
special character. 

The second part of the pattern, 

[A-Za-z]

matches exactly one uppercase or lowercase letter. The final part of the pattern, 

[_0-9a-zA-Z]*

matches zero or more underscores, digits, or letters in any order. 

The patterns in line 8 and line 10 are very similar to the one in line 6. The only 
difference in line 8 is that the pattern there matches a string whose first character is @, 
not $. In line 10, this first character is omitted completely. 

The pattern in line 8 corresponds to the definition of a legal array-variable name, and 
the pattern in line 10 corresponds to the definition of a legal file-variable name. 

Anchoring Patterns

Although Listing 7.4 can determine whether a line of input contains a legal Perl 
variable name, it cannot determine whether there is extraneous input on the line. For 
example, it can't tell the difference between the following three lines of input: 

$result

junk$result

$result#junk

In all three cases, the pattern 

/\$[a-zA-Z][_0-9a-zA-Z]*/



finds the string $result and matches successfully; however, only the first line is a 
legal Perl variable name. 

To fix this problem, you can use pattern anchors. Table 7.1 lists the pattern anchors 
defined in Perl.

Table 7.1. Pattern anchors in Perl.

Anchor Description 

^ or \A Match at beginning of string 
only 

$ or \Z Match at end of string only 

\b Match on word boundary 

\B Match inside word 

These pattern anchors are described in the following sections. 

The ^ and $ Pattern Anchors

The pattern anchors ^ and $ ensure that the pattern is matched only at the beginning 
or the end of a string. For example, the pattern 

/^def/

matches def only if these are the first three characters in the string. Similarly, the 
pattern 

/def$/

matches def only if these are the last three characters in the string. 

You can combine ^ and $ to force matching of the entire string, as follows: 

/^def$/

This matches only if the string is def. 

In most cases, the escape sequences \A and \Z (defined in Perl 5) are equivalent to ^ and 



$, respectively: 

/\Adef\Z/

This also matches only if the string is def.

NOTE

\A and \Z behave differently from ^ and $ when the 
multiple-line pattern-matching option is specified. 
Pattern-matching options are described later today. 

Listing 7.5 shows how you can use pattern anchors to ensure that a line of input is, in 
fact, a legal Perl scalar-, array-, or file-variable name. 

 

Listing 7.5. A better variable-name validation program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a variable name:\n");

4:  $varname = <STDIN>;

5:  chop ($varname);

6:  if ($varname =~ /^\$[A-Za-z][_0-9a-zA-Z]*$/) {

7:          print ("$varname is a legal scalar variable\n");

8:  } elsif ($varname =~ /^@[A-Za-z][_0-9a-zA-Z]*$/) {

9:          print ("$varname is a legal array variable\n");

10: } elsif ($varname =~ /^[A-Za-z][_0-9a-zA-Z]*$/) {

11:         print ("$varname is a legal file variable\n");

12: } else {

13:         print ("I don't understand what $varname is.\n");



14: }

 

$ program7_5

Enter a variable name:

x$result

I don't understand what x$result is.

$

 The only difference between this program and the one in Listing 7.4 is that 
this program uses the pattern anchors ^ and $ in the patterns in lines 6, 8, and 10. These 
anchors ensure that a valid pattern consists of only those characters that make up a 
legal Perl scalar, array, or file variable. 

In the sample output given here, the input 

x$result

is rejected, because the pattern in line 6 is matched only when the $ character appears 
at the beginning of the line. 

Word-Boundary Pattern Anchors

The word-boundary pattern anchors, \b and \B, specify whether a matched pattern must 
be on a word boundary or inside a word boundary. (A word boundary is the beginning or 
end of a word.) 

The \b pattern anchor specifies that the pattern must be on a word boundary. For 
example, the pattern 

/\bdef/



matches only if def is the beginning of a word. This means that def and defghi match 
but abcdef does not. 

You can also use \b to indicate the end of a word. For example, 

/def\b/

matches def and abcdef, but not defghi. Finally, the pattern 

/\bdef\b/

matches only the word def, not abcdef or defghi. 

NOTE

A word is assumed to contain letters, digits, and 
underscore characters, and nothing else. This means 
that

/\bdef/ 

matches $defghi: because $ is not assumed to be part of a 
word, def is the beginning of the word defghi, and 
/\bdef/ matches it. 

The \B pattern anchor is the opposite of \b. \B matches only if the pattern is contained 
in a word. For example, the pattern 

/\Bdef/

matches abcdef, but not def. Similarly, the pattern 

/def\B/

matches defghi, and 

/\Bdef\B/



matches cdefg or abcdefghi, but not def, defghi, or abcdef. 

The \b and \B pattern anchors enable you to search for words in an input line without 
having to break up the line using split. For example, Listing 7.6 uses \b to count the 
number of lines of an input file that contain the word the. 

 

Listing 7.6. A program that counts the number of input lines containing 
the word the. 

1:  #!/usr/local/bin/perl

2:  

3:  $thecount = 0;

4:  print ("Enter the input here:\n");

5:  $line = <STDIN>;

6:  while ($line ne "") {

7:          if ($line =~ /\bthe\b/) {

8:                  $thecount += 1;

9:          }

10:         $line = <STDIN>;

11: }

12:  print ("Number of lines containing 'the': $thecount\n");

 

$ program7_6

Enter the input here:

Now is the time



for all good men

to come to the aid

of the party.

^D

Number of lines containing 'the': 3

$

 This program checks each line in turn to see if it contains the word the, and 
then prints the total number of lines that contain the word. 

Line 7 performs the actual checking by trying to match the pattern 

/\bthe\b/

If this pattern matches, the line contains the word the, because the pattern checks for 
word boundaries at either end. 

Note that this program doesn't check whether the word the appears on a line more than 
once. It is not difficult to modify the program to do this; in fact, you can do it in several 
different ways. 

The most obvious but most laborious way is to break up lines that you know contain the 
into words, and then check each word, as follows: 

if ($line =~ /\bthe\b/) {

        @words = split(/[\t ]+/, $line);

        $count = 1;

        while ($count <= @words) {

                if ($words[$count-1] eq "the") {

                        $thecount += 1;

                }

                $count++;

        }



}

A cute way to accomplish the same thing is to use the pattern itself to break the line 
into words: 

if ($line =~ /\bthe\b/) {

        @words = split(/\bthe\b/, $line);

        $thecount += @words - 1;

}

In fact, you don't even need the if statement. 

@words = split(/\bthe\b/, $line);

$thecount += @words - 1;

Here's why this works: Every time split sees the word the, it starts a new word. 
Therefore, the number of occurrences of the is equal to one less than the number of 
elements in @words. If there are no occurrences of the, @words has the length 1, and 
$thecount is not changed.

This trick works only if you know that there is at least 
one word on the line.

Consider the following code, which tries to use the 
aforementioned trick on a line that has had its newline 
character removed using chop: 

$line = <STDIN>;
chop ($line);
@words = split(/\bthe\b/, $line);

$thecount += @words - 1; 

This code actually subtracts 1 from $thecount if the line 
is blank or consists only of the word the, because in 
these cases @words is the empty list and the length of 
@words is 0. 



Leaving off the call to chop protects against this 
problem, because there will always be at least one 
"word" in every line (consisting of the newline 
character). 

Variable Substitution in Patterns

If you like, you can use the value of a scalar variable in a pattern. For example, the 
following code splits the line $line into words: 

$pattern = "[\\t ]+";

@words = split(/$pattern/, $line);

Because you can use a scalar variable in a pattern, there is nothing to stop you from 
reading the pattern from the standard input file. Listing 7.7 accepts a search pattern 
from a file and then searches for the pattern in the input files listed on the command 
line. If it finds the pattern, it prints the filename and line number of the match; at the 
end, it prints the total number of matches. 

This example assumes that two files exist, file1 and file2. Each file contains the 
following: 

This is a line of input.

This is another line of input.

If you run this program with command-line arguments file1 and file2 and search for 
the pattern another, you get the output shown. 

 

Listing 7.7. A simple pattern-search program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the search pattern:\n");



4:  $pattern = <STDIN>;

5:  chop ($pattern);

6:  $filename = $ARGV[0];

7:  $linenum = $matchcount = 0;

8:  print ("Matches found:\n");

9:  while ($line = <>) {

10:         $linenum += 1;

11:         if ($line =~ /$pattern/) {

12:                 print ("$filename, line $linenum\n");

13:                 @words = split(/$pattern/, $line);

14:                 $matchcount += @words - 1;

15:         }

16:         if (eof) {

17:                 $linenum = 0;

18:                 $filename = $ARGV[0];

19:         }

20:  }

21:  if ($matchcount == 0) {

22:          print ("No matches found.\n");

23:  } else {

24:          print ("Total number of matches: $matchcount\n");

25:  }

 

$ program7_7 file1 file2

Enter the search pattern:

another



Matches found:

file1, line 2

file2, line 2

Total number of matches: 2

$

 This program uses the following scalar variables to keep track of 
information: 

●     $pattern contains the search pattern read in from the standard input file. 
●     $filename contains the file currently being searched. 
●     $linenum contains the line number of the line currently being searched. 
●     $matchcount contains the total number of matches found to this point. 

Line 6 sets the current filename, which corresponds to the first element in the built-in 
array variable @ARGV. This array variable lists the arguments supplied on the command 
line. (To refresh your memory on how @ARGV works, refer back to Day 6, "Reading from 
and Writing to Files.") This current filename needs to be stored in a scalar variable, 
because the <> operator in line 9 shifts @ARGV and destroys this name. 

Line 9 reads from each of the files on the command line in turn, one line at a time. The 
current input line is stored in the scalar variable $line. Once the line is read, line 10 
adds 1 to the current line number. 

Lines 11-15 handle the matching process. Line 11 checks whether the pattern stored in 
$pattern is contained in the input line stored in $line. If a match is found, line 12 prints 
out the current filename and line number. Line 13 then splits the line into "words," 
using the trick described in the earlier section, "Word-Boundary Pattern Anchors." 
Because the number of elements of the list stored in @words is one larger than the 
number of times the pattern is matched, the expression @words - 1 is equivalent to the 
number of matches; its value is added to $matchcount. 

Line 16 checks whether the <> operator has reached the end of the current input file. If 
it has, line 17 resets the current line number to 0. This ensures that the next pass 
through the loop will set the current line number to 1 (to indicate that the program is 
on the first line of the next file). Line 18 sets the filename to the next file mentioned 
on the command line, which is currently stored in $ARGV[0]. 

Lines 21-25 either print the total number of matches or indicate that no matches were 
found.



NOTE

Make sure that you remember to include the enclosing / 
characters when you use a scalar-variable name in a 
pattern. The Perl interpreter does not complain when it 
sees the following, for example, but the result might 
not be what you want: 

@words = split($pattern, $line); 

Excluding Alternatives

As you have seen, when the special characters [] appear in a pattern, they specify a set 
of alternatives to choose from. For example, the pattern 

/d[eE]f/

matches def or dEf. 

When the ^ character appears as the first character after the [, it indicates that the 
pattern is to match any character except the ones displayed between the [ and ]. For 
example, the pattern 

/d[^eE]f/

matches any pattern that satisfies the following criteria: 

●     The first character is d. 
●     The second character is anything other than e or E. 
●     The last character is f. 

NOTE

To include a ^ character in a set of alternatives, 
precede it with a backslash, as follows: 

/d[\^eE]f/ 

This pattern matches d^f, def, or dEf. 



Character-Range Escape Sequences

In the section titled "Matching Any Letter or Number" earlier in this chapter, you 
learned that you can represent consecutive letters or numbers inside the [] special 
characters by specifying ranges. For example, in the pattern 

/a[1-3]c/

the [1-3] matches any of 1, 2, or 3. 

Some ranges occur frequently enough that Perl defines special escape sequences for 
them. For example, instead of writing 

/[0-9]/

to indicate that any digit is to be matched, you can write 

/\d/

The \d escape sequence means "any digit." 

Table 7.2 lists the character-range escape sequences, what they match, and their 
equivalent character ranges.

Table 7.2. Character-range escape sequences.

Escape sequence Description Range 

\d Any digit [0-9]

\D Anything other than a digit [^0-9]

\w Any word character [_0-9a-zA-Z]

\W Anything not a word 
character 

[^_0-9a-zA-Z]

\s White space [ \r\t\n\f]

\S Anything other than white 
space 

[^ \r\t\n\f]



These escape sequences can be used anywhere ordinary characters are used. For example, 
the following pattern matches any digit or lowercase letter: 

/[\da-z]/

NOTE

The definition of word boundary as used by the \b and \B 
special characters corresponds to the definition of word 
character used by \w and \W. 

If the pattern /\w\W/ matches a particular pair of 
characters, the first character is part of a word and the 
second is not; this means that the first character is the 
end of a word, and that a word boundary exists between 
the first and second characters matched by the pattern. 

Similarly, if /\W\w/ matches a pair of characters, the 
first character is not part of a word and the second 
character is. This means that the second character is the 
beginning of a word. Again, a word boundary exists 
between the first and second characters matched by the 
pattern. 

Matching Any Character

Another special character supported in patterns is the period (.) character, which 
matches any character except the newline character. For example, the following 
pattern matches d, followed by any non-newline character, followed by f: 

/d.f/

The . character is often used in conjunction with the * character. For example, the 
following pattern matches any string that contains the character d preceding the 
character f: 

/d.*f/

Normally, the .* special-character combination tries to match as much as possible. For 



example, if the string banana is searched using the following pattern, the pattern 
matches banana, not ba or bana: 

/b.*a/

NOTE

There is one exception to the preceding rule: The .* 
character only matches the longest possible string that 
enables the pattern match as a whole to succeed. 

For example, suppose the string Mississippi is searched 
using the pattern 

/M.*i.*pi/ 

Here, the first .* in /M.*i.*pi/ matches 

Mississippi 

If it tried to go further and match

Mississippi 

or even

Mississippi 

there would be nothing left for the rest of the pattern 
to match.

When the first .* match is limited to 

Mississippi 

the rest of the pattern, i.*pi, matches ippi, and the 
pattern as a whole succeeds. 

Matching a Specified Number of Occurrences

Several special characters in patterns that you have seen enable you to match a 



specified number of occurrences of a character. For example, + matches one or more 
occurrences of a character, and ? matches zero or one occurrences. 

Perl enables you to define how many occurrences of a character constitute a match. To 
do this, use the special characters { and }. 

For example, the pattern 

/de{1,3}f/

matches d, followed by one, two, or three occurrences of e, followed by f. This means 
that def, deef, and deeef match, but df and deeeef do not. 

To specify an exact number of occurrences, include only one value between the { and 
the }. 

/de{3}f/

This specifies exactly three occurrences of e, which means this pattern only matches 
deeef. 

To specify a minimum number of occurrences, leave off the upper bound. 

/de{3,}f/

This matches d, followed by at least three es, followed by f. 

Finally, to specify a maximum number of occurrences, use 0 as the lower bound. 

/de{0,3}f/

This matches d, followed by no more than three es, followed by f.

NOTE



You can use { and } with character ranges or any other 
special character, as follows: 

/[a-z]{1,3}/ 

This matches one, two, or three lowercase letters.

/.{3}/ 

This matches any three characters.

Specifying Choices

The special character | enables you to specify two or more alternatives to choose from 
when matching a pattern. For example, the pattern 

/def|ghi/

matches either def or ghi. The pattern 

/[a-z]+|[0-9]+/

matches one or more lowercase letters or one or more digits. 

Listing 7.8 is a simple example of a program that uses the | special character. It reads a 
number and checks whether it is a legitimate Perl integer. 

 

Listing 7.8. A simple integer-validation program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a number:\n");

4:  $number = <STDIN>;



5:  chop ($number);

6:  if ($number =~ /^-?\d+$|^-?0[xX][\da-fa-F]+$/) {

7:          print ("$number is a legal integer.\n");

8:  } else {

9:          print ("$number is not a legal integer.\n");

10: }

 

$ program7_8

Enter a number:

0x3ff1

0x3ff1 is a legal integer.

$

 Recall that Perl integers can be in any of three forms: 

●     Standard base-10 notation, as in 123 
●     Base-8 (octal) notation, indicated by a leading 0, as in 0123 
●     Base-16 (hexadecimal) notation, indicated by a leading 0x or 0X, as in 0X1ff 

Line 6 checks whether a number is a legal Perl integer. The first alternative in the 
pattern, 

^-?\d+$ 

matches a string consisting of one or more digits, optionally preceded by a -. (The ^ and $ 
characters ensure that this is the only string that matches.) This takes care of integers 
in standard base-10 notation and integers in octal notation. 

The second alternative in the pattern, 



^-?0[xX][\da-fa-F]+$

matches integers in hexadecimal notation. Take a look at this pattern one piece at a 
time: 

●     The ^ matches the beginning of the line. This ensures that lines containing 
leading spaces or extraneous characters are not treated as valid hexadecimal 
integers. 

●     The -? matches a - if it is present. This ensures that negative numbers are matched. 
●     The 0 matches the leading 0. 
●     The [xX] matches the x or X that follows the leading 0. 
●     The [\da-fa-F] matches any digit, any letter between a and f, or any letter 

between A and F. Recall that these are precisely the characters which are 
allowed to appear in hexadecimal digits. 

●     The + indicates that the pattern is to match one or more hexadecimal digits. 
●     The closing $ indicates that the pattern is to match only if there are no 

extraneous characters following the hexadecimal integer. 

Beware that the following pattern matches either x or 
one or more of y, not one or more of x or y: 

/x|y+/ 

See the section called "Special-Character Precedence" 
later today for details on how to specify special-
character precedence in patterns.

Reusing Portions of Patterns

Suppose that you want to write a pattern that matches the following: 

●     One or more digits or lowercase letters 
●     Followed by a colon or semicolon 
●     Followed by another group of one or more digits or lowercase letters 
●     Another colon or semicolon 
●     Yet another group of one or more digits or lowercase letters 

One way to indicate this pattern is as follows: 



/[\da-z]+[:;][\da-z]+[:;][\da-z]+/

This pattern is somewhat complicated and is quite repetitive. 

Perl provides an easier way to specify patterns that contain multiple repetitions of a 
particular sequence. When you enclose a portion of a pattern in parentheses, as in 

([\da-z]+)

Perl stores the matched sequence in memory. To retrieve a sequence from memory, use 
the special character \n, where n is an integer representing the nth pattern stored in 
memory. 

For example, the aforementioned pattern can be written as 

/([\da-z]+])[:;]\1[:;]\1/

Here, the pattern matched by [\da-z]+ is stored in memory. When the Perl interpreter 
sees the escape sequence \1, it matches the matched pattern. 

You also can store the sequence [:;] in memory, and write this pattern as follows: 

/([\da-z]+)([:;])\1\2\1/

Pattern sequences are stored in memory from left to right, so \1 represents the 
subpattern matched by [\da-z]+ and \2 represents the subpattern matched by [:;]. 

Pattern-sequence memory is often used when you want to match the same character in 
more than one place but don't care which character you match. For example, if you are 
looking for a date in dd-mm-yy format, you might want to match 

/\d{2}([\W])\d{2}\1\d{2}/

This matches two digits, a non-word character, two more digits, the same non-word 
character, and two more digits. This means that the following strings all match: 

12-05-92



26.11.87

07 04 92

However, the following string does not match: 

21-05.91

This is because the pattern is looking for a - between the 05 and the 91, not a period.

Beware that the pattern

/\d{2}([\W])\d{2}\1\d{2}/ 

is not the same as the pattern

/(\d{2})([\W])\1\2\1/ 

In the first pattern, any digit can appear anywhere. The 
second pattern matches any two digits as the first two 
characters, but then only matches the same two digits 
again. This means that

17-17-17 

matches, but the following does not:

17-05-91 

Pattern-Sequence Scalar Variables

Note that pattern-sequence memory is preserved only for the length of the pattern. 
This means that if you define the following pattern (which, incidentally, matches any 
floating-point number that does not contain an exponent): 

/-?(\d+)\.?(\d+)/



you cannot then define another pattern, such as the following: 

/\1/

and expect the Perl interpreter to remember that \1 refers to the first \d+ (the digits 
before the decimal point). 

To get around this problem, Perl defines special built-in variables that remember the 
value of patterns matched in parentheses. These special variables are named $n, where n 
is the nth set of parentheses in the pattern. 

For example, consider the following: 

$string = "This string contains the number 25.11.";

$string =~ /-?(\d+)\.?(\d+)/;

$integerpart = $1;

$decimalpart = $2;

In this case, the pattern 

/-?(\d+)\.?(\d+)/

matches 25.11, and the subpattern in the first set of parentheses matches 25. This means 
that 25 is stored in $1 and is later assigned to $integerpart. Similarly, the second set of 
parentheses matches 11, which is stored in $2 and later assigned to $decimalpart. 

The values stored in $1, $2, and so on, are destroyed 
when another pattern match is performed. If you need 
these values, be sure to assign them to other scalar 
variables. 

There is also one other built-in scalar variable, $&, which contains the entire matched 
pattern, as follows: 



$string = "This string contains the number 25.11.";

$string =~ /-?(\d+)\.?(\d+)/;

$number = $&;

Here, the pattern matched is 25.11, which is stored in $& and then assigned to $number. 

Special-Character Precedence

Perl defines rules of precedence to determine the order in which special characters in 
patterns are interpreted. For example, the pattern 

/x|y+/

matches either x or one or more occurrences of y, because + has higher precedence than | 
and is therefore interpreted first. 

Table 7.3 lists the special characters that can appear in patterns in order of precedence 
(highest to lowest). Special characters with higher precedence are always interpreted 
before those of lower precedence.

Table 7.3. The precedence of pattern-matching special characters.

Special 
character

Description 

() Pattern memory 

+ * ? {} Number of occurrences 

^ $ \b \B Pattern anchors 

| Alternatives

Because the pattern-memory special characters () have the highest precedence, you can 
use them to force other special characters to be evaluated first. For example, the 
pattern 

(ab|cd)+

matches one or more occurrences of either ab or cd. This matches, for example, abcdab.



Remember that when you use parentheses to force the 
order of precedence, you also are storing into pattern 
memory. For example, in the sequence

/(ab|cd)+(.)(ef|gh)+\1/ 

the \1 refers to what ab|cd matched, not to what the . 
special character matched. 

Now that you know all of the special-pattern characters and their precedence, look at 
a program that does more complex pattern matching. Listing 7.9 uses the various special-
pattern characters, including the parentheses, to check whether a given input string is 
a valid twentieth-century date. 

 

Listing 7.9. A date-validation program.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a date in the format YYYY-MM-DD:\n");

4:  $date = <STDIN>;

5:  chop ($date);

6:  

7:  # Because this pattern is complicated, we split it

8:  # into parts, assign the parts to scalar variables,

9:  # then substitute them in later.

10: 

11: # handle 31-day months

12: $md1 = "(0[13578]|1[02])\\2(0[1-9]|[12]\\d|3[01])";

13: # handle 30-day months



14: $md2 = "(0[469]|11)\\2(0[1-9]|[12]\\d|30)";

15: # handle February, without worrying about whether it's

16: # supposed to be a leap year or not

17: $md3 = "02\\2(0[1-9]|[12]\\d)";

18: 

19: # check for a twentieth-century date

20: $match = $date =~ /^(19)?\d\d(.)($md1|$md2|$md3)$/;

21: # check for a valid but non-20th century date

22: $olddate = $date =~ /^(\d{1,4})(.)($md1|$md2|$md3)$/;

23: if ($match) {

24:         print ("$date is a valid date\n");

25: } elsif ($olddate) {

26:         print ("$date is not in the 20th century\n");

27: } else {

28:         print ("$date is not a valid date\n");

29: }

 

$ program7_9

Enter a date in the format YYYY-MM-DD:

1991-04-31

1991-04-31 is not a valid date

$

 Don't worry: this program is a lot less complicated than it looks! Basically, 
this program does the following: 



1.  It checks whether the date is in the format YYYY-MM-DD. (It allows YY-MM-DD, and 
also enables you to use a character other than a hyphen to separate the year, 
month, and date.) 

2.  It checks whether the year is in the twentieth century or not. 
3.  It checks whether the month is between 01 and 12. 
4.  Finally, it checks whether the date field is a legal date for that month. Legal 

date fields are between 01 and either 29, 30, or 31, depending on the number of 
days in that month. 

If the date is legal, the program tells you so. If the date is not a twentieth-century 
date but is legal, the program informs you of this also. 

Because the pattern to be matched is too long to fit on one line, this program breaks it 
into pieces and assigns the pieces to scalar variables. This is possible because scalar-
variable substitution is supported in patterns. 

Line 12 is the pattern to match for months with 31 days. Note that the escape sequences 
(such as \d) are preceded by another backslash (producing \\d). This is because the 
program actually wants to store a backslash in the scalar variable. (Recall that 
backslashes in double-quoted strings are treated as escape sequences.) The pattern 

(0[13578]|1[02])\2(0[1-9]|[12]\d|3[01])

which is assigned to $md1, consists of the following components: 

●     The sequence (0[13578]|1[02]), which matches the month values 01, 03, 05, 07, 08, 
10, and 12 (the 31-day months) 

●     \2, which matches the character that separates the day, month, and year 
●     The sequence (0[1-9]|[12]\d|3[01]), which matches any two-digit number 

between 01 and 31 

Note that \2 matches the separator character because the separator character will 
eventually be the second pattern sequence stored in memory (when the pattern is 
finally assembled). 

Line 14 is similar to line 12 and handles 30-day months. The only differences between 
this subpattern and the one in line 12 are as follows: 

●     The month values accepted are 04, 06, 09, and 11. 
●     The valid date fields are 01 through 30, not 01 through 31. 

Line 17 is another similar pattern that checks whether the month is 02 (February) and 
the date field is between 01 and 29. 



Line 20 does the actual pattern match that checks whether the date is a valid 
twentieth-century date. This pattern is divided into three parts. 

●     ^(19)?\d\d, which matches any two-digit number at the beginning of a line, or any 
four-digit number starting with 19 

●     The separator character, which is the second item in parentheses-the second item 
stored in memory-and thus can be retrieved using \2 

●     ($md1|$md2|$md3)$, which matches any of the valid month-day combinations 
defined in lines 12, 14, and 17, provided it appears at the end of the line 

The result of the pattern match, either true or false, is stored in the scalar variable 
$match. 

Line 22 checks whether the date is a valid date in any century. The only difference 
between this pattern and the one in line 20 is that the year can be any one-to-four-digit 
number. The result of the pattern match is stored in $olddate. 

Lines 23-29 check whether either $match or $olddate is true and print the appropriate 
message. 

As you can see, the pattern-matching facility in Perl is quite powerful. This program is 
less than 30 lines long, including comments; the equivalent program in almost any 
other programming language would be substantially longer and much more difficult to 
write. 

Specifying a Different Pattern Delimiter

So far, all the patterns you have seen have been enclosed by / characters. 

/de*f/

These / characters are known as pattern delimiters. 

Because / is the pattern-delimiter character, you must use \/ to include a / character in 
a pattern. This can become awkward if you are searching for a directory such as, for 
example, /u/jqpublic/perl/prog1. 

/\/u\/jqpublic\/perl\/prog1/

To make it easier to write patterns that include / characters, Perl enables you to use 
any pattern-delimiter character you like. The following pattern also matches the 



directory /u/jqpublic/perl/prog1: 

m!/u/jqpublic/perl/prog1!

Here, the m indicates the pattern-matching operation. If you are using a pattern 
delimiter other than /, you must include the m.

There are two things you should watch out for when 
you use other pattern delimiters.

First, if you use the ' character as a pattern delimiter, 
the Perl interpreter does not substitute for scalar-
variable names. 

m'$var' 

This matches the string $var, not the current value of 
the scalar variable $var. 

Second, if you use a pattern delimiter that is normally a 
special-pattern character, you will not be able to use 
that special character in your pattern. For example, if 
you want to match the pattern ab?c (which matches a, 
optionally followed by b, followed by c) you cannot use 
the ? character as a pattern delimiter. The pattern 

m?ab?c? 

produces a syntax error, because the Perl interpreter 
assumes that the ? after the b is a pattern delimiter. You 
can still use 

m?ab\?c? 

but this pattern won't match what you want. Because 
the ? inside the pattern is escaped, the Perl interpreter 
assumes that you want to match the actual ? character, 
and the pattern matches the sequence ab?c. 



Pattern-Matching Options

When you specify a pattern, you also can supply options that control how the pattern is 
to be matched. Table 7.4 lists these pattern-matching options.

Table 7.4. Pattern-matching options.

Option Description 

g Match all possible patterns 

i Ignore case 

m Treat string as multiple 
lines 

o Only evaluate once 

s Treat string as single line 

x Ignore white space in 
pattern 

All pattern options are included immediately after the pattern. For example, the 
following pattern uses the i option to ignore case: 

/ab*c/i

You can specify as many of the options as you like, and the options can be in any order. 

Matching All Possible Patterns

The g operator tells the Perl interpreter to match all the possible patterns in a string. 
For example, if you search the string balata using the pattern 

/.a/g

which matches any character followed by a, the pattern matches ba, la, and ta. 

If a pattern with the g option specified appears as an assignment to an array variable, 
the array variable is assigned a list consisting of all the patterns matched. For example, 

@matches = "balata" =~ /.a/g;



assigns the following list to @matches: 

("ba", "la", "ta")

Now, consider the following statement: 

$match = "balata" =~ /.a/g;

The first time this statement is executed, $match is assigned the first pattern matched, 
which in this case is ba. If this assignment is performed again, $match is assigned the 
second pattern matched in the string, which is la, and so on until the pattern runs out 
of matches. 

This means that you can use patterns with the g option in loops. Listing 7.10 shows how 
this works. 

 

Listing 7.10. A program that loops using a pattern.

1:  #!/usr/local/bin/perl

2:  

3:  while ("balata" =~ /.a/g) {

4:          $match = $&;

5:          print ("$match\n");

6:  }

 

$ program7_10

ba



la

ta

$

 The first time through the loop, $match has the value of the first pattern 
matched, which is ba. (The system variable $& always contains the last pattern matched; 
this pattern is assigned to $match in line 4.) When the loop is executed for a second time, 
$match has the value la. The third time through, $match has the value ta. After this, the 
loop terminates; because the pattern doesn't match anything else, the conditional 
expression is now false. 

Determining the Match Location

If you need to know how much of a string has been searched by the pattern matcher 
when the g operator is specified, use the pos function. 

$offset = pos($string);

This returns the position at which the next pattern match will be started. 

You can reposition the pattern matcher by putting pos() on the left side of an 
assignment. 

pos($string) = $newoffset;

This tells the Perl interpreter to start the next pattern match at the position specified 
by $newoffset.

If you change the string being searched, the match 
position is reset to the beginning of the string.

NOTE



The pos function is not available in Perl version 4. 

Ignoring Case

The i option enables you to specify that a matched letter can either be uppercase or 
lowercase. For example, the following pattern matches de, dE, De, or DE: 

/de/i

Patterns that match either uppercase or lowercase letters are said to be case-insensitive. 

Treating the String as Multiple Lines

The m option tells the Perl interpreter that the string to be matched contains multiple 
lines of text. When the m option is specified, the ^ special character matches either the 
start of the string or the start of any new line. For example, the pattern 

/^The/m

matches the word The in 

This pattern matches\nThe first word on the second line

The m option also specifies that the $ special character is to match the end of any line. 
This means that the pattern 

/line.$/m

is matched in the following string: 

This is the end of the first line.\nHere's another line.

NOTE



The m option is defined only in Perl 5. To treat a string as 
multiple lines when you run Perl 4, set the $* system 
variable, described on Day 17, "System Variables." 

Evaluating a Pattern Only Once

The o option enables you to tell the Perl interpreter that a pattern is to be evaluated 
only once. For example, consider the following: 

$var = 1;

$line = <STDIN>;

while ($var < 10) {

        $result = $line =~ /$var/o;

        $line = <STDIN>;

        $var++;

}

The first time the Perl interpreter sees the pattern /$var/, it replaces the name $var 
with the current value of $var, which is 1; this means that the pattern to be matched is 
/1/. 

Because the o option is specified, the pattern to be matched remains /1/ even when the 
value of $var changes. If the o option had not been specified, the pattern would have 
been /2/ the next time through the loop.

TIP

There's no real reason to use the o option for patterns 
unless you are keen on efficiency. Here's an easier way 
to do the same thing: 

$var = <STDIN>;
$matchval = $var;
$line = <STDIN>;
while ($var < 10) {
$result = $line =~ /$matchval/;
$line = <STDIN>;
$var++;

} 



The value of $matchval never changes, so the o option is 
not necessary. 

Treating the String as a Single Line

The s option specifies that the string to be matched is to be treated as a single line of 
text. In this case, the . special character matches every character in a string, including 
the newline character. For example, the pattern /a.*bc/s is matched successfully in 
the following string: 

axxxxx \nxxxxbc

If the s option is not specified, this pattern does not match, because the . character does 
not match the newline. 

NOTE

The s option is defined only in Perl 5. 

Using White Space in Patterns

One problem with patterns in Perl is that they can become difficult to follow. For 
example, consider this pattern, which you saw earlier: 

/\d{2}([\W])\d{2}\1\d{2}/

Patterns such as this are difficult to follow, because there are a lot of backslashes, 
braces, and brackets to sort out. 

Perl 5 makes life a little easier by supplying the x option. This tells the Perl interpreter 
to ignore white space in a pattern unless it is preceded by a backslash. This means that 
the preceding pattern can be rewritten as the following, which is much easier to 
follow: 

/\d{2} ([\W]) \d{2} \1 \d{2}/x

Here is an example of a pattern containing an actual blank space: 



/[A-Z] [a-z]+ \ [A-Z] [a-z]+ /x

This matches a name in the standard first-name/last-name format (such as John Smith). 
Normally, you won't want to use the x option if you're actually trying to match white 
space, because you wind up with the backslash problem all over again.

NOTE

The x option is defined only in Perl 5. 

The Substitution Operator

Perl enables you to replace part of a string using the substitution operator, which has 
the following syntax: 

s/pattern/replacement/

The Perl interpreter searches for the pattern specified by the placeholder pattern. If it 
finds pattern, it replaces it with the string represented by the placeholder replacement. 
For example: 

$string = "abc123def";

$string =~ s/123/456/;

Here, 123 is replaced by 456, which means that the value stored in $string is now 
abc456def. 

You can use any of the pattern special characters in the substitution operator. For 
example, 

s/[abc]+/0/

searches for a sequence consisting of one or more occurrences of the letters a, b, and c 
(in any order) and replaces the sequence with 0. 

If you just want to delete a sequence of characters rather than replace it, leave out 
the replacement string as in the following example, which deletes the first occurrence 



of the pattern abc: 

s/abc//

Using Pattern-Sequence Variables in Substitutions

You can use pattern-sequence variables to include a matched pattern in the 
replacement string. The following is an example: 

s/(\d+)/[$1]/

This matches a sequence of one or more digits. Because this sequence is enclosed in 
parentheses, it is stored in the scalar variable $1. In the replacement string, [$1], the 
scalar variable name $1 is replaced by its value, which is the matched pattern.

NOTE

Because the replacement string in the substitution 
operator is a string, not a pattern, the pattern special 
characters, such as [], *, and +, do not have a special 
meaning. For example, in the substitution 

s/abc/[def]/ 

the replacement string is [def] (including the square 
brackets). 

Options for the Substitution Operator

The substitution operator supports several options, which are listed in Table 7.5.

Table 7.5. Options for the substitution operator.

Option Description 

g Change all occurrences of the pattern 

i Ignore case in pattern 

e Evaluate replacement string as expression 



m Treat string to be matched as multiple 
lines 

o Evaluate only once 

s Treat string to be matched as single line 

x Ignore white space in pattern 

As with pattern matching, options are appended to the end of the operator. For example, 
to change all occurrences of abc to def, use the following: 

s/abc/def/g

Global Substitution

The g option changes all occurrences of a pattern in a particular string. For example, 
the following substitution puts parentheses around any number in the string: 

s/(\d+)/($1)/g

Listing 7.11 is an example of a program that uses global substitution. It examines each 
line of its input, removes all extraneous leading spaces and tabs, and replaces multiple 
spaces and tabs between words with a single space. 

 

Listing 7.11. A simple white space cleanup program.

1:  #!/usr/local/bin/perl

2:  

3:  @input = <STDIN>;

4:  $count = 0;

5:  while ($input[$count] ne "") {

6:          $input[$count] =~ s/^[ \t]+//;

7:          $input[$count] =~ s/[ \t]+\n$/\n/;

8:          $input[$count] =~ s/[ \t]+/ /g;



9:          $count++;

10: }

11: print ("Formatted text:\n");

12: print (@input);

 

$ program7_11

This is   a  line   of    input.

  Here   is another line.  

This     is my  last line of   input.

^D

Formatted text:

This is a line of input.

Here is another line.

This is my last line of input.

$

 This program performs three substitutions on each line of its input. The first 
substitution, in line 6, checks whether there are any spaces or tabs at the beginning of 
the line. If any exist, they are removed. 

Similarly, line 7 checks whether there are any spaces or tabs at the end of the line 
(before the trailing newline character). If any exist, they are removed. To do this, line 7 
replaces the following pattern (one or more spaces and tabs, followed by a newline 
character, followed by the end of the line) with a newline character: 

/[ \t]+\n$/

Line 8 uses a global substitution to remove extra spaces and tabs between words. The 



following pattern matches one or more spaces or tabs, in any order; these spaces and 
tabs are replaced by a single space: 

/[ \t]+/

Ignoring Case

The i option ignores case when substituting. For example, the following substitution 
replaces all occurrences of the words no, No, NO, and nO with NO. (Recall that the \b 
escape character specifies a word boundary.) 

s/\bno\b/NO/gi

Replacement Using an Expression

The e option treats the replacement string as an expression, which it evaluates before 
replacing. For example, consider the following: 

$string = "0abc1";

$string =~ s/[a-zA-Z]+/$& x 2/e

The substitution shown here is a quick way to duplicate part of a string. Here's how it 
works: 

1.  The pattern /[a-zA-Z]+/ matches abc, which is stored in the built-in variable $&. 
2.  The e option indicates that the replacement string, $& x 2, is to be treated as an 

expression. This expression is evaluated, producing the result abcabc. 
3.  abcabc is substituted for abc in the string stored in $string. This means that the 

new value of $string is 0abcabc1. 

Listing 7.12 is another example that uses the e option in a substitution. This program 
takes every integer in a list of input files and multiplies them by 2, leaving the rest of 
the contents unchanged. (For the sake of simplicity, the program assumes that there are 
no floating-point numbers in the file.) 

 



Listing 7.12. A program that multiplies every integer in a file by 2.

1:  #!/usr/local/bin/perl

2:  

3:  $count = 0;

4:  while ($ARGV[$count] ne "") {

5:          open (FILE, "$ARGV[$count]");

6:          @file = <FILE>;

7:          $linenum = 0;

8:          while ($file[$linenum] ne "") {

9:                  $file[$linenum] =~ s/\d+/$& * 2/eg;

10:                 $linenum++;

11:         }

12:         close (FILE);

13:         open (FILE, ">$ARGV[$count]");

14:         print FILE (@file);

15:         close (FILE);

16:         $count++;

17: }

 

If a file named foo contains the text

This contains the number 1.

This contains the number 26.

and the name foo is passed as a command-line argument to this program, the 
file foo becomes 



This contains the number 2.

This contains the number 52.

 This program uses the built-in variable @ARGV to retrieve filenames from the 
command line. Note that the program cannot use <>, because the following statement 
reads the entire contents of all the files into a single array: 

@file = <>;

Lines 8-11 read and substitute one line of a file at a time. Line 9 performs the actual 
substitution as follows: 

1.  The pattern \d+ matches a sequence of one or more digits, which is automatically 
assigned to $&. 

2.  The value of $& is substituted into the replacement string. 
3.  The e option indicates that this replacement string is to be treated as an 

expression. This expression multiplies the matched integer by 2. 
4.  The result of the multiplication is then substituted into the file in place of the 

original integer. 
5.  The g option indicates that every integer on the line is to be substituted for. 

After all the lines in the file have been read, the file is closed and reopened for 
writing. The call to print in line 14 takes the list stored in @file-the contents of the 
current file-and writes them back out to the file, overwriting the original contents. 

Evaluating a Pattern Only Once

As with the match operator, the o option to the substitution operator tells the Perl 
interpreter to replace a scalar variable name with its value only once. For example, the 
following statement substitutes the current value of $var for its name, producing a 
replacement string: 

$string =~ /abc/$var/o;

This replacement string then never changes, even if the value of $var changes. For 
example: 

$var = 17;



while ($var > 0) {

        $string = <STDIN>;

        $string =~ /abc/$var/o;

        print ($string);

        $var--;  # the replacement string is still "17"

}

Again, as with the match operator, there is no real reason to use the o option. 

Treating the String as Single or Multiple Lines

As in the pattern-matching operator, the s and m options specify that the string to be 
matched is to be treated as a single line or as multiple lines, respectively. 

The s option ensures that the newline character \n is matched by the . special 
character. 

$string = "This is a\ntwo-line string.";

$string =~ s/a.*o/one/s;

# $string now contains "This is a one-line string."

If the m option is specified, ^ and $ match the beginning and end of any line. 

$string = "The The first line\nThe The second line";

$string =~ s/^The//gm;

# $string now contains "The first line\nThe second line"

$string =~ s/e$/k/gm;

# $string now contains "The first link\nThe second link"



The \A and \Z escape sequences (defined in Perl 5) always 
match only the beginning and end of the string, 
respectively. (This is the only case where \A and \Z 
behave differently from ^ and $.) 

NOTE

The m and s options are defined only in Perl 5. To treat a 
string as multiple lines when you run Perl 4, set the $* 
system variable, described on Day 17. 

Using White Space in Patterns

The x option tells the Perl interpreter to ignore all white space unless preceded by a 
backslash. As with the pattern-matching operator, ignoring white space makes 
complicated string patterns easier to read. 

$string =~ s/\d{2} ([\W]) \d{2} \1 \d{2}/$1-$2-$3/x

This converts a day-month-year string to the dd-mm-yy format.

NOTE

Even if the x option is specified, spaces in the replacement 
string are not ignored. For example, the following 
replaces 14/04/95 with 14 - 04 - 95, not 14-04-95: 

$string =~ s/\d{2} ([\W]) \d{2} \1 \d{2}/$1 - $2 - 

$3/x 

Also note that the x option is defined only in Perl 5. 

Specifying a Different Delimiter

You can specify a different delimiter to separate the pattern and replacement string in 
the substitution operator. For example, the following substitution operator replaces 
/u/bin with /usr/local/bin: 



s#/u/bin#/usr/local/bin#

The search and replacement strings can be enclosed in parentheses or angle brackets. 

s(/u/bin)(/usr/local/bin)

s</u/bin>/\/usr\/local\/bin/

NOTE

As with the match operator, you cannot use a special 
character both as a delimiter and in a pattern.

s.a.c.def. 

This substitution will be flagged as containing an error 
because the . character is being used as the delimiter. 
The substitution 

s.a\.c.def. 

does work, but it substitutes def for a.c, where . is an 
actual period and not the pattern special character. 

The Translation Operator

Perl also provides another way to substitute one group of characters for another: the 
tr translation operator. This operator uses the following syntax: 

tr/string1/string2/

Here, string1 contains a list of characters to be replaced, and string2 contains the 
characters that replace them. The first character in string1 is replaced by the first 
character in string2, the second character in string1 is replaced by the second 
character in string2, and so on. 

Here is a simple example: 

$string = "abcdefghicba";



$string =~ tr/abc/def/;

Here, the characters a, b, and c are to be replaced as follows: 

●     All occurrences of the character a are to be replaced by the character d. 
●     All occurrences of the character b are to be replaced by the character e. 
●     All occurrences of the character c are to be replaced by the character f. 

After the translation, the scalar variable $string contains the value defdefghifed.

NOTE

If the string listing the characters to be replaced is 
longer than the string containing the replacement 
characters, the last character of the replacement 
string is repeated. For example:

$string = "abcdefgh";

$string =~ tr/efgh/abc/; 

Here, there is no character corresponding to d in the 
replacement list, so c, the last character in the 
replacement list, replaces h. This translation sets the 
value of $string to abcdabcc. 

Also note that if the same character appears more than 
once in the list of characters to be replaced, the first 
replacement is used:

$string =~ tr/AAA/XYZ/; replaces A with X

The most common use of the translation operator is to convert alphabetic characters 
from uppercase to lowercase or vice versa. Listing 7.13 provides an example of a program 
that converts a file to all lowercase characters. 

 

Listing 7.13. An uppercase-to-lowercase conversion program. 



1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <STDIN>) {

4:          $line =~ tr/A-Z/a-z/;

5:          print ($line);

6:  }

 

$ program7_13

THIS LINE IS IN UPPER CASE.

this line is in upper case.

ThiS LiNE Is iN mIxED cASe.

this line is in mixed case.

^D

$

 This program reads a line at a time from the standard input file, terminating 
when it sees a line containing the Ctrl+D (end-of-file) character. 

Line 4 performs the translation operation. As in the other pattern-matching operations, 
the range character (-) indicates a range of characters to be included. Here, the range 
a-z refers to all the lowercase characters, and the range A-Z refers to all the 
uppercase characters.

NOTE



There are two things you should note about the 
translation operator:

The pattern special characters are not supported by the 
translation operator.

You can use y in place of tr if you want. 

$string =~ y/a-z/A-Z/; 

Options for the Translation Operator

The translation operator supports three options, which are listed in Table 7.6. 

The c option (c is for "complement") translates all characters that are not specified. For 
example, the statement 

$string =~ tr/\d/ /c;

replaces everything that is not a digit with a space.

Table 7.6. Options for the translation operator.

Option Description 

c Translate all characters not specified 

d Delete all specified characters 

s Replace multiple identical output characters with a single 
character 

The d option deletes every specified character. 

$string =~ tr/\t //d;

This deletes all the tabs and spaces from $string. 

The s option (for "squeeze") checks the output from the translation. If two or more 
consecutive characters translate to the same output character, only one output 
character is actually used. For example, the following replaces everything that is not 



a digit and outputs only one space between digits: 

$string =~ tr/0-9/ /cs;

Listing 7.14 is a simple example of a program that uses some of these translation options. 
It reads a number from the standard input file, and it gets rid of every input character 
that is not actually a digit. 

 

Listing 7.14. A program that ensures that a string consists of nothing 
but digits.

1:  #!/usr/local/bin/perl

2:  

3:  $string = <STDIN>;

4:  $string =~ tr/0-9//cd;

5:  print ("$string\n");

 

$ program7_14

The number 45 appears in this string.

45

$

 Line 4 of this program performs the translation. The d option indicates that 
the translated characters are to be deleted, and the c option indicates that every 
character not in the list is to be deleted. Therefore, this translation deletes every 
character in the string that is not a digit. Note that the trailing newline character is 
not a digit, so it is one of the characters deleted. 



Extended Pattern-Matching

Perl 5 provides some additional pattern-matching capabilities not found in Perl 4 or in 
standard UNIX pattern-matching operations. 

Extended pattern-matching capabilities employ the following syntax: 

(?<c>pattern)

<c> is a single character representing the extended pattern-matching capability being 
used, and pattern is the pattern or subpattern to be affected. 

The following extended pattern-matching capabilities are supported by Perl 5: 

●     Parenthesizing subpatterns without saving them in memory 
●     Embedding options in patterns 
●     Positive and negative look-ahead conditions 
●     Comments 

Parenthesizing Without Saving in Memory

In Perl, when a subpattern is enclosed in parentheses, the subpattern is also stored in 
memory. If you want to enclose a subpattern in parentheses without storing it in 
memory, use the ?: extended pattern-matching feature. For example, consider this 
pattern: 

/(?:a|b|c)(d|e)f\1/

This matches the following: 

●     One of a, b, or c 
●     One of d or e 
●     f 
●     Whichever of d or e was matched earlier 

Here, \1 matches either d or e, because the subpattern a|b|c was not stored in memory. 
Compare this with the following: 

/(a|b|c)(d|e)f\1/



Here, the subpattern a|b|c is stored in memory, and one of a, b, or c is matched by \1. 

Embedding Pattern Options

Perl 5 provides a way of specifying a pattern-matching option within the pattern itself. 
For example, the following patterns are equivalent: 

/[a-z]+/i

/(?i)[a-z]+/

In both cases, the pattern matches one or more alphabetic characters; the i option 
indicates that case is to be ignored when matching. 

The syntax for embedded pattern options is 

(?option)

where option is one of the options shown in Table 7.7. 

Table 7.7. Options for embedded patterns.

Option Description 

i Ignore case in pattern 

m Treat pattern as multiple lines 

s Treat pattern as single line 

x Ignore white space in pattern 

The g and o options are not supported as embedded pattern options. 

Embedded pattern options give you more flexibility when you are matching patterns. For 
example: 

$pattern1 = "[a-z0-9]+";

$pattern2 = "(?i)[a-z]+";

if ($string =~ /$pattern1|$pattern2/) {

        ...



}

Here, the i option is specified for some, but not all, of a pattern. (This pattern matches 
either any collection of lowercase letters mixed with digits, or any collection of 
letters.) 

Positive and Negative Look-Ahead

Perl 5 enables you to use the ?= feature to define a boundary condition that must be 
matched in order for the pattern to match. For example, the following pattern matches 
abc only if it is followed by def: 

/abc(?=def)/

This is known as a positive look-ahead condition.

NOTE

The positive look-ahead condition is not part of the 
pattern matched. For example, consider these 
statements:

$string = "25abc8";
$string =~ /abc(?=[0-9])/;

$matched = $&; 

Here, as always, $& contains the matched pattern, which 
in this case is abc, not abc8. 

Similarly, the ?! feature defines a negative look-ahead condition, which is a boundary 
condition that must not be present if the pattern is to match. For example, the pattern 
/abc(?!def)/ matches any occurrence of abc unless it is followed by def. 

Pattern Comments

Perl 5 enables you to add comments to a pattern using the ?# feature. For example: 

if ($string =~ /(?i)[a-z]{2,3}(?# match two or three alphabetic 
characters)/ {

        ...



}

Adding comments makes it easier to follow complicated patterns. 

Summary

Perl enables you to search for sequences of characters using patterns. If a pattern is 
found in a string, the pattern is said to be matched. 

Patterns often are used in conjunction with the pattern-match operators, =~ and !~. The 
=~ operator returns true if the pattern matches, and the !~ operator returns true if the 
pattern does not match. 

Special-pattern characters enable you to search for a string that meets one of a variety 
of conditions. 

●     The + character matches one or more occurrences of a character. 
●     The * character matches zero or more occurrences of a character. 
●     The [] characters enclose a set of characters, any one of which matches. 
●     The ? character matches zero or one occurrences of a character. 
●     The ^ and $ characters match the beginning and end of a line, respectively. The \b 

and \B characters match a word boundary or somewhere other than a word 
boundary, respectively. 

●     The {} characters specify the number of occurrences of a character. 
●     The | character specifies alternatives, either of which match. 

To give a special character its natural meaning in a pattern, precede it with a backslash 
\. 

Enclosing a part of a pattern in parentheses stores the matched subpattern in memory; 
this stored subpattern can be recalled using the character sequence \n, and stored in a 
scalar variable using the built-in scalar variable $n. The built-in scalar variable $& 
stores the entire matched pattern. 

You can substitute for scalar-variable names in patterns, specify different pattern 
delimiters, or supply options that match every possible pattern, ignore case, or perform 
scalar-variable substitution only once. 

The substitution operator, s, enables you to replace a matched pattern with a specified 
string. Options to the substitution operator enable you to replace every matched 
pattern, ignore case, treat the replacing string as an expression, or perform scalar-
variable substitution only once. 



The translation operator, tr, enables you to translate one set of characters into 
another set. Options exist that enable you to perform translation on everything not in 
the list, to delete characters in the list, or to ignore multiple identical output 
characters. 

Perl 5 provides extended pattern-matching capabilities not provided in Perl 4. To use one 
of these extended pattern features on a subpattern, put (? at the beginning of the 
subpattern and ) at the end of the subpattern. 

Q&A

Q: How many subpatterns can be stored in memory using \1, \2, and so on? 

A: Basically, as many as you like. After you store more than nine patterns, you can 
retrieve the later patterns using two-digit numbers preceded by a backslash, 
such as \10. 

Q: Why does pattern-memory variable numbering start with 1, whereas 
subscript numbering starts with 0? 

A: Subscript numbering starts with 0 to remain compatible with the C programming 
language. There is no such thing as pattern memory in C, so there is no need to be 
compatible with it. 

Q: What happens when the replacement string in the translate command is left 
out, as in tr/abc//? 

A: If the replacement string is omitted, a copy of the first string is used. This means 
that 
:t:r/abc//

does not do anything, because it is the same as
tr/abc/abc/

If the replacement string is omitted in the substitute command, as in
s/abc//

the pattern matched-in this case, abc-is deleted. 

Q: Why does Perl use characters such as +, *, and ? as pattern special 
characters? 

A: These special characters usually correspond to special characters used in other 
UNIX applications, such as vi and csh. Some of the special characters, such as +, 
are used in formal syntax description languages. 

Q: Why does Perl use both \1 and $1 to store pattern memory? 

A: To enable you to distinguish between a subpattern matched in the current 
pattern (which is stored in \1) and a subpattern matched in the previous 
statement (which is stored in $1). 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 



material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  What do the following patterns match?
a.   /a|bc*/
b.   /[\d]{1,3}/
c.   /\bc[aou]t\b/
d.   /(xy+z)\.\1/
e.   /^$/ 

2.  Write patterns that match the following:
a.   Five or more lowercase letters (a-z). 
b.   Either the number 1 or the string one. 
c.   string of digits optionally containing a decimal point.
d.   Any letter, followed by any vowel, followed by the same letter again.
e.   One or more + characters. 

3.  Suppose the variable $var has the value abc123. Indicate whether the following 
conditional expressions return true or false.
a.  $var =~ /./
b.  $var =~ /[A-Z]*/
c.  $var =~ /\w{4-6}/
d.  $var =~ /(\d)2(\1)/
e.  $var =~ /abc$/

f.  $var =~ /1234?/ 
4.  Suppose the variable $var has the value abc123abc. What is the value of $var 

after the following substitutions? 
a.   $var =~ s/abc/def/;
b.   $var =~ s/[a-z]+/X/g; 
c.   $var =~ s/B/W/i;
d.   $var =~ s/(.)\d.*\1/d/;

e.   $var =~ s/(\d+)/$1*2/e; 
5.  Suppose the variable $var has the value abc123abc. What is the value of $var 

after the following translations? 
a.   $var =~ tr/a-z/A-Z/;
b.   $var =~ tr/123/456/;
c.   $var =~ tr/231/564/;
d.   $var =~ tr/123/ /s;
e.   $var =~ tr/123//cd; 

Exercises

1.  Write a program that reads all the input from the standard input file, converts 
all the vowels (except y) to uppercase, and prints the result on the standard 
output file. 

2.  Write a program that counts the number of times each digit appears in the 



standard input file. Print the total for each digit and the sum of all the totals. 
3.  Write a program that reverses the order of the first three words of each input 

line (from the standard input file) using the substitution operator. Leave the 
spacing unchanged, and print each resulting line. 

4.  Write a program that adds 1 to every number in the standard input file. Print the 
results. 

5.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

while ($line = <STDIN>) {
# put quotes around each line of input
$line =~ /^.*$/"\1"/;
print ($line);

} 
6.  BUG BUSTER: What is wrong with the following program? 

#!/usr/local/bin/perl

while ($line = <STDIN>) {
if ($line =~ /[\d]*/) {
print ("This line contains the digits '$&'\n"); 
}

} 

    



Week
1

Week 1 in Review

By now, you know enough about programming in Perl to write programs that perform 
many useful tasks. The program in Listing R1.1, which takes a number and prints out its 
English equivalent, illustrates some of the concepts you've learned during your first 
week. 

 

Listing R1.1. Printing the English equivalent of numeric input. 

1:  #!/usr/local/bin/perl

2:  

3:  # define the strings used in printing

4:  @digitword = ("", "one", "two", "three", "four", "five",

5:       "six", "seven", "eight", "nine");

6:  @digit10word = ("", "ten", "twenty", "thirty", "forty",

7:       "fifty", "sixty", "seventy", "eighty", "ninety");

8:  @teenword = ("ten", "eleven", "twelve", "thirteen", "fourteen",

9:      "fifteen", "sixteen", "seventeen", "eighteen", "nineteen");

10: @groupword = ("", "thousand", "million", "billion", "trillion",

11:     "quadrillion", "quintillion", "sextillion", "septillion",

12:     "octillion", "novillion", "decillion");

13: 

14: # read a line of input and remove all blanks, commas and tabs;



15: # complain about anything else

16: $inputline = <STDIN>;

17: chop ($inputline);

18: $inputline =~ s/[, \t]+//g;

19: if ($inputline =~ /[^\d]/) {

20:          die ("Input must be a number.\n");

21: }

22: 

23: # remove leading zeroes

24: $inputline =~ s/^0+//;

25: $inputline =~ s/^$/0/;  # put one back if they're all zero

26: 

27: # split into digits: $grouping contains the number of groups

28: # of digits, and $oddlot contains the number of digits in the

29: # first group, which may be only 1 or 2 (e.g., the 1 in 1,000)

30: @digits = split(//, $inputline);

31: if (@digits > 36) {

32:         die ("Number too large for program to handle.\n");

33: }

34: $oddlot = @digits % 3;

35: $grouping = (@digits-1) / 3;

36: 

37: # this loop iterates once for each grouping

38: $count = 0;

39: while ($grouping >= 0) {

40:         if ($oddlot == 2) {

41:                 $digit1 = 0;

42:                 $digit2 = $digits[0];

43:                 $digit3 = $digits[1];



44:                 $count += 2;

45:         } elsif ($oddlot == 1) {

46:                 $digit1 = 0;

47:                 $digit2 = 0;

48:                 $digits = $digits[0];

49:                 $count += 1;

50:         } else {      # regular group of three digits

51:                 $digit1 = $digits[$count];

52:                 $digit2 = $digits[$count+1];

53:                 $digit3 = $digits[$count+2];

54:                 $count += 3;

55:         }

56:         $oddlot = 0;

57:         if ($digit1 != 0) {

58:                 print ("$digitword[$digit1] hundred ");

59:         }

60:         if (($digit1 != 0 || ($grouping == 0 && $count > 3)) &&

61:             ($digit2 != 0 || $digit3 != 0)) {

62:                 print ("and ");

63:         }

64:         if ($digit2 == 1) {

65:                 print ("$teenword[$digit3] ");

66:         } elsif ($digit2 != 0 && $digit3 != 0) {

67:                 print ("$digit10word[$digit2]-$digitword[$digit3] 
");

68:         } elsif ($digit2 != 0 || $digit3 != 0) {

69:                 print ("$digit10word[$digit2]$digitword[$digit3] 
");

70:         }

71:         if ($digit1 != 0 || $digit2 != 0 || $digit3 != 0) {

72:                 print ("$groupword[$grouping]\n");



73:         } elsif ($count <= 3 && $grouping == 0) {

74:                 print ("zero\n");

75:         }

76:         $grouping-;

77: }

 

$ programR1_1

11,683

eleven thousand

six hundred and eighty-three

$

 This program reads in a number up to 36 digits long and prints out its English 
equivalent, using one line for each group of three digits. 

Lines 4-12 define array variables whose lists are the possible words that can be in a 
number. The variable @digitword lists the digits; @digit10word lists the words that 
indicate multiples of ten; @teenword lists the words that represent the values from 11 to 
19; and @groupword lists the names for each group of digits. Note that some of these lists 
have an empty first element; this ensures that the array subscripts refer to the correct 
value. (For example, without the empty word at the beginning of @digitword, 
$digitword[5] would refer to four, not five.) 

Lines 14-21 read the input and check whether it is valid. Valid numbers consist of digits 
optionally separated by spaces, tabs, or commas. The substitution operator in line 18 
removes these valid separators; the conditional expression in line 19 checks whether any 
invalid separators exist. 

If the program reaches line 24, the input number is valid. Line 24 gets rid of any leading 
zeros (to ensure that, for example, 000071 is converted to 71). If a number consists 
entirely of zeros, line 24 converts $inputline to the empty string; line 25 tests for this 
empty string and adds a zero if necessary. 



Lines 30-35 split the number into individual digits and create a list consisting of these 
digits. This list is assigned to the array variable @digits. Line 34 determines whether the 
first group of digits contains fewer than three digits; an example of this is the number 
45,771, whose first group of digits consists of only two digits. The scalar variable 
$oddlot is assigned the number of digits in the first group if the group is an odd lot of 
one or two; it is assigned 0 if the first group of digits contains all three digits. 

Line 35 calculates the number of groups of digits (including the initial odd lot). This 
determines the number of times that the upcoming printing loop is to be iterated. 

Lines 38-79 actually print the English value for this number. Each group of three digits 
is printed on its own line. The scalar variable $count contains the number of digits 
printed so far and is used as a subscript for the array variable @digits. 

To actually print the English value corresponding to a group of three digits, this loop 
first executes lines 40-57, which assign the values of the digits in the group to three 
scalar variables: $digit1, $digit2, and $digit3. If the group being handled is the first 
group, lines 40 and 46 check whether the group is an odd lot. For example, if the first 
group contains only two digits, the condition in line 40 becomes true, and the variable 
$digit1, which represents the first digit of the group, is assigned 0. Using $digit1, 
$digit2, and $digit3 reduces the complexity of the program because no code following 
line 57 has to check for the value of $oddlot. 

The number of digits actually handled is added to the scalar variable $count at this 
point. 

Line 58 assigns 0 to $oddlot. Subsequent groups of digits always contain three digits. 

Lines 59-77 print the English value associated with this particular group of digits as 
follows: 

1.  Lines 59-61 print the value of the hundreds place in this group (the first of the 
three digits). 

2.  Lines 62-64 check whether the word and needs to appear here. The word and is 
required in the following cases: 

❍     $digit1 is nonzero and one of the other digits is nonzero (as in three 
hundred and four) 

❍     $digit1 is zero, one of the other digits is nonzero, and this is the last group 
to be handled (as in the and four part of the number 11,004) 

3.  If the second digit is a 1 (as in 317), one of the "teen words" (such as eleven, twelve, 
and thirteen) must be used. Line 66 checks for this condition, and line 67 prints 
the appropriate word. 

4.  If both of the last two digits are defined, they both must be printed, and a dash 
must separate them (as in forty-two). Line 69 prints this pair of words and the dash. 

5.  If only one of the last two digits is defined, it is printed using line 71. (Note that 



line 71 actually specifies that both digits are printed; however, because only one 
is actually nonzero, it is the only one that appears. The digit that is zero appears 
in the output as the empty string because zero is equivalent to the empty string in 
Perl.) 

6.  Lines 73-74 print the word associated with this group of digits. For example, if this 
group is the second-last group of digits, the word thousand is printed. 

7.  Line 75 handles the special case of the number 0. In this case, the word zero is 
printed. 

Once the English value for a particular group of digits is printed, the scalar variable 
$grouping has its value decreased by one, and the program continues with the next 
group of digits. If there are no more digits to print, the program terminates. 

   



Week
2

Week 2 at a Glance

CONTENTS

●     Where You're Going 

By now, you know enough about Perl to write many useful programs. You've discovered 
that Perl is powerful enough to enable you to perform complicated tasks, and simple 
enough to accomplish them quickly. 

Where You're Going

The second week covers most of the features of the language not covered in the first 
week and describes some of the many library functions supplied with Perl. Here's a 
summary of what you'll learn. 

Day 8, "More Control Structures," discusses the control flow statements not previously 
covered. 

Day 9, "Using Subroutines," shows how you can break down your program into more 
manageable chunks. 

Day 10, "Associative Arrays," introduces one of the most powerful and useful constructs 
in Perl, associative arrays, and it shows how you can use these arrays to simulate other 
data structures. 

Day 11, "Formatting Your Output," shows how you can use Perl to produce tidy reports. 

Day 12, "Working with the File System," shows how you can interact with your system's 
directory structure. 



Day 13, "Process, String, and Mathematical Functions," describes the library functions 
that interact with processes running on the system, operate on text strings, and perform 
mathematical operations. 

Day 14, "Scalar-Conversion and List-Manipulation Functions," describes the library 
functions that convert values from one form to another and work with lists and array 
variables. 

By the end of the second week, you'll have mastered almost all of the features of Perl 
and you'll have learned about many of the library functions supplied with the 
language. 

    



Chapter 8

More Control Structures

CONTENTS

●     Using Single-Line Conditional Statements 
❍     Problems with Single-Line Conditional Statements 

●     Looping Using the for Statement 
❍     Using the Comma Operator in a for Statement 

●     Looping Through a List: The foreach Statement 
❍     The foreach Local Variable 
❍     Changing the Value of the Local Variable 
❍     Using Returned Lists in the foreach Statement 

●     The do Statement 
●     Exiting a Loop Using the last Statement 
●     Using next to Start the Next Iteration of a Loop 
●     The redo Statement 
●     Using Labeled Blocks for Multilevel Jumps 

❍     Using next and redo with Labels 
●     The continue Block 
●     The goto Statement 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

On Day 2, "Basic Operators and Control Flow," you learned about some of the simpler 
conditional statements in Perl, including the following: 

●     The if statement, which defines statements that are executed only when a 
certain condition is true 

●     The if-else statement, which chooses between two alternatives 
●     The if-elsif-else statement, which chooses between multiple alternatives 
●     The unless statement, which defines statements that are executed unless a 

specified condition is true 



●     The while statement, which executes a group of statements while a specified 
condition is true 

●     The until statement, which executes a group of statements until a specified 
condition is true 

Today's lesson talks about the other control structures in Perl; these control 
structures give you a great deal of flexibility when you are determining the order of 
execution of your program statement. 

Today you learn the following control structures: 

●     Single-line conditional statements 
●     The for statement 
●     The foreach statement 
●     The do statement 
●     The last statement 
●     The next statement 
●     The redo statement 
●     The continue statement 
●     Labeled blocks 
●     The goto statement 

Using Single-Line Conditional Statements

On Day 2 you saw the if statement, which works as follows: 

if ($var == 0) {

        print ("This is zero.\n");

}

If the statement block inside the if statement consists of only one statement, Perl 
enables you to write this in a more convenient way using a single-line conditional statement. 
This is a conditional statement whose statement block contains only one line of code. 

The following single-line conditional statement is identical to the if statement 
defined previously: 

print ("This is zero.\n") if ($var == 0);

Single-line conditional statements also work with unless, while, and until: 



print ("This is zero.\n") unless ($var != 0);

print ("Not zero yet.\n") while ($var-- > 0);

print ("Not zero yet.\n") until ($var-- == 0);

In all four cases, the syntax of the single-line conditional statement is the same. 

The syntax for the single-line conditional statement is 

statement keyword condexpr

Here, statement is any Perl statement. keyword is either if, unless, while, or until. 
condexpr is the conditional expression that is evaluated. 

statement is executed in the following cases: 

●     If keyword is if, statement is executed if condexpr is true. 
●     If keyword is unless, statement is executed unless condexpr is true. 
●     If keyword is while, statement is executed while condexpr is true. 
●     If keyword is until, statement is executed until condexpr is true. 

To see how single-line conditional expressions can be useful, look at the following 
examples, starting with Listing 8.1. This is a simple program that copies one file to 
another. Single-line conditional statements are used to check whether the files opened 
successfully, and another single-line conditional statement actually copies the file. 

 

Listing 8.1. A program that uses single-line conditional statements to 
copy one file to another.

1:  #!/usr/local/bin/perl

2:

3:  die ("Can't open input\n") unless (open(INFILE, "infile"));

4:  die ("Can't open output\n") unless (open(OUTFILE, ">outfile"));

5:  print OUTFILE ($line) while ($line = <INFILE>);



6:  close (INFILE);

7:  close (OUTFILE);

 

There is no output; this program writes to a file.

 As you can see, this program is clear and concise. Instead of using three lines 
to open a file and check it, as in 

unless (open (INFILE, "infile")) {

        die ("Can't open input\n");

     }

you can now use just one: 

die ("Can't open input\n") unless (open(INFILE, "infile"));

Line 3 opens the input file. If the open is not successful, the program terminates by 
calling die. 

Line 4 is similar to line 3. It opens the output file and checks whether the file actually 
is open; if the file is not open, the program terminates. 

Line 5 actually copies the file. The conditional expression 

$line = <INFILE>

reads a line from the file represented by the file variable INFILE and assigns it to $line. 
If the line is empty, the conditional expression is false, and the while statement stops 
executing. If the line is not empty, it is written to OUTFILE.

NOTE



The conditional expression in a single-line conditional 
statement is always executed first, even though it 
appears at the end of the statement. For example:

print OUTFILE ($line) while ($line = <INFILE>); 

Here, the conditional expression that reads a line of 
input and assigns it to $line is always executed first. 
This means that print is not called until $line contains 
something to print. This also means that the call to 
print is never executed if INFILE is an empty file (which 
is what you want). 

Because single-line conditional expressions are 
"backward," be careful when you use them with 
anything more complicated than what you see here.

You can use the single-line conditional statement in conjunction with the 
autoincrement operator ++ to write a loop in a single line. For example, examine Listing 
8.2, which prints the numbers from 1 to 5 using a single-line conditional statement. 

 

Listing 8.2. A program that loops using a single-line conditional 
statement.

1:  #!/usr/local/bin/perl

2:

3:  $count = 0;

4:  print ("$count\n") while ($count++ < 5);

 

$ program8_2



1

2

3

4

5

$

 When the Perl interpreter executes line 3, it first evaluates the conditional 
expression 

$count++ < 5

Because the ++ appears after $count, 1 is added to the value of $count after the 
conditional expression is evaluated. This means that $count has the value 0, not 1, the 
first time the expression is evaluated. Similarly, $count has the value 1 the second time, 
2 the third time, 3 the fourth time, and 4 the fifth time. In each of these five cases, the 
conditional expression evaluates to true, which means that the loop iterates five times. 

After the conditional expression has been evaluated, the ++ operator adds 1 to the 
value of $count. This new value of $count is then printed. This means that when the loop 
is first executed, the call to print prints 1, even though the value of $count was 0 when 
the conditional expression was evaluated. 

Problems with Single-Line Conditional Statements

Although single-line conditional statements that contain loops are useful, there are 
problems. Consider Listing 8.2, which you've just seen. It is easy to forget that $count has 
to be initialized to one less than the first value you want to use in the loop, and that 
the conditional expression has to use the < operator, not the <= operator. 

For example, take a look at the following: 

$count = 1;

print ("$count\n") while ($count++ < 5);

Here, you have to look closely to see that the first value printed is 2, not 1. 



Here is another loop containing a mistake: 

$count = 0;

print ("$count\n") while ($count++ <= 5);

This loop iterates six times, not five; the sixth time through the loop, $count has the 
value 5 when the conditional expression is evaluated. The expression evaluates to true, 
$count is incremented to 6, and print therefore prints the value 6. 

Here is a related but slightly more subtle problem: 

$count = 0;

print ("$count\n") while ($count++ < 5);

print ("The total number of iterations is $count.\n");

This loop iterates five times, which is what you want. However, after the conditional 
expression is evaluated for the final time, the value of $count becomes 6, as follows: 

●     Before the conditional expression is evaluated, $count has the value 5. 
●     Because the value of $count is not less than 5, the conditional expression 

evaluates to false, which terminates the loop. 
●     After the conditional expression is evaluated, the ++ operator adds one to $count, 

giving it the value 6. 

This means that the final print statement prints the following, which is probably not 
what you want: 

The total number of iterations is 6.



DO use the for statement as a convenient way to write a 
concise, compact loop. It is discussed in the next section. 

DON'T use the ++ operator to produce a loop in a single-
line conditional statement unless it's absolutely 
necessary. It's just too easy to go wrong with it. 

Looping Using the for Statement

Many of the programs that you've seen so far use the while statement to create a 
program loop. Here is a simple example: 

$count = 1;

while ($count <= 5) {

        # statements inside the loop go here

        $count++;

}

This loop contains three items that control it: 

1.  A statement that sets the initial value of the loop. In this loop, the scalar 
variable $count is used to control the number of iterations of the loop, and the 
statement
$count = 1;

sets the initial value of $count to 1. Statements such as this are called loop 
initializers. 

2.  A conditional expression that checks to see whether to continue iterating the 
loop. In this case, the conditional expression
$count <= 5

is evaluated; if it is false, the loop is terminated. 
3.  A statement that changes the value of the variable which is tested in the 

conditional expression. In this loop, the statement 
count++;

adds 1 to the value of $count, which is the scalar variable being tested in the 
conditional expression. Statements such as this are called loop iterators. 

Perl enables you to put the three components that control a loop together on a single 
line using a for statement. For example, the following statement is equivalent to the 
loop you've been looking at: 



for ($count=1; $count <= 5; $count++) {

        # statements inside the loop go here

}

Here, the three controlling components-the loop initializer, the conditional expression, 
and the loop iterator-appear together, and are separated by semicolons. 

The syntax of the for statement is 

for (expr1; expr2; expr3) {

        statement_block

}

expr1 is the loop initializer. It is evaluated only once, before the start of the loop. 

expr2 is the conditional expression that terminates the loop. The conditional expression 
in expr2 behaves just like the ones in while and if statements. If its value is 0 (false), 
the loop is terminated, and if its value is nonzero, the loop is executed. 

statement_block is the collection of statements that is executed if (and when) expr2 has 
a nonzero value. 

expr3 is executed once per iteration of the loop and is executed after the last statement 
in statement_block is executed.

NOTE

If you know the C programming language, the for 
statement will be familiar to you. The for statement in 
Perl is syntactically identical to the for statement in C. 

Listing 8.3 is a program based on the example for statement you've just seen. 

 

Listing 8.3. A program that prints the numbers from 1 to 5 using the for 



statement.

1:  #!/usr/local/bin/perl

2:

3:  for ($count=1; $count <= 5; $count++) {

4:          print ("$count\n");

5:  }

 

$ program8_3

1

2

3

4

5

$

 Line 3 of the program is the start of the for statement. The first expression 
defined in the for statement, $count = 1, is the loop initializer; it is executed before the 
loop is iterated. 

The second expression defined in the for statement, $count <= 5, tests whether to 
continue iterating the loop. 

The third expression defined in the for statement, $count++, is evaluated after the last 
statement in the loop, line 4, is executed. 

As you can see from the output, the loop is iterated five times. 

TIP



Use the for statement instead of while or until 
whenever possible; when you use the for statement, it is 
easier to avoid infinite loops. 

For example, when you use a while statement, it's easy to 
forget to iterate the loop. The following is an example: 

$count = 1;

while ($count <= 5) {
print ("$count\n");

} 

The equivalent statement using for is 

for ($count = 1; $count <= 5; ) {
print ("$count\n");

} 

When you use the for statement, it is easier to notice 
that the loop iterator is missing. 

Using the Comma Operator in a for Statement

Some loops need to perform more than one action before iterating. For example, consider 
the following loop, which reads four lines of input from the standard input file and 
prints three of them: 

$line = <STDIN>;

$count = 1;

while ($count <= 3) {

        print ($line);

        $line = <STDIN>;

        $count++;

}

This loop needs two loop initializers and two loop iterators: one of each for the 
variable $count, and one of each to read another line of input from STDIN. 



At first glance, you might think that you can't write this loop using the for statement. 
However, you can use the comma operator to combine the two loop initializers and the 
two loop iterators into single expressions. Listing 8.4 does this. 

 

Listing 8.4. A program that uses the for statement to read four input 
lines and write three of them.

1:  #!/usr/local/bin/perl

2:

3:  for ($line = <STDIN>, $count = 1; $count <= 3;

4:       $line = <STDIN>, $count++) {

5:          print ($line);

6:  }

 

$ program8_4

This is my first line.

This is my first line.

This is my second line.

This is my second line.

This is my last line.

This is my last line.

This input line is not written out.

$



 The loop initializer in this for statement is the expression 

$line = <STDIN>, $count = 1

The comma operator in this expression tells the Perl interpreter to evaluate the first 
half of the expression-the part to the left of the comma-and then evaluate the second 
half. The first half of this expression reads a line from the standard input file and 
assigns it to $line; the second half of the expression assigns 1 to $count. 

The loop iterator also consists of two parts: 

$line = <STDIN>, $count++

This expression reads a line from the standard input file and adds 1 to the variable 
keeping track of when to terminate the loop, which is $count.

Don't use the for statement if you have a large number 
of loop initializers or loop iterators, because statements 
that contain a large number of comma operators are 
difficult to read. 

Looping Through a List: The foreach Statement

One common use of loops is to perform an operation on every element of a list stored in 
an array variable. For example, the following loop checks whether any element of the 
list stored in the array variable @words is the word the: 

$count = 1;

while ($count <= @words) {

        if ($words[$count-1] eq "the") {

                print ("found the word 'the'\n");

        }

        $count++;



}

As you've seen, you can use the for statement to simplify this loop, as follows: 

for ($count = 1; $count <= @words; $count++) {

        if ($words[$count-1] eq "the") {

                print ("found the word 'the'\n");

        }

}

Perl provides an even simpler way to do the same thing, using the foreach statement. The 
following loop, which uses foreach, is identical to the preceding one: 

foreach $word (@words) {

        if ($word eq "the") {

                print ("found the word 'the'\n");

        }

}

The syntax for the foreach statement is 

foreach localvar (listexpr) {

        statement_block;

}

Here, listexpr is any list or array variable, and statement_block is a collection of 
statements that is executed every time the loop iterates. 

localvar is a scalar variable that is defined only for the duration of the foreach 
statement. The first time the loop is executed, localvar is assigned the value of the first 
element of the list in listexpr. Each subsequent time the loop is executed, localvar is 
assigned the value of the next element of listexpr. 

Listing 8.5 shows how this works. 



 

Listing 8.5. A demonstration of the foreach statement.

1:  #!/usr/local/bin/perl

2:

3:  @words = ("Here", "is", "a", "list.");

4:  foreach $word (@words) {

5:          print ("$word\n");

6:  }

 

$ program8_5

Here

is

a

list.

$

 The foreach statement in line 4 assigns a word from @list to the local 
variable $word. The first time the loop is executed, the value stored in $word is the 
string Here. The second time the loop is executed, the value stored in $word is is. 
Subsequent iterations assign a and list. to $word. 

The loop defined by the foreach statement terminates after all of the words in the list 
have been assigned to $word. 



NOTE

In Perl, the for statement and the foreach statement 
are actually synonymous: you can use for wherever 
foreach is expected, and vice versa. 

The foreach Local Variable

Note that the scalar variable defined in the foreach statement is defined only for the 
duration of the loop. If a value is assigned to the scalar variable prior to the execution 
of the foreach statement, this value is restored after the foreach is executed. Listing 8.6 
shows how this works. 

 

Listing 8.6. A program that uses the same name inside and outside a 
foreach statement.

1:  #!/usr/local/bin/perl

2:

3:  $temp = 1;

4:  @list = ("This", "is", "a", "list", "of", "words");

5:  print ("Here are the words in the list: \n");

6:  foreach $temp (@list) {

7:          print ("$temp ");

8:  }

9:  print("\n");

10: print("The value of temp is now $temp\n");

 



$ program8_6

Here are the words in the list: 

This is a list of words

The value of temp is now 1

$

 Line 3 assigns 1 to the scalar variable $temp. 

The foreach statement that prints the words in the list is defined in lines 6-8. This 
statement assigns the elements of @list to $temp, one per iteration of the loop. 

After the loop is terminated, the original value of $temp is restored, which is 1. This 
value is printed by line 10. 

Variables (such as $temp in lines 6-8) that are only defined for part of a program are 
known as local variables; variables that are defined throughout a program are known as 
global variables. You'll see more examples of local variables on Day 9, "Using 
Subroutines."

TIP

It is not a good idea to use $temp the way it is used in 
Listing 8.6, namely, as both a local and a global 
variable. You might forget that the value of the global 
variable-in the case of $temp, the value 1-is overwritten 
by the value assigned in the foreach statement. 

Conversely, you might forget that the value assigned to 
$temp in the foreach statement is lost when the foreach 
is finished. 

It is better to define a new scalar variable name for the 
local variable, to avoid confusion.

Changing the Value of the Local Variable

Note that changing the value of the local variable inside a foreach statement also 
changes the value of the corresponding element of the list. For example: 



@list = (1, 2, 3, 4, 5);

foreach $temp (@list) {

        if ($temp == 2) {

                $temp = 20;

        }

}

In this loop, when $temp is equal to 2, $temp is reset to 20. Therefore, the list stored in 
the array variable @list becomes (1, 20, 3, 4, 5). 

Use this feature with caution, because it is not obvious that the value of @list has 
changed. 

Using Returned Lists in the foreach Statement

So far, all of the examples of the foreach statement that you've seen have iterated 
using the contents of an array variable. For example, consider the following: 

@list = ("This", "is", "a", "list");

foreach $temp (@list) {

        print ("$temp ");

}

This loop assigns This to $temp the first time through the loop, and then assigns is, a, 
and list to $temp on subsequent iterations. 

You also can use list constants or the return values from functions in foreach 
statements. For example, the preceding statements can be written as follows: 

foreach $temp ("This", "is", "a", "list") {

        print("$temp ");

}

As before, $temp is assigned This, is, a, and list in successive iterations of the foreach 
loop. 



Listing 8.7 shows how you can use the return value from a function as a loop iterator. 

 

Listing 8.7. A program that prints out the words in a line in reverse-
sorted order.

1:  #!/usr/local/bin/perl

2:

3:  $line = <STDIN>;

4:  $line =~ s/^\s+//;

5:  $line =~ s/\s+$//;

6:  foreach $word (reverse sort split(/[\t ]+/, $line)) {

7:          print ("$word ");

8:  }

9:  print ("\n");

 

$ program8_7

here is my test line

test my line is here

$

 Before splitting the input line into words using split, this program first 
removes the leading and trailing white space. (If leading and trailing space is not 
removed, split creates an empty word.) Line 4 removes leading spaces and tabs from the 
input line. Line 5 removes any trailing spaces and tabs as well as the closing newline 
character. 



Lines 6-8 contain the foreach loop. The list used in this loop is created as follows: 

1.  First, split breaks the input line into words. The list returned by split is 
("here", "is", "my", "test", "line"). 

2.  The list returned by split is passed to the built-in function sort, which sorts the 
list. The list returned by sort is ("here", "is", "line", "my", "test"). 

3.  The list returned by sort is passed to another built-in function, reverse. This 
reverses the sorted list, producing the list ("test", "my", "line", "is", 
"here"). 

4.  Each element of the list returned by reverse is assigned, in turn, to the local 
scalar variable $word, starting with "test" and proceeding from there. 

Line 7 prints the current value stored in $word. Each time the foreach loop iterates, a 
different value in the list is printed.

NOTE

The code fragment

foreach $word (reverse sort split(/[\t ]+/, $line)) 

shows why omitting parentheses when calling built-in 
functions can sometimes be useful. If all the parentheses 
are included, this becomes

foreach $word (reverse(sort(split(/[\t ]+/, 

$line)))) 

which is not as readable.

The do Statement 

So far, all of the loops you've seen test the conditional expression before executing the 
loop. Perl enables you to write loops that always execute at least once using the do 
statement. 

The syntax for the do statement is 

do {

        statement_block

} while_or_until (condexpr);



As in other conditional statements, such as the if statement and the while statement, 
statement_block is a block of statements to be executed, and condexpr is a conditional 
expression. 

while_or_until is either the while keyword or the until keyword. If you use while, 
statement_block loops while condexpr is true. For example: 

do {

        $line = <STDIN>;

} while ($line ne "");

This loops while $line is non-empty (in other words, while the program has not reached 
the end of file). 

If you use until, statement_block loops until condexpr is true. For example: 

do {

        $line = <STDIN>;

} until ($line eq "");

This reads from the standard input file until $line is empty (again, until end of file is 
reached). 

Listing 8.8 is a simple example of a program that uses a do statement. 

 

Listing 8.8. A simple example of a do statement.

1:  #!/usr/local/bin/perl

2:

3:  $count = 1;

4:  do {



5:          print ("$count\n");

6:          $count++;

7:  } until ($count > 5);

 

$ program8_8

1

2

3

4

5

$

 Lines 4-7 contain the do statement, which loops five times. Line 7 tests 
whether the counting variable $count is greater than 5.

NOTE

The do statement can also be used to call subroutines. 
See Day 9, "Using Subroutines," for more information. 

Exiting a Loop Using the last Statement

Normally, you exit a loop by testing the conditional expression that is part of the loop. 
For example, if a loop is defined by the while statement, as in the following, the program 
exits the loop when the conditional expression at the top of the loop, $count <= 10, is 
false: 

while ($count <= 10) {

        # statements go here



}

In the preceding case, the program can exit the loop only after executing all of the 
statements in it. Perl enables you to define an exit point anywhere in the loop using a 
special last statement. 

The syntax for the last statement is simple: 

last;

To see how the last statement works, take a look at Listing 8.9, which adds a list of 
numbers supplied by means of the standard input file. 

 

Listing 8.9. A program that exits using the last statement.

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  while (1) {

5:          $line = <STDIN>;

6:          if ($line eq "") {

7:                  last;

8:          }

9:          chop ($line);

10:         @numbers = split (/[\t ]+/, $line);

11:         foreach $number (@numbers) {

12:                 if ($number =~ /[^0-9]/) {

13:                     print STDERR ("$number is not a number\n");

14:                 }



15:                 $total += $number;

16:         }

17: }

18: print ("The total is $total.\n");

 

$ program8_9

4 5 7

2 11 6

^D

The total is 35.

$

 The loop that reads and adds numbers starts on line 4. The conditional 
expression at the top of this loop is the number 1. Because this is a nonzero number, this 
conditional expression always evaluates to true. Normally, this means that the while 
statement loops forever; however, because this program contains a last statement, the 
loop eventually terminates. 

Line 6 checks whether the program has reached the end of the standard input file. To do 
this, it checks whether the line read from the standard input file, now stored in $line, 
is empty. (Recall that the Ctrl+D character, written here as ^D, marks the standard 
input file as empty.) 

If the line is empty, line 7, the last statement, is executed. This statement tells the Perl 
interpreter to terminate executing the loop and to continue with the first statement 
after the loop, which is line 18. 

Lines 10-16 add the numbers on the input line to the total stored in the scalar variable 
$total. Line 10 breaks the line into individual numbers, and lines 11-16 add each number, 
in turn, to $total. 

Line 12 checks whether each number actually consists of the digits 0-9. The pattern [^0-



9] matches anything that is not a digit; if the program finds such a character, it flags 
the number as erroneous. (The program can produce empty words if leading or trailing 
spaces or tabs exist in the line; this is not a problem, because [^0-9] doesn't match an 
empty word.)

NOTE

You can use the last statement with a single-line 
conditional statement. For example, 

last if ($count == 5); 

terminates the loop if the value of $count is 5. 

You cannot use the last statement inside the do 
statement. Although the do statement behaves like the 
other control structures, it is actually implemented 
differently. 

Using next to Start the Next Iteration of a Loop

In Perl, the last statement terminates the execution of a loop. To terminate a 
particular iteration of a loop, use the next statement. 

Like last, the syntax for the next statement is simple: 

next;

Listing 8.10 is an example that uses the next statement. It sums up the numbers from 1 to 
a user-specified upper limit and also produces a separate sum of the numbers divisible by 
2. 

 

Listing 8.10. A program that sums the numbers from 1 to a specified 



number and also sums the even numbers.

1:  #!/usr/local/bin/perl

2:

3:  print ("Enter the last number in the sum:\n");

4:  $limit = <STDIN>;

5:  chop ($limit);

6:  $count = 1;

7:  $total = $eventotal = 0;

8:  for ($count = 1; $count <= $limit; $count++) {

9:          $total += $count;

10:         if ($count % 2 == 1) {

11:                 # start the next iteration if the number is odd

12:                 next;

13:         }

14:         $eventotal += $count;

15: }

16: print("The sum of the numbers 1 to $limit is $total\n");

17: print("The sum of the even numbers is $eventotal\n");

 

$ program8_10

Enter the last number in the sum:

7

The sum of the numbers 1 to 7 is 28

The sum of the even numbers is 12

$



 The loop in lines 8-15 adds the numbers together. The start of the for 
statement in line 8 loops five times; the counter variable, $count, is assigned the values 
1, 2, 3, 4, and 5 in successive iterations. 

Line 9 adds to the total of all the numbers. This statement is always executed. 

Line 10 tests whether the current number-the current value of $count-is even or odd. If 
$count is even, the conditional expression 

$count % 2 == 1

is false, and program execution continues with line 14. If the current value of $count is 
odd, the Perl interpreter executes line 12, the next statement. This statement tells the 
Perl in-terpreter to start the next iteration of the loop. 

Note that the loop iterator in the for statement, $count++, is still executed, even 
though the next statement skips over part of the loop. This ensures that the program 
does not go into an infinite loop. 

Because the next statement is executed when the value of $count is odd, line 14 is 
skipped in this case. This means that the value of $count is added only when it is even.

Be careful when you use next in a while or until loop. 
The following example goes into an infinite loop: 

$count = 0;
while ($count <= 10) {
if ($count == 5) {
next;
}
$count++;

} 

When $count is 5, the program tells Perl to start the 
next iteration of the loop. However, the value of $count 
is not changed, which means that the expression $count 
== 5 is still true. 



To get rid of this problem, you need to increment $count 
before using next, as in the following: 

$count = 0;
while ($count <= 10) {
if ($count == 5) {
$count++;
next;
}
$count++;

} 

This, by the way, is why many programming purists dislike 
statements such as next and last-it's too easy to lose 
track of where you are and what needs to be updated. 

The next statement enables you to check for and ignore unusual conditions when 
reading input. For example, Listing 8.11 counts the number of words in the input read 
from the standard input file. It uses the next statement to skip blank lines. 

 

Listing 8.11. A word-counting program that uses the next statement.

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  while ($line = <STDIN>) {

5:          $line =~ s/^[\t ]*//;

6:          $line =~ s/[\t ]*\n$//;

7:          next if ($line eq "");

8:          @words = split(/[\t ]+/, $line);

9:          $total += @words;

10: }

11: print ("The total number of words is $total\n");



 

$ program8_11

 Here is my test input.

It contains some words.

^D

The total number of words is 9

$

 After line 4 has read a line of input and checked that it is not empty (which 
means that the end of file has not been reached), the program then gets rid of leading 
spaces and tabs (line 5) and trailing spaces, tabs, and the trailing newline (line 6). If a 
line is blank, lines 5 and 6 turn it into the empty string, for which line 7 tests. 

Line 7 contains the next statement as part of a single-line conditional statement. If the 
line is now empty, the next statement tells the program to go to the beginning of the 
loop and read in the next line of input.

You cannot use the next statement inside the do 
statement. Although the do statement behaves like the 
other control structures, it is actually implemented 
differently. 

The redo Statement 

Perl enables you to tell the Perl interpreter to restart an iteration of a loop using the 
redo statement. 

Like last and next, the syntax for the redo statement is simple: 



redo;

For an example, look at Listing 8.12, which counts the number of words in three non-
blank input lines. 

 

Listing 8.12. A word-counting program that uses the redo statement.

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  for ($count = 1; $count <= 3; $count++) {

5:          $line = <STDIN>;

6:          last if ($line eq "");

7:          $line =~ s/^[\t ]*//;

8:          $line =~ s/[\t ]*\n$//;

9:          redo if ($line eq "");

10:         @words = split(/[\t ]+/, $line);

11:         $total += @words;

12: }

13: print ("The total number of words is $total\n");

 

$ program8_12

 Here is my test input.



It contains some words.

^D

The total number of words is 9

$

 Line 5 reads a line of input from the standard input file. If this line is empty, 
the conditional expression in line 6 is true, and the last statement exits the loop. (This 
ensures that the program behaves properly when there are less than three lines of 
input.) 

Line 7 removes the leading blanks and tabs from this line of input, and line 8 removes 
the trailing white space. If the resulting line is now empty, the line must originally 
have been blank. Because this program does not want to include a blank line as one of 
the three lines in which to count words, line 9 invokes the redo statement, which tells 
the program to start this loop over. The program returns to line 4, the for statement, 
but does not increment the value of $count.

You cannot use the redo statement inside the do 
statement. Although the do statement behaves like the 
other control structures, it is actually implemented 
differently. 

Note that the redo statement is not recommended, because it is too easy to lose track of 
how many times a program goes through a loop. For example, in Listing 8.12, a quick 
glance at the for statement in line 4 seems to indicate that the program only loops 
three times; however, the redo statement might change that. 

Listing 8.13 shows an alternative way to solve this problem. 

 

Listing 8.13. A program that counts the words in three non-blank lines 
of input without using the redo statement.



1:  #!/usr/local/bin/perl

2:

3:  $nonblanklines = 0;

4:  while (1) {

5:          $line = <STDIN>;

6:          last if ($line eq "");

7:          $line =~ s/^[\t ]*//;

8:          $line =~ s/[\t ]*\n$//;

9:          if ($line ne "") {

10:                 $nonblanklines += 1;

11:                 @words = split(/[\t ]+/, $line);

12:                 $total += @words;

13:         }

14:         last if ($nonblanklines == 3);

15: };

16: print ("The total number of words is $total\n");

 

$ program8_13

 Here is my test input.

It contains some words.

^D

The total number of words is 9.

$



 This program is identical to the previous one, but it is much easier to 
understand. It uses a more meaningful variable name-$nonblanklines-which implies that 
blank lines are a special case. 

As in Listing 8.12, if the line is a blank line, lines 7 and 8 turn it into an empty line by 
removing all white space. When this happens, the condition in line 10 fails, and 
$nonblanklines is not incremented. 

Using Labeled Blocks for Multilevel Jumps

As you've seen, the last, next, and redo statements enable you to exit a loop from 
anywhere inside its statement block, as follows: 

while (1) {

        $line = <STDIN>;

        last if ($line eq "");

}

If the loop is inside another loop, the last, next, and redo statements quit the inner loop 
only; for example: 

while ($line1 = <FILE1>) {

        while ($line2 = <FILE2>) {

                last if ($line2 eq "") {

        }

}

Here, the last statement only quits the inner while loop. The outer while loop, which 
reads from the file represented by FILE1, continues executing. 

To quit from more than one loop at once, do the following: 

1.  Assign a label to the outer loop (the one from which you want to quit). 
2.  When you use last, next, or redo, specify the label you just assigned. 

Listing 8.14 shows an example of a last statement that specifies a label. 



 

Listing 8.14. A program that uses a label.

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  $firstcounter = 0;

5:  DONE: while ($firstcounter < 10) {

6:          $secondcounter = 1;

7:          while ($secondcounter <= 10) {

8:                  $total++;

9:                  if ($firstcounter == 4 && $secondcounter == 7) {

10:                         last DONE;

11:                 }

12:                 $secondcounter++;

13:         }

14:         $firstcounter++;

15: }

16: print ("$total\n");

 

$ program8_14

47

$



 The outer while loop starting in line 5 has the label DONE assigned to it. This 
label consists of an alphabetic character followed by one or more alphanumeric 
characters or underscores. The colon (:) character following the label indicates that 
the label is assigned to the following statement (in this case, the while statement). 

When the conditional expression in line 9 is true, line 10 is executed. This statement 
tells the Perl interpreter to jump out of the loop labeled DONE and continue execution 
with the first statement after this loop. (By the way, this code fragment is just a rather 
complicated way of assigning 47 to $total.) 

Make sure that you do not use a label which has 
another meaning in Perl. For example, the statement

if: while ($x == 0) { # this is an error in Perl 

} 

is flagged as erroneous, because the Perl interpreter 
doesn't realize that the if is not the start of an if 
statement. 

You can avoid this problem by using uppercase letters 
for label names (such as DONE). 

Note that labels can be identical to file variable names:

FILE1: while ($line = <FILE1>) {
...

} 

The Perl interpreter has no problem distinguishing the 
label FILE1 from the file variable FILE1, because it is 
always possible to determine which is which from the 
context. 

Using next and redo with Labels

You can use next and redo with labels as well, as shown in the following example: 



next LABEL;

redo LABEL;

This next statement indicates that the next iteration of the loop labeled LABEL is to be 
executed. This redo statement indicates that the current iteration of the loop labeled 
LABEL is to be restarted. 

The continue Block 

In a for statement, the expression following the second semicolon is executed each time 
the end of the loop is reached or whenever a next statement is executed. For example: 

for ($i = 1; $i <= 10; $i++) {

        print ("$i\n");

}

In this example, the expression $i++, which adds 1 to $i, is executed after the print 
function is called. 

Similarly, you can define statements that are to be executed whenever the end of a 
while loop or an until loop is reached. To carry out this task, specify a continue 
statement after the loop. 

$i = 1;

while ($i <= 10) {

        print ("$i\n");

}

continue {

        $i++;

}

A continue statement must be followed by a statement block, which is a collection of 
zero or more statements enclosed in brace characters. This statement block contains 
the state-ments to be executed at the bottom of each loop. In this example, the 
statement 



$i++;

is executed after each call to print. This while loop therefore behaves like the for loop 
you've just seen. 

The continue statement is executed even if a pass through the loop is prematurely ended 
by a next statement. It is not executed, however, if the loop is terminated by a last 
statement.

TIP

Usually, it is better to use a for statement than to use 
continue with a while or an until statement, because 
the for statement is easier to follow. 

The goto Statement 

For the sake of completeness, Perl provides a goto statement. 

The syntax of the goto statement is 

goto label;

label is a label associated with a statement, as defined in the earlier section, "Using 
Labeled Blocks for Multilevel Jumps." The statement to which label is assigned cannot 
be in the middle of a do statement or inside a subroutine. (You'll learn about 
subroutines on Day 9.) 

Listing 8.15 is an example of a simple program that uses goto. 

 

Listing 8.15. A program that uses the goto statement.

1:  #!/usr/local/bin/perl

2:



3:  NEXTLINE: $line = <STDIN>;

4:  if ($line ne "") {

5:          print ($line);

6:          goto NEXTLINE;

7:  }

 

$ program8_15

Here is a line of input.

Here is a line of input.

^D

$

 This program just reads and writes lines of input until the standard input file 
is exhausted. If the line read into $line is not empty, line 6 tells the Perl interpreter to 
jump back to the line to which the NEXTLINE label is assigned, which is line 3. 

Note that lines 3-7 are equivalent to the following statement: 

print ($line) while ($line = <STDIN>);

TIP

There is almost never any need to use the goto 
statement. In fact, using goto often makes it more 
difficult to follow the logic of the program. For this 
reason, using goto is not recommended. 

Summary



Today you learned about the more complex control structures supported in Perl. 

Single-line conditional statements enable you to put a conditional expression on the 
same line as the statement to be executed if the condition is satisfied. This enables you 
to write more concise programs. 

The for statement enables you to put the loop initializer, the loop iterator, and the 
conditional expression together on the same line. This makes it more difficult to write 
code that goes into an infinite loop. 

The foreach statement enables a program to loop based on the contents of a list. When 
the loop is first executed, the first element in the list is assigned to a local scalar 
variable that is only defined for the duration of the loop. Subsequent iterations of the 
loop assign subsequent elements of the list to this local scalar variable. 

The do statement enables you to write a loop that executes at least once. Its 
terminating conditional expression appears at the bottom of the loop, not the top. 

The last statement tells the Perl interpreter to exit the loop and continue execution 
with the first statement after the loop. The next statement tells the Perl interpreter 
to skip the rest of this iteration of a loop and start with the next one. The redo 
statement tells the Perl interpreter to restart this iteration of a loop. last, next, and 
redo cannot be used with the do statement. 

You can assign a label to a statement, which enables you to use last, next, and redo to 
exit or restart an outer loop from inside an inner loop. 

The continue statement enables you to define code to be executed each time a loop 
iterates. 

The goto statement enables you to jump to any labeled statement in your program. 

Q&A

Q: Which control structure is the best one to use as a loop? 



A: It depends on what you want to do. 

●     The foreach structure is the best way to perform operations on every 
element of a list. 

●     The for statement is the best way to perform an operation a set number of 
times. 

●     The while statement is the best way to perform a loop until a particular 
condition occurs. 

●     The do statement is useful if you want to perform a loop at least once. 
(However, it is not as useful as the others, because you cannot use last, 
next, or redo with it.) 

Q: Why does Perl bother with the next, last, and redo statements, when the if-
elsif-else structure can do the job just as well? 

A: The last and next statements are ideal for loops that check for exceptional 
conditions. For example: 

for ($count = 1; $count <= 3; $count++) {

        $line = <STDIN>;

        last if ($line eq "");

        $line =~ s/^[\t ]+//;

        $line =~ s/[\t ]+\n$//;

        @words = split(/[\t ]+/, $line);

        $total += @words;

}

If the last statement did not exist, the only way to implement this would be 
with another level of nesting and another condition in the for statement, as 
follows: 

for ($count = 1; $count <= 3 && $line ne ""; $count++) {

        $line = <STDIN>;

        if ($line ne "") {

                $line =~ s/^[\t ]+//;

                $line =~ s/[\t ]+\n$//;

                @words = split(/[\t ]+/, $line);



                $total += @words;

        }

}

If your program has to check for several exceptional conditions, you might need 
several levels of if statements to handle them unless you use next or last. 

On the other hand, the redo statement should be avoided whenever possible, 
because it is difficult to follow program logic when it is used. 

Q: Is the goto statement ever the best way to solve a problem? 

A: Almost never. Avoid using the goto statement if at all possible. 

Q: Why is the conditional expression last in single-line conditional 
statements? 

A: This is to avoid a problem found in the C programming language. In C, you don't 
need to put braces around the statement block in a conditional statement if the 
block consists of only one line. For example, the following is legal: 

if (x == 0)

        printf ("x is zero\n");

With this syntax, it is easy to accidentally forget to add the braces when you 
add another statement to the statement block, as follows:

if (x == 0)

        printf ("x is zero\n");

        printf ("this statement is always printed\n");

If you glance at this code quickly, you might think that the second call to 
printf is executed only if x is 0. However, this code is really 

if (x == 0)

        printf ("x is zero\n");

printf ("this statement is always printed\n");

In Perl, this problem does not exist because the only way to write the first 
statement is

print ("x is zero\n") if (x == 0);



Q: Is a continue block executed if a redo statement restarts the loop? 

A: No. The continue block is executed only when an iteration of a loop is 
successfully completed (by reaching the bottom of a loop or a next statement). 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  How many times does the following loop iterate?
for ($count = 0; $count < 7; $count++) {
print ("$count\n"); 

} 
2.  How many times does the following loop iterate?

$count = 1;
do {
print ("$count\n");

} until ($count++ > 10); 
3.  How many times does the following loop iterate?

for ($count = 1; $count <= 10; $count++) {
last if ($count == 5);

} 
4.  How many times does the following loop iterate?

$restart = 0;
for ($count = 1; $count <= 5; $count++) {
redo if ($restart++ == 1);

} 
5.  Write a single-line conditional statement that quits a loop if $x equals done. 
6.  Write a single-line conditional statement that restarts a loop if the first 

element of the list @list is 26. 
7.  Write a single-line conditional statement that goes to the next iteration of the 

loop labeled LABEL if $scalar equals #. 
8.  Write a single-line conditional statement that prints the digits from 1 to 10. (Use 

a scalar variable, and assume that it has not been previously defined.) 
9.  What does the continue statement do? 

Exercises

1.  Write a program that uses the do statement to print the numbers from 1 to 10. 
2.  Write a program that uses the for statement to print the numbers from 1 to 10. 
3.  Write a program that uses a loop to read and write five lines of input. Use the 



last statement to exit the loop if there are less than five lines to read. 
4.  Write a program that loops through the numbers 1 to 20, printing the even-

numbered values. Use the next statement to skip over the odd-numbered values. 
5.  Write a program that uses the foreach statement to check each word in the 

standard input file. Print the line numbers of all occurrences of the word the (in 
uppercase, lowercase, or mixed case). 

6.  Write a program that uses a while loop and a continue statement to print the 
integers from 10 down to 1. 

7.  BUG BUSTER: What is wrong with the following code? 
$count = 1;
do {
print ("$count\n");
last if ($count == 10);
$count++;

} while (1); 

    



Chapter 9

Using Subroutines

CONTENTS

●     What Is a Subroutine? 
●     Defining and Invoking a Subroutine 

❍     Forward References to Subroutines 
●     Returning a Value from a Subroutine 

❍     Return Values and Conditional Expressions 
●     The return Statement 
●     Using Local Variables in Subroutines 

❍     Initializing Local Variables 
●     Passing Values to a Subroutine 

❍     Passing a List to a Subroutine 
●     Calling Subroutines from Other Subroutines 
●     Recursive Subroutines 
●     Passing Arrays by Name Using Aliases 
●     Using the do Statement with Subroutines 
●     Specifying the Sort Order 
●     Predefined Subroutines 

❍     Creating Startup Code Using BEGIN 
❍     Creating Termination Code Using END 
❍     Handling Non-Existent Subroutines Using AUTOLOAD 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson shows you how to use subroutines to divide your program into smaller, 
more manageable modules. Today, you learn about the following: 

●     What a subroutine is 
●     How to define subroutines 
●     How to invoke subroutines 



●     How to return a value from a subroutine 
●     How to use the return statement 
●     How to use local variables in subroutines 
●     How to pass arguments to subroutines 
●     How to call subroutines from other subroutines 
●     The meaning of recursive subroutines 
●     How to pass arrays by name in subroutines using aliasing 
●     How to use the do statement with subroutines 
●     How to use subroutines to change the sort order used by sort 
●     How to provide startup and termination code using BEGIN and END 
●     How to use AUTOLOAD 

What Is a Subroutine?

In Perl, a subroutine is a separate body of code designed to perform a particular task. A 
Perl program executes this body of code by calling or invoking the subroutine; the act 
of invoking a subroutine is called a subroutine invocation. 

Subroutines serve two useful purposes: 

●     They break down your program into smaller parts, making it easier to read and 
understand. 

●     They enable you to use one piece of code to perform the same task multiple times, 
eliminating needless duplication. 

Defining and Invoking a Subroutine

Listing 9.1 shows how a subroutine works. This program calls a subroutine that reads a 
line from the standard input file and breaks it into numbers. The program then adds the 
numbers together. 

 

Listing 9.1. A program that uses a subroutine.

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  &getnumbers;



5:  foreach $number (@numbers) {

6:          $total += $number;

7:  }

8:  print ("the total is $total\n");

9:

10: sub getnumbers {

11:         $line = <STDIN>;

12:         $line =~ s/^\s+|\s*\n$//g;

13:         @numbers = split(/\s+/, $line);

14: }

 

$ program9_1

11 8 16 4

the total is 39

$

 Lines 10-14 are an example of a subroutine. The keyword sub tells the Perl 
interpreter that this is a subroutine definition. The getnumbers immediately following 
sub is the name of the subroutine; the Perl program uses this name when invoking the 
subroutine. 

The program starts execution in the normal way, beginning with line 3. Line 4 invokes 
the subroutine getnumbers; the & character tells the Perl interpreter that the 
following name is the name of a subroutine. (This ensures that the Perl interpreter does 
not confuse subroutine names with the names of scalar or array variables.) 

The Perl interpreter executes line 4 by jumping to the first executable statement inside 
the subroutine, which is line 11. The interpreter then executes lines 11-13. 

Lines 11-13 create the array @numbers as follows: 



●     Line 11 reads a line of input from the standard input file. 
●     Line 12 removes the leading and trailing white space (including the trailing 

newline) from the input line. 
●     Line 13 then breaks the input line into numbers and assigns the resulting list of 

numbers to @numbers. 

After line 13 is finished, the Perl interpreter jumps back to the main program and 
executes the line immediately following the subroutine call, which is line 5. 

Lines 5-7 add the numbers together by using the foreach statement to loop through the 
list stored in @numbers. (Note that this program does not check whether a particular 
element of @numbers actually consists of digits. Because character strings that are not 
digits are converted to 0 in expressions, this isn't a significant problem.) 

The syntax for a subroutine definition is 

sub subname {

        statement_block

}

subname is a placeholder for the name of the subroutine. Like all Perl names, subname 
consists of an alphabetic character followed by one or more letters, digits, or 
underscores. 

statement_block is the body of the subroutine and consists of one or more Perl 
statements. Any statement that can appear in the main part of a Perl program can 
appear in a subroutine. 

NOTE

The Perl interpreter never confuses a subroutine name 
with a scalar variable name or any other name, because 
it can always tell from the context which name you are 
referring to. This means that you can have a subroutine 
and a scalar variable with the same name. For example:

$word = 0;

&word; 

Here, when the Perl interpreter sees the & character in 
the second statement, it realizes that the second 
statement is calling the subroutine named word. 



When you are defining names for your subroutines, it's 
best not to use a name belonging to a built-in Perl 
function that you plan to use.

For example, you could, if you want, define a subroutine 
named split. The Perl interpreter can always 
distinguish an invocation of the subroutine split from 
an invocation of the library function split, because the 
name of the subroutine is preceded by an & when it is 
invoked, as follows: 

@words = &split(1, 2); # subroutine

@words = split(/\s+/, $line); # library function 

However, it's easy to leave off the & by mistake 
(especially if you are used to programming in C, where 
subroutine calls do not start with an &). To avoid such 
problems, use subroutine names that don't correspond to 
the names of library functions. 

Perl subroutines can appear anywhere in a program, even in the middle of a conditional 
statement. For example, Listing 9.2 is a perfectly legal Perl program. 

 

Listing 9.2. A program containing a subroutine in the middle of the main 
program.

1:  #!/usr/local/bin/perl

2:

3:  while (1) {

4:          &readaline;

5:          last if ($line eq "");



6:          sub readaline {

7:                  $line = <STDIN>;

8:          }

9:          print ($line);

10: }

11: print ("done\n");

 

$ program9_2

Here is a line of input.

Here is a line of input.

^D

done

$

 This program just reads lines of input from the standard input file and writes 
them straight back out to the standard output file. 

Line 4 calls the subroutine readaline. When you examine this subroutine, which is 
contained in lines 6-8, you can see that it reads a line of input and assigns it to the 
scalar variable $line. 

When readaline is finished, program execution continues with line 5. When line 5 is 
executed, the program skips over the subroutine definition and continues with line 9. 
The code inside the subroutine is never directly executed, even if it appears in the middle 
of a program; lines 6-8 can be executed only by a subroutine invocation, such as that 
found in line 4.

TIP



Although subroutines can appear anywhere in a 
program, it usually is best to put all your subroutines at 
either the beginning of the program or the end. 
Following this practice makes your programs easier to 
read.

Forward References to Subroutines

As you have seen, the Perl interpreter uses the & character to indicate that a 
subroutine is being specified in a statement. In Perl 5, you do not need to supply an & 
character when calling a subroutine if you have already defined the subroutine. 

sub readaline {

        $line = <STDIN>;

}

...

readaline;

Because the Perl interpreter already knows that readaline is a subroutine, you don't 
need to specify the & when calling it. 

If you prefer to list all your subroutines at the end of your program, you can still omit 
the & character provided you supply a forward reference for your subroutine, as shown 
in the following: 

sub readaline;   # forward reference

...

readaline;

...

sub readaline {

        $line = <STDIN>;

}

The forward reference tells the Perl interpreter that readaline is the name of a 
subroutine. This means that you no longer need to supply the & when you call 



readaline. 

Occasionally, calling a subroutine without specifying 
the & character might not behave the way you expect. If 
your program is behaving strangely, or you are not sure 
whether or not to use the & character, supply the & 
character with your call. 

Returning a Value from a Subroutine

Take another look at the getnumbers subroutine from Listing 9.1. 

sub getnumbers {

        $line = <STDIN>;

        $line =~ s/^\s+|\s*\n$//g;

        @numbers = split(/\s+/, $temp);

}

Although this subroutine is useful, it suffers from one serious limitation: it overwrites 
any existing list stored in the array variable @numbers (as well as any value stored in 
$line or $temp). This overwriting can lead to problems. For example, consider the 
following: 

@numbers = ("the", "a", "an");

&getnumbers;

print ("The value of \@numbers is: @numbers\n");

When the subroutine getnumbers is invoked, the value of @numbers is overwritten. If you 
just examine this portion of the program, it is not obvious that this is what is happening. 

To get around this problem, you can employ a useful property of subroutines in Perl: The 
value of the last expression evaluated by the subroutine is automatically considered to 
be the subroutine's return value. 



For example, in the subroutine getnumbers from Listing 9.1, the last expression 
evaluated is 

@numbers = split(/\s+/, $temp);

The value of this expression is the list of numbers obtained by splitting the line of input. 
This means that this list of numbers is the return value for the subroutine. 

To see how to use a subroutine return value, look at Listing 9.3, which modifies the 
word-counting program to use the return value from the subroutine getnumbers. 

 

Listing 9.3. A program that uses a subroutine return value. 

1:  #!/usr/local/bin/perl

2:

3:  $total = 0;

4:  @numbers = &getnumbers;

5:  foreach $number (@numbers) {

6:          $total += $number;

7:  }

8:  print ("the total is $total\n");

9:

10: sub getnumbers {

11:         $line = <STDIN>;

12:         $line =~ s/^\s+|\s*\n$//g;

13:         split(/\s+/, $line);     # this is the return value

14: }



 

$ program9_3

11 8 16 4

the total is 39

$

 Line 4, once again, calls the subroutine getnumbers. As before, the array 
variable @numbers is assigned the list of numbers read from the standard input file; 
however, in this program, the assignment is in the main body of the program, not in the 
subroutine. This makes the program easier to read. 

The only other difference between this program and Listing 9.1 is that the call to split 
in line 13 no longer assigns anything to @numbers. In fact, it doesn't assign the list 
returned by split to any variable at all, because it does not need to. Line 13 is the last 
expression evaluated in getnumbers, so it automatically becomes the return value from 
getnumbers. Therefore, when line 4 calls getnumbers, the list returned by split is 
assigned to the array variable @numbers.

NOTE

If the idea of evaluating an expression without assigning 
it confuses you, there's nothing wrong with creating a 
variable inside the subroutine just for the purpose of 
containing the return value. For example:

sub getnumbers {
$line = <STDIN>;
$line =~ s/^\s+|\s*\n$//g;
@retval = split(/\s+/, $temp); # the return value

} 

Here, it is obvious that the return value is the contents 
of @retval. 

The only drawback to doing this is that assigning the 
list returned by split to @retval is slightly less 
efficient. In larger programs, such efficiency costs are 
worth it, because subroutines become much more 
comprehensible. 



Using a special return variable also eliminates an entire 
class of errors, which you will see in "Return Values 
and Conditional Expressions," later today.

You can use a return value of a subroutine any place an expression is expected. For 
example: 

foreach $number (&getnumbers) {

       print ("$number\n");

}

This foreach statement iterates on the list of numbers returned by getnumbers. Each 
element of the list is assigned to $number in turn, which means that this loop prints all 
the numbers in the list, each on its own line. 

Listing 9.4 shows another example that uses the return value of a subroutine in an 
expression. This time, the return value is used as an array subscript. 

 

Listing 9.4. A program that uses a return value as an array subscript.

1:  #!/usr/local/bin/perl

2:

3:  srand();

4:  print ("Random number tester.\n");

5:  for ($count = 1; $count <= 100; $count++) {

6:          $randnum[&intrand] += 1;

7:  }

8:  print ("Totals for the digits 0 through 9:\n");

9:  print ("@randnum\n");

10:



11: sub intrand {

12:         $num = int(rand(10));

13: }

 

$ progam9_4

Random number tester.

Totals for the digits 0 through 9:

10 9 11 10 8 8 12 11 9 12

$

 This program uses the following three built-in functions:

srand Initializes the built-in random-number generator 

rand Generates a random (non-integral) number greater than 
zero and less than the value passed to it 

int Gets rid of the non-integer portion of a number 

The subroutine intrand first calls rand to get a random number greater than 0 and less 
than 10. The return value from rand is passed to int to remove the fractional portion of 
the number; this means, for example, that 4.77135 becomes 4. This number becomes the 
return value returned by intrand. 

Line 6 calls intrand. The return value from intrand, an integer between 0 and 9, serves 
as the subscript into the array variable randnum. If the return value from intrand is 7, 
$randnum[7] has its value increased by one. 

As a consequence, at any given time, the nth value of @randnum contains the number of 
occurrences of n as a random number. 

Line 9 prints out the number of occurrences of each of the 10 numbers. Each number 
should occur approximately the same number of times (although not necessarily exactly 
the same number of times). 



Return Values and Conditional Expressions

Because the return value of a subroutine is always the last expression evaluated, the 
return value might not always be what you expect. 

Consider the simple program in Listing 9.5. This program, like the one in Listing 9.3, reads 
an input line, breaks it into numbers, and adds the numbers. This program, however, 
attempts to do all the work inside the subroutine get_total. 

 

Listing 9.5. A program illustrating a potential problem with return 
values from subroutines.

1:  #!/usr/local/bin/perl

2:

3:  $total = &get_total;

4:  print("The total is $total\n");

5:

6:  sub get_total {

7:          $value = 0;

8:          $inputline = <STDIN>;

9:          $inputline =~ s/^\s+|\s*\n$//g;

10:         @subwords = split(/\s+/, $inputline);

11:         $index = 0;

12:         while ($subwords[$index] ne "") {

13:                 $value += $subwords[$index++];

14:         }

15: }



 

$ program9_5

11 8 16 4

the total is

$

 Clearly, this program is supposed to assign the contents of the scalar variable 
$value to the scalar variable $total. However, when line 4 tries to print the total, you 
see that the value of $total is actually the empty string. What has happened? 

The problem is in the subroutine get_total. In get_total, as in all other subroutines, the 
return value is the value of the last expression evaluated. However, in get_total, the 
last expression evaluated is not the last expression in the program. 

The last expression to be evaluated in get_total is the conditional expression in line 12, 
which is 

$subwords[$index] ne ""

The loop in lines 12-14 iterates until the value of this expression is 0. When the value of 
this expression is 0, the loop terminates and the subroutine terminates. This means that 
the value of the last expression evaluated in the subroutine is 0 and that the return 
value of the subroutine is 0. Because 0 is treated as the null string by print (0 and the 
null string are equivalent in Perl), line 4 prints the following, which isn't what the 
program is supposed 
to do: 

the total is

Listing 9.6 shows how you can get around this problem. 

 



Listing 9.6. A program that corrects the problem that occurs in Listing 
9.5.

1:  #!/usr/local/bin/perl

2:

3:  $total = &get_total;

4:  print("The total is $total.\n");

5:  sub get_total {

6:          $value = 0;

7:          $inputline = <STDIN>;

8:          $inputline =~ s/^\s+|\s*\n$//g;

9:          @subwords = split(/\s+/, $inputline);

10:         $index = 0;

11:         while ($subwords[$index] ne "") {

12:                 $value += $subwords[$index++];

13:         }

14:         $retval = $value;

15: }

 

$ program9_6

11 8 16 4

the total is 39.

$

 This program is identical to Listing 9.5 except for one difference: line 15 has 
been added. This line assigns the total stored in $value to the scalar variable $retval. 



Line 15 ensures that the value of the last expression evaluated in the subroutine 
get_total is, in fact, the total which is supposed to become the return value. This means 
that line 3 now assigns the correct total to $total, which in turn means that line 4 now 
prints the correct result. 

Note that you don't really need to assign to $retval. The subroutine get_total can just 
as easily be the following: 

sub get_total {

        $value = 0;

        $inputline = <STDIN>;

        $inputline =~ s/^\s+|\s*\n$//g;

        @subwords = split(/\s+/, $inputline);

        $index = 0;

        while ($subwords[$index] ne "") {

                $value += $subwords[$index++];

        }

        $value;

}

Here, the final expression evaluated by the subroutine is simply $value. The value of 
this expression is the current value stored in $value, which is the sum of the numbers in 
the line.

TIP

Subroutines, such as get_total in Listing 9.6, which 
assign their return value at the very end are known as 
single-exit modules. 

Single-exit modules avoid problems like those you saw in 
Listing 9.5, and they usually are much easier to read. For 
these reasons, it is a good idea to assign to the return 
value at the very end of the subroutine, unless there 
are overwhelming reasons not to do so.

The return Statement 



Another way to ensure that the return value from a subroutine is the value you want 
is to use the return statement. 

The syntax for the return statement is 

return (retval);

retval is the value you want your subroutine to return. It can be either a scalar value 
(including the result of an expression) or a list. 

Listing 9.7 provides an example of the use of the return statement. 

 

Listing 9.7. A program that uses the return statement.

1:  #!/usr/local/bin/perl

2:

3:  $total = &get_total;

4:  if ($total eq "error") {

5:          print ("No input supplied.\n");

6:  } else {

7:          print("The total is $total.\n");

8:  }

9:

10: sub get_total {

11:         $value = 0;

12:         $inputline = <STDIN>;

13:         $inputline =~ s/^\s+|\s*\n$//g;

14:         if ($inputline eq "") {

15:                 return ("error");



16:         }

17:         @subwords = split(/\s+/, $inputline);

18:         $index = 0;

19:         while ($subwords[$index] ne "") {

20:                 $value += $subwords[$index++];

21:         }

22:         $retval = $value;

23: }

 

$ program9_7

^D

No input supplied.

$

 This program is similar to the one in Listing 9.6. The only difference is that 
this program checks whether an input line exists. 

If the input line does not exist, the conditional expression in line 14 becomes true, and 
line 15 is executed. Line 15 exits the subroutine with the return value error; this means 
that error is assigned to $total in line 3. 

This program shows why allowing scalar variables to store either numbers or character 
strings is useful. When the subroutine get_total detects the error, it can assign a value 
that is not an integer to $total, which makes it easier to determine that something has 
gone wrong. Other programming languages, which only enable you to assign either a 
number or a character string to a particular variable, do not offer this flexibility. 

Using Local Variables in Subroutines

The subroutine get_total in Listing 9.7 defines several variables that are used only 
inside the subroutine: the array variable @subwords, and the four scalar variables 



$inputline, $value, $index, and $retval. 

If you know for certain that these variables are going to be used only inside the 
subroutine, you can tell Perl to define these variables as local variables. 

In Perl 5, there are two statements used to define local variables: 

●     The my statement, which defines variables that exist only inside a subroutine. 
●     The local statement, which defines variables that do not exist inside the main 

program, but inside the subroutine and any subroutines called by the subroutine. 
(Calling subroutines from other subroutines is discussed later today.) 

In Perl 4, the my statement is not defined, so you must use local to define a variable that 
is not known to the main program. 

Listing 9.8 shows how you can use my to define a variable that exists only inside a 
subroutine.

NOTE

If you are using Perl 4, replace my with local in all the 
remaining examples in this chapter. For example, in 
Listing 9.8, replace my with local in lines 13 and 14, 
which produces 

local ($total, $inputline, @subwords);

local ($index, $retval); 

In Perl, my and local behave identically and use the 
same syntax. The only difference between them is that 
variables created using my are not known outside the 
subroutine. 

 

Listing 9.8. A program that uses local variables.

1:  #!/usr/local/bin/perl

2:



3:  $total = 0;

4:  while (1) {

5:          $linetotal = &get_total;

6:          last if ($linetotal eq "done");

7:          print ("Total for this line: $linetotal\n");

8:          $total += $linetotal;

9:  }

10: print ("Total for all lines: $total\n");

11:

12: sub get_total {

13:         my ($total, $inputline, @subwords);

14:         my ($index, $retval);

15:         $total = 0;

16:         $inputline = <STDIN>;

17:         if ($inputline eq "") {

18:                 return ("done");

19:         }

20:         $inputline =~ s/^\s+|\s*\n$//g;

21:         @subwords = split(/\s+/, $inputline);

22:         $index = 0;

23:         while ($subwords[$index] ne "") {

24:                 $total += $subwords[$index++];

25:         }

26:         $retval = $total;

27: }

 



$ program9_8

11 8 16 4

Total for this line: 39

7 20 6 1

Total for this line: 34

^D

Total for all lines: 73

$

 This program uses two copies of the scalar variable $total. One copy of $total 
is defined in the main program and keeps a running total of all of the numbers in all of 
the lines. 

The scalar variable $total is also defined in the subroutine get_total; in this 
subroutine, $total refers to the total for a particular line, and line 13 defines it as a 
local variable. Because this copy of $total is only defined inside the subroutine, the 
copy of $total defined in the main program is not affected by line 15 (which assigns 0 to 
$total).

Because a local variable is not known outside the 
subroutine, the local variable is destroyed when the 
subroutine is completed. If the subroutine is called 
again, a new copy of the local variable is defined.

This means that the following code does not work:

sub subroutine_count {
my($number_of_calls);
$number_of_calls += 1;

} 

This subroutine does not return the number of times 
subroutine_count has been called. Because a new copy of 
$number_of_calls is defined every time the subroutine is 
called, $number_of_calls is always assigned the value 1. 



Local variables can appear anywhere in a program, provided they are defined before 
they are used. It is good programming practice to put all your local definitions at the 
beginning of your subroutine. 

Initializing Local Variables

If you want, you can assign a value to a local variable when you declare it. For 
example: 

sub my_sub {

        my($scalar) = 43;

        my(@array) = ("here's", "a", "list");

        # code goes here

}

Here, the local scalar variable $scalar is given an initial value of 43, and the local 
array variable @array is initialized to contain the list ("here's", "a", "list"). 

Passing Values to a Subroutine

You can make your subroutines more flexible by allowing them to accept values passed 
from the main program; these values passed from the main program are known as 
arguments. 

Listing 9.9 provides a very simple example of a subroutine that accepts three arguments. 

 

Listing 9.9. A program that uses a subroutine to print three numbers 
and their total.

1:  #!/usr/local/bin/perl

2:

3:  print ("Enter three numbers, one at a time:\n");

4:  $number1 = <STDIN>;



5:  chop ($number1);

6:  $number2 = <STDIN>;

7:  chop ($number2);

8:  $number3 = <STDIN>;

9:  chop ($number3);

10: &printnum ($number1, $number2, $number3);

11:

12: sub printnum {

13:         my($number1, $number2, $number3) = @_;

14:         my($total);

15:         print ("The numbers you entered: ");

16:         print ("$number1 $number2 $number3\n");

17:         $total = $number1 + $number2 + $number3;

18:         print ("The total: $total\n");

19: }

 

$ program9_9

Enter three numbers, one at a time:

5

11

4

The numbers you entered: 5 11 4

The total: 20

$



 Line 10 calls the subroutine printnum. Three arguments are passed to 
printnum: the value stored in $number1, the value stored in $number2, and the value 
stored in $number3. Note that arguments are passed to subroutines in the same way they 
are passed to built-in library functions. 

Line 13 defines local copies of the scalar variables $number1, $number2, and $number3. It 
then assigns the contents of the system variable @_ to these scalar variables. @_ is 
created whenever a subroutine is called with arguments; it contains a list consisting of 
the arguments in the order in which they are passed. In this case, printnum is called with 
arguments 5, 11, and 4, which means that @_ contains the list (5, 11, 4). 

The assignment in line 13 assigns the list to the local scalar variables that have just 
been defined. This assignment works just like any other assignment of a list to a set of 
scalar variables. The first element of the list, 5, is assigned to the first variable, 
$number1; the second element of the list, 11, is assigned to $number2; and the final 
element, 4, is assigned to $number3.

NOTE

After the array variable @_ has been created, it can be 
used anywhere any other array variable can be used. 
This means that you do not need to assign its contents to 
local variables. 

The following subroutine is equivalent to the 
subroutine in lines 12-19 of Listing 9.9:

sub printnum {
my($total);
print ("The numbers you entered: ");
print ("$_[0] $_[1] $_[2]\n");
$total = $_[0] + $_[1] + $_[2];
print ("The total: $total\n");

} 

Here, $_[0] refers to the first element of the array 
variable @_, $_[1] refers to the second element, and 
$_[2] refers to the third element. 

This subroutine is a little more efficient, but it is harder 
to read.

TIP



It usually is better to define local variables and assign 
@_ to them because then your subroutines will be easier 
to understand. 

Listing 9.10 is another example of a program that passes arguments to a subroutine. This 
program uses the same subroutine to count the number of words and the number of 
characters in a file. 

 

Listing 9.10. Another example of a subroutine with arguments passed to 
it.

1:  #!/usr/local/bin/perl

2:

3:  $wordcount = $charcount = 0;

4:  $charpattern = "";

5:  $wordpattern = "\\s+";

6:  while ($line = <STDIN>) {

7:          $charcount += &count($line, $charpattern);

8:          $line =~ s/^\s+|\s+$//g;

9:          $wordcount += &count($line, $wordpattern);

10: }

11: print ("Totals: $wordcount words, $charcount characters\n");

12:

13: sub count {

14:         my ($line, $pattern) = @_;

15:         my ($count);

16:         if ($pattern eq "") {

17:                 @items = split (//, $line);

18:         } else {



19:                 @items = split (/$pattern/, $line);

20:         }

21:         $count = @items;

22: }

 

$ program9_10

This is a line of input.

Here is another line.

^D

Totals: 10 words, 47 characters

$

 This program reads lines from the standard input file until the file is 
exhausted. Each line has its characters counted and its words counted. 

Line 7 determines the number of characters in a line by calling the subroutine count. 
This subroutine is passed the line of input and the string stored in $charpattern, which is 
the empty string. Inside the subroutine count, the local variable $pattern receives the 
pattern passed to it by the call in line 7. This means that the value stored in $pattern is 
also the empty string. 

Lines 16-20 split the input line. The pattern specified in the call to split has the value 
stored in $pattern substituted into it. Because $pattern currently contains the empty 
string, the pattern used to split the line is //, which splits the input line into individual 
characters. As a result, each element of the resulting list stored in @items is a 
character in the input line. 

The total number of elements in the list-in other words, the total number of characters 
in the input line-is assigned to $count by line 17. Because this is the last expression 
evaluated in the subroutine, the resulting total number of characters is returned by 
the subroutine. Line 8 adds this total to the scalar variable $charcount. 



Line 8 then removes the leading and trailing white space; this white space is included in 
the total number of characters-because spaces, tabs, and the trailing newline character 
count as characters-but is not included when the line is broken into words. 

Line 9 calls the subroutine count again, this time with the pattern stored in 
$wordpattern, which is \s+. (Recall that you need to use two backslashes in a string to 
represent a single backslash, because the \ character is the escape character in strings.) 
This value, representing one or more whitespace characters, is assigned to $pattern 
inside the subroutine, and the pattern passed to split therefore becomes /\s+/. 

When split is called with this pattern, @items is assigned a list of words. The total 
number of words in the list is assigned to $count and is returned; line 11 adds this 
returned value to the total number of words. 

Passing a List to a Subroutine

If you want, you can pass a list to a subroutine. For example, the following subroutine 
adds the elements of a list together and prints the result: 

sub addlist {

        my (@list) = @_;

        $total = 0;

        foreach $item (@list) {

                $total += $item;

        }

        print ("The total is $total\n");

}

To invoke this subroutine, pass it an array variable, a list, or any combination of lists 
and 
scalar values. 

&addlist (@mylist);

&addlist ("14", "6", "11");

&addlist ($value1, @sublist, $value2);

In each case, the values and lists supplied in the call to addlist are merged into a single 



list and then passed to the subroutine. 

Because values are merged into a single list when a list is passed to a subroutine, you 
can only define one list as an argument for a subroutine. The subroutine 

sub twolists {

        my (@list1, @list2) = @_;

}

isn't useful because it always assigns the empty list to @list2, and because @list1 
absorbs all of the contents of @_. 

This means that if you want to have both scalar variables and a list as arguments to a 
subroutine, the list must appear last, as follows: 

sub twoargs {

        my ($scalar, @list) = @_;

}

If you call this subroutine using 

&twoargs(47, @mylist);

the value 47 is assigned to $scalar, and @mylist is assigned to @list. 

If you want, you can call twoargs with a single list, as follows: 

&twoargs(@mylist);

Here, the first element of @mylist is assigned to $scalar, and the rest of @mylist is 
assigned to @list. 

NOTE



If you find this confusing, it might help to realize that 
passing arguments to a subroutine follows the same 
rules as assignment does. For example, you can have

($scalar, @list1) = @list2; 

because $scalar is assigned the first element of @list2. 
However, you can't have this: 

(@list1, $scalar) = @list2; 

because all of @list1 would be assigned to @list2 and 
$scalar would be assigned the null string. 

Calling Subroutines from Other Subroutines

In Perl, you can call subroutines from other subroutines. To call a subroutine from 
another subroutine, use the same subroutine-invocation syntax you've been using all 
along. Subroutines that are called by other subroutines are known as nested subroutines 
(because one call is "nested" inside the other). 

Listing 9.11 is an example of a program that contains a nested subroutine. It is a fairly 
simple modification of Listing 9.10 and counts the number of words and characters in 
three lines of standard input. It also demonstrates how to return multiple values from 
a subroutine. 

 

Listing 9.11. An example of a nested subroutine.

1:  #!/usr/local/bin/perl

2:

3:  ($wordcount, $charcount) = &getcounts(3);

4:  print ("Totals for three lines: ");

5:  print ("$wordcount words, $charcount characters\n");

6:



7:  sub getcounts {

8:          my ($numlines) = @_;

9:          my ($charpattern, $wordpattern);

10:         my ($charcount, $wordcount);

11:         my ($line, $linecount);

12:         my (@retval);

13:         $charpattern = "";

14:         $wordpattern = "\\s+";

15:         $linecount = $charcount = $wordcount = 0;

16:         while (1) {

17:                 $line = <STDIN>;

18:                 last if ($line eq "");

19:                 $linecount++;

20:                 $charcount += &count($line, $charpattern);

21:                 $line =~ s/^\s+|\s+$//g;

22:                 $wordcount += &count($line, $wordpattern);

23:                 last if ($linecount == $numlines);

24:         };

25:         @retval = ($wordcount, $charcount);

26: }

27:

28: sub count {

29:         my ($line, $pattern) = @_;

30:         my ($count);

31:         if ($pattern eq "") {

32:                 @items = split (//, $line);

33:         } else {

34:                 @items = split (/$pattern/, $line);

35:         }

36:         $count = @items;



37: }

 

$ program9_11

This is a line of input.

Here is another line.

Here is the last line.

Totals for three lines: 15 words, 70 characters

$

 The main body of this program now consists of only five lines of code, 
including the special header comment and a blank line. This is because most of the 
actual work is being done inside the subroutines. (This is common in large programs. Most 
of these programs call a few main subroutines, which in turn call other subroutines. 
This approach makes programs easier to read, because each subroutine is compact and 
concise.) 

Line 3 calls the subroutine getcounts, which retrieves the line and character count for 
the three lines from the standard input file. Because a list containing two elements is 
returned by getcounts, a standard "list to scalar variable" assignment can be used to 
assign the returned list directly to $wordcount and $charcount. 

The subroutine getcounts is similar to the main body of the program in Listing 9.10. The 
only difference is that the while loop has been modified to loop only the number of 
times specified by the argument passed to getcounts, which is stored in the local variable 
$numlines. 

The subroutine getcounts actually does the word and character counting by calling a 
nested subroutine, count. This subroutine is identical to the subroutine of the same name 
in List-ing 9.10.

NOTE



The @_ variable is a local variable that is defined inside 
the subroutine. When a subroutine calls a nested 
subroutine, a new copy of @_ is created for the nested 
subroutine. 

For example, in Listing 9.11, when getcounts calls count, 
a new copy of @_ is created for count, and the @_ variable 
in getcounts is not changed. 

Recursive Subroutines

In Perl, not only can subroutines call other subroutines, but subroutines actually can 
call themselves. A subroutine that calls itself is known as a recursive subroutine. 

You can use a subroutine as a recursive subroutine if the following two conditions are 
true: 

●     All variables the subroutine uses are local (except those which are not changed 
by the subroutine). 

●     The subroutine contains code that, one way or another, determines when it 
should stop calling itself. 

When all the variables that a subroutine uses are local, the subroutine creates a new 
copy of the variables each time it calls itself. This ensures that there is no confusion or 
overlap. 

Listing 9.12 is an example of a program that contains a recursive subroutine. This 
program accepts a list of numbers and operands that is to be evaluated from right to 
left, as if the list is a stack whose top is the left end of the list. For example, if the 
input is 

-  955  *   26   +  11    8

this program adds 11 and 8, multiplies the result by 26, and subtracts that result from 
955. This is equivalent to the following Perl expression: 

955 - 26 * (11 + 8)

 



Listing 9.12. A program that uses a recursive subroutine to perform 
arithmetic.

1:  #!/usr/local/bin/perl

2:

3:  $inputline = <STDIN>;

4:  $inputline =~ s/^\s+|\s+$//g;

5:  @list = split (/\s+/, $inputline);

6:  $result = &rightcalc (0);

7:  print ("The result is $result.\n");

8:

9:  sub rightcalc {

10:         my ($index) = @_;

11:         my ($result, $operand1, $operand2);

12:

13:         if ($index+3 == @list) {

14:                 $operand2 = $list[$index+2];

15:         } else {

16:                 $operand2 = &rightcalc ($index+2);

17:         }

18:         $operand1 = $list[$index+1];

19:         if ($list[$index] eq "+") {

20:                 $result = $operand1 + $operand2;

21:         } elsif ($list[$index] eq "*") {

22:                 $result = $operand1 * $operand2;

23:         } elsif ($list[$index] eq "-") {

24:                 $result = $operand1 - $operand2;

25:         } else {

26:                 $result = $operand1 / $operand2;



27:         }

28: }

 

$ program9_12

 -   98 *  4 +  12  11

The result is 6.

$

 This program starts off by reading a line of input from the standard input file 
and breaking it into its components, which are stored as a list in the array variable 
@list. 

When given the input 

 -   98 *  4 +  12  11

lines 3-5 produce the following list, which is assigned to @list: 

("-", "98", "*", "4", "+", "12", "11")

Line 6 calls the subroutine rightcalc for the first time. rightcalc requires one 
argument, an index value that tells the subroutine what part of the list to work on. 
Because the first argument here is zero, rightcalc starts with the first element in the 
list. 

Line 10 assigns the argument passed to rightcalc to the local variable $index. When 
rightcalc is called for the first time, $index is 0. 

Lines 13-17 are the heart of this subroutine, because they control whether to call 
rightcalc recursively. The basic logic is that a list such as 



("-", "98", "*", "4", "+", "12", "11")

can be broken into three parts: the first operator, -; the first operand, 98; and a sublist 
(the rest of the list). Note that the sublist 

("*", "4", "+", "12", "11")

is itself a complete set of operators and operands; because this program is required to 
perform its arithmetic starting from the right, this sublist must be calculated first. 

Line 13 checks whether there is a sublist that needs to be evaluated first. To do this, it 
checks whether there are more than three elements in the list. If there are only three 
elements in the list, the list consists of only one operator and two operands, and the 
arithmetic can be performed right away. If there are more than three elements in the 
list, a sublist exists. 

To evaluate the sublist when it exists, line 16 calls rightcalc recursively. The index 
value passed to this second copy of rightcalc is 2; this ensures that the first element of 
the list examined by the second copy of rightcalc is the element with subscript 2, which 
is *. 

At this point, the following is the chain of subroutine invocations, their arguments, and 
the part of the list on which they are working: 

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", "4", "+", "12", 

"11") 

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11") 

When this copy of rightcalc reaches line 13, it checks whether the sublist being worked 
on has just three elements. Because this sublist has five elements, line 16 calls yet 
another copy of rightcalc, this time setting the value of $index to 4. The following is 
the chain of subroutine invocations after this third call:

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", "4", "+", "12", 

"11") 

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11") 

Level 4 rightcalc(4)-list ("+", "12", "11") 

When the third copy of this subroutine reaches line 13, it checks whether this portion of 



the list contains only three elements. Because it does, the conditional expression in line 
13 is true. At this point, line 14 is executed for the first time (by any copy of rightcalc); 
it takes the value stored in $index-in this case, 4, adds 2 to it, and uses the result as the 
subscript into @list. This assigns 11, the seventh element of @list, to $operand2. 

Lines 18-27 perform an arithmetic operation. Line 18 adds one to the value in $index to 
retrieve the location of the first operand; this operand is assigned to $operand1. In this 
copy of rightcalc, the subscript is 5 (4+1), and the sixth element of @list, 12, is assigned 
to $operand1. 

Line 19 uses $index as the subscript into the list to access the arithmetic operator for 
this operation. In this case, the fifth element of $index (subscript 4) is +, and the 
expression in line 19 is true. Line 20 then adds $operand1 to $operand2, yielding $result, 
which is 23. This value is returned by this copy of rightcalc. 

When the third copy of rightcalc returns, execution continues with the second copy of 
rightcalc because the second copy called the third copy. Line 16 of the second copy 
assigns the return value of the third copy, 23, to $operand2. The following is the state 
of the program after line 16 has finished executing:

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", "4", "+", "12", 

"11") 

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11"), 

$operand2 is 23 

The Perl interpreter now executes lines 18-27. Because $index is 2 in this copy of 
rightcalc, line 18 assigns the fourth element of @list, 4, to $operand1. Line 21 is true in 
this case because the operator is *; this means that line 22 multiplies $operand1 (4) by 
$operand2 (23), yielding 92, which is assigned to $result. 

At this point, the second copy of rightcalc is finished, and program execution returns to 
line 16. This assigns the return value from the second copy, 92, to $operand2. 

The following is the state of the program after the second copy of rightcalc is finished:

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", "4", "+", "12", 

"11"), $operand2 is 92 

Now you're almost finished; the program is executing only one copy of rightcalc. 
Because $index is 0 in this copy of rightcalc, line 18 assigns 98 to $operand1. Line 23 is 
true in this case because the operator here is -; line 24 then takes 98 and subtracts 92 
from it, yielding a final result of 6. 



This final result of 6 is passed to the main program and is assigned to $result. (Note that 
there is no conflict between $result in the main program and the various copies of 
$result in rightcalc because $result is defined as a local variable in rightcalc.) Line 7, 
finally, prints this result.

NOTE

Recursive subroutines are useful when handling 
complicated data structures such as trees. You will see 
examples of such complicated data structures on Day 10, 
"Associative Arrays."

Passing Arrays by Name Using Aliases

As you have seen, Perl enables you to pass an array as an argument to a subroutine. 

&my_sub(@array);

When the subroutine my_sub is called, the list stored in the array variable @array is 
copied to the variable @_ defined in the subroutine. 

sub my_sub {

        my (@subarray) = @_;

        $arraylength = @subarray;

}

If the array being passed is large, it might take some time (and considerable space) to 
create a copy of the array. If your application is operating under time or space 
limitations, or you just want to make it more efficient, you can specify that the array is 
to be passed by name. 

The following is an example of a similar subroutine that refers to an array by name: 

sub my_sub {

       my (*subarray) = @_;

       $arraylength = @subarray;



}

The *subarray definition tells the Perl interpreter to operate on the actual list passed 
to 
my_sub instead of making a copy. 

To call this subroutine, specify * instead of @ with the array variable name, as in the 
following: 

@myarray = (1, 2, 3, 4, 5);

&my_sub(*myarray);

Specifying *myarray instead of @myarray indicates that the actual contents of @myarray 
are to be used (and modified if desired) in my_sub. In fact, while the subroutine is being 
executed, the name @subarray becomes identical to the name @myarray. This process of 
creating another name to refer to the same variable is known as aliasing. @subarray is 
now an alias of @myarray. 

When my_sub terminates, @subarray stops being an alias of @myarray. When my_sub is 
called again with a different argument, as in 

&my_sub(*anotherarray);

the variable @subarray in my_sub becomes an alias for @anotherarray, which means that 
you can use the array variable @subarray to access the storage in @anotherarray. 

Aliasing arrays in this manner has one distinct advantage and one distinct drawback. 
The advantage is that your program becomes more efficient. You don't need to copy the 
entire list from your main program to the subroutine. The disadvantage is that your 
program becomes more difficult to follow. You have to remember, for example, that 
changing the contents of @subarray in the subroutine my_sub also changes the contents 
of @myarray and @anotherarray. It is easy to lose track of which name refers to which 
variable. 

There is also another problem with aliasing: aliasing affects all variables with the same 
name, not just array variables. 

For example, consider Listing 9.13, which defines a scalar variable named $foo and an 
array named @foo, and then aliases @foo. As you'll see, the program aliases $foo as well. 



 

Listing 9.13. A program that demonstrates aliasing.

1:  #!/usr/local/bin/perl

2:

3:  $foo = 26;

4:  @foo = ("here's", "a", "list");

5:  &testsub (*foo);

6:  print ("The value of \$foo is now $foo\n");

7:

8:  sub testsub {

9:          local (*printarray) = @_;

10:         foreach $element (@printarray) {

11:                 print ("$element\n");

12:         }

13:         $printarray = 61;

14: }

 

$ program9_13

here's

a

list

The value of $foo is now 61

$



 Line 5 calls the subroutine testsub. The argument, *foo, indicates that the 
array @foo is to be passed to testsub and aliased. 

The local variable definition in line 9 indicates that the array variable @printarray is 
to become an alias of the array variable @foo. This means that the name printarray is 
defined to be equivalent to the name foo. 

As a consequence, the scalar variable $printarray becomes an alias of the scalar 
variable $foo. Because of this, line 13, which seems to assign 61 to $printarray, actually 
assigns 61 to $foo. This modified value is printed by line 6 of the main program.

NOTE

Aliasing enables you to pass more than one list to a 
subroutine.

@array1 = (1, 2, 3);
@array2 = (4, 5, 6);
&two_array_sub (*array1, *array2);
sub two_array_sub {
my (*subarray1, *subarray2) = @_;

} 

In this case, the names array1 and array2 are passed to 
two_array_sub. subarray1 becomes an alias for array1, 
and subarray2 becomes an alias for array2. 

Using the do Statement with Subroutines

Perl enables you to use the do statement to invoke a subroutine. For example, the 
following statements are identical: 

&my_sub(1, 2, 3);

do my_sub(1, 2, 3);

There is no real reason to use the do statement in this context. 

Specifying the Sort Order



By default, the built-in function sort sorts in alphabetical order. The following is an 
example: 

@list = ("words", "to", "sort");

@list2 = sort (@list);

Here, @list2 is assigned ("sort", "to", "words"). 

If you want, you can write a subroutine that defines how sorting is to be accomplished. 
To understand how to do this, first you need to know a little about how sorting works. 

When sort is given a list to sort, it determines the sort order of the elements of the list 
by repeatedly comparing pairs of elements. To compare a pair of elements, sort calls a 
special internal subroutine and passes it a pair of arguments. Although the subroutine is 
not accessible from a Perl program, it basically behaves as follows: 

sub sort_criteria {

        if ($a gt $b) {

                retval = -1;

        } elsif ($a eq $b) {

                retval = 0;

        } else

                retval = 1;

        }

        $retval;

}

This subroutine compares two values, which are stored in $a and $b. It returns -1 if the 
first value is greater, 0 if the values are equal, and 1 if the second value is greater. 
(This, by the way, is how the cmp operator works; in fact, the preceding subroutine could 
compare the two values using a single cmp operator.) 

To define your own sorting rules, you must write a subroutine whose behavior is 
identical to the preceding subroutine. This subroutine must use two global variables 
named $a and $b to represent the two items in the list currently being compared, and the 
subroutine must return one of the following values:



-1 If $a is to appear before $b in the resulting sorted list 
0 If $a is to be treated as equal to $b 
1 If $a is to appear after $b in the resulting sorted list 

NOTE

Even though $a and $b are global variables that are 
used by the sorting subroutine, you still can define 
global variables of your own named $a and $b without 
risking their being overwritten. 

The built-in function sort saves any existing values of 
$a and $b before sorting, and then it restores them when 
sorting is completed. 

After you have written the subroutine, you must specify the subroutine name when 
calling the function sort. For example, if you define a function named foo that provides 
a set of sorting rules, the following statement sorts a list using the rules defined in 
foo: 

@list2 = sort foo (@list1);

Listing 9.14 shows how you can define your own sort criteria. This program sorts a list in 
the normal order, except that it puts strings starting with a digit last. (By default, 
strings starting with a number appear before strings starting with a letter, and before 
some-but not all-special characters.) Strings that begin with a digit are assumed to be 
numbers and are sorted in numerical order. 

 

Listing 9.14. A program that defines sort criteria.

1:  #!/usr/local/bin/perl

2:

3:  @list1 = ("test", "14", "26", "test2");

4:  @list2 = sort num_last (@list1);



5:  print ("@list2\n");

6:

7:  sub num_last {

8:          my ($num_a, $num_b);

9:

10:         $num_a = $a =~ /^[0-9]/;

11:         $num_b = $b =~ /^[0-9]/;

12:         if ($num_a && $num_b) {

13:                 $retval = $a <=> $b;

14:         } elsif ($num_a) {

15:                 $retval = 1;

16:         } elsif ($num_b) {

17:                 $retval = -1;

18:         } else {

19:                 $retval = $a cmp $b;

20:         }

21:         $retval;

22: }

 

$ program9_14

test test2 14 26

$

 Line 4 sorts the program according to the sort criteria defined in the 
subroutine num_last. This subroutine is defined in lines 7-22. 



This subroutine first determines whether the items are strings that begin with a digit. 
Line 10 sets the local variable $num_a to a nonzero value if the value stored in $a 
starts with a digit; similarly, line 11 sets $num_b to a nonzero value if the value of $b 
starts with a digit. 

Lines 12 and 13 handle the case in which both $num_a and $num_b are true. In this case, 
the two strings are assumed to be digits, and the numeric comparison operator <=> 
compares their values. The result of the <=> operation is -1 if the first number is larger, 
0 if they are equal, and 1 if the second number is larger. 

If $num_a is true but $num_b is false, line 15 sets the return value for this subroutine to 
1, indicating that the string that does not start with a digit, $b, is to be treated as 
greater. Similarly, line 17 sets the return value to -1 if $b starts with a digit and $a 
does not. 

If neither string starts with a digit, line 19 uses the normal sort criterion-alphabetical 
order-to determine which value is larger. Here, the cmp operator is useful. It returns -1 
if the first string is alphabetically greater, 0 if the strings are equal, and 1 if the 
second string is alphabetically greater. 

Predefined Subroutines

Perl 5 defines three special subroutines that are executed at specific times. 

●     The BEGIN subroutine, which is called when your program starts running 
●     The END subroutine, which is called when your program terminates 
●     The AUTOLOAD subroutine, which is called when your program can't find a 

subroutine it is supposed to execute 

NOTE

These subroutines are not supported in Perl 4.

Creating Startup Code Using BEGIN 

Perl 5 enables you to create code that is executed when your program is started. To do 
this, create a special subroutine named BEGIN. For example: 

BEGIN {

        print("Hi! Welcome to Perl!\n");

}



When your program begins execution, the following line appears on your screen: 

Hi! Welcome to Perl!

The BEGIN subroutine behaves just like any other Perl subroutine. For example, you can 
define local variables for it or call other subroutines from it.

NOTE

If you like, you can define multiple BEGIN subroutines. 
These subroutines are called in the order in which they 
appear in the program. 

Creating Termination Code Using END 

Perl 5 enables you to create code to be executed when your program terminates 
execution. To do this, define an END subroutine, as in the following example: 

END {

        print("Thank you for using Perl!\n");

}

The code contained in the END subroutine is always executed by your program, even if 
the program is terminated using die. For example, the code 

die("Prepare to die!\n");

END {

        print("Ha! You can't kill me!\n");

}

displays the following on your screen: 

Prepare to die!

Ha! You can't kill me!



NOTE

You can define multiple END subroutines in your 
program. In this case, the subroutines are executed in 
reverse order of appearance, with the last one executed 
first. 

Handling Non-Existent Subroutines Using AUTOLOAD 

Perl 5 enables you to define a special subroutine named AUTOLOAD that is called 
whenever the Perl interpreter is told to call a subroutine that does not exist. Listing 
9.15 illustrates the use of AUTOLOAD. 

 

Listing 9.15. A program that uses AUTOLOAD. 

1: #!/usr/local/bin/perl

2:

3: &nothere("hi", 46);

4:

5: AUTOLOAD {

6:         print("subroutine $AUTOLOAD not found\n");

7:         print("arguments passed: @_\n");

8: }

 

$ program9_15



subroutine main::nothere not found

arguments passed: hi 46

$

 This program tries to call the non-existent subroutine nothere. When the 
Perl interpreter discovers that nothere does not exist, it calls the AUTOLOAD subroutine. 

Line 6 uses a special scalar variable, $AUTOLOAD, which contains the name of the 
subroutine you tried to call. (The main:: text that appears before the subroutine name, 
nothere, is the name of the package in which the subroutine is found. By default, all 
your code is placed in one package, called main, so you normally won't need to worry 
about packages. For more information on creating other packages, see Day 19, "Object-
Oriented Programming in Perl.") 

When AUTOLOAD is called, the arguments that were to be passed to the non-existent 
subroutine are passed to AUTOLOAD instead. This means that the @ array variable contains 
the list ("hi", 46), because these are the arguments that were to be passed to nothere.

TIP

AUTOLOAD is useful if you plan to organize your Perl 
program into modules, because you can use it to ensure 
that crucial subroutines from other files actually exist 
when you need them. For more information on organizing 
Perl programs into modules, see Day 19. 

Summary

Today, you learned about subroutines, which are separated chunks of code intended to 
perform specific tasks. A subroutine can appear anywhere in your program. 

To invoke a subroutine, specify its name preceded by the & character. In Perl 5, the & 
character is not required if the subroutine exists, or if a forward reference is defined. 

A subroutine can return a value (either a scalar value or a list). This return value is 
the value of the last expression evaluated inside the subroutine. If this last expression 
is at the end of the subroutine, the subroutine is a single-exit module. 

You can define local variables for use inside subroutines. These local variables exist 
only while the subroutine is being executed. When a subroutine finishes, its local 



variables are destroyed; if it is invoked again, new copies of the local variables are 
defined. 

You can pass values to subroutines; these values are called arguments. You can pass as 
many arguments as you like, but only one of these arguments can be a list. If a list is 
passed to a subroutine, it must be the last argument passed. 

The arguments passed to a subroutine are converted into a list and assigned to a special 
system variable, @_. One copy of @_ exists for each list of arguments passed to a 
subroutine (that is, @_ is a local variable). 

Subroutines can call other subroutines (nested subroutines) and even can call 
themselves (recursive subroutines). 

You can pass an array variable to a subroutine by name by defining an alias for the 
variable name. This alias affects all variables of that name. 

You can use the do statement to invoke a subroutine, although there is no real reason 
to do so. 

You can define a subroutine that specifies the order in which the elements of a list are 
to be sorted. To use the sort criteria defined by a subroutine, include its name with the 
call to sort. 

The BEGIN subroutine is always executed before your program begins execution. The END 
subroutine is always executed when your program terminates, even if it was killed off 
using die. The AUTOLOAD subroutine is executed if your program tries to call a subroutine 
that does not exist. 

Q&A

Q: How many levels of nested subroutines can a program have? 

A: This depends on the amount of memory in your machine. Normally, it is large 
enough to only be an issue when you are using recursive subroutines. 

Q: Which is better: passing entire lists or passing array variables by name? 

A: As with so many issues in programming, this depends on the situation. If your 
program needs to be space-efficient or to run as quickly as possible, passing array 
variables by name might be the best choice.
Another option is to use the global array variable both inside and outside the 
subroutine. This works well if the array variable is the central repository for 
program data. 

Q: When are global variables a good idea? When is it better to pass the 
contents of a variable to a subroutine? 



A: If your subroutine is a general-purpose subroutine that performs a task such as 
breaking a scalar value into words, it's a good idea to pass the value as an 
argument. For example:
sub breakline {
local ($line) = @_;
@words = split(/\s+/, $line);
}

If you do not pass the line as an argument, breakline will be able to work only 
with the line stored in a particular scalar variable, which makes it less useful.
On the other hand, if your program stores information in a central array, there's 
no reason to pass the array or the array name to a subroutine that processes the 
array. For example, if you are using the array @occurs to count all the 
occurrences of the digits 0 through 9 in a file, there's no reason to pass @occurs 
to a subroutine. For example:
sub printcount {
for ($count = 0; $count <= 9; $count++) {
print ("$occurs[$count]\n");
}
}

Because printcount is not likely to be used with any array except @occurs, 
there's no need to pass it as an argument. 

Q: When Perl defines an alias for an array-variable name in a subroutine, such 
as @localname for @name in a subroutine, why does it also define the alias 
$localname for $name? 

A: Strictly speaking, the * character in an alias represents any character that 
precedes a variable name (such as @ or $). 
For example, consider the following subroutine and the corresponding statement 
that calls it:
sub arraybyname {
local (*localname) = @_;
}
arraybyname (*name);

When the Perl interpreter sees the reference to *localname in the subroutine, it 
replaces the alias following the * with the name for which the alias is defined. 
In this case, the Perl interpreter replaces *localname with *name.
The Perl interpreter then determines, from context, whether *name is an array 
variable, a scalar variable, or something else. In this case, *name is intended to be 
an array variable, which means that *name becomes @name. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz



1.  Define the following terms:
a.    subroutine
b.    invocation
c.    argument
d.    single-exit module
e.    aliasing 

2.  Consider the following program:
#!/usr/local/bin/perl

$total = 0;
@list = (1, 2, 3);
@list2 = &my_sub;
sub my_sub {
local ($total);
$total = 1;
@list = (4, 5, 6);
}

What are the values stored in the following variables at the end of this program?
a.    $total
b.    @list
c.    @list2 

3.  What does the following subroutine return?
sub sub1 {
$count = $sum = 0;
while ($count <= 10) {
$sum += $count;
$count++;
}

} 
4.  What is the value of @list at the end of the following program?

#!/usr/local/bin/perl

@list = (1, 2, 3);
&testsub(*list);
sub testsub {
local (*sublist) = @_;
$sublist[1] = 5;

} 

Exercises

1.  Write a subroutine that takes two arguments, adds them together, and returns 
the result. 

2.  Write a subroutine that counts the number of occurrences of the letter t in a 
string (which is passed to the subroutine). The subroutine must return the number 
of occurrences. 

3.  Write a subroutine that takes two filenames as its arguments and returns a 
nonzero value if the two files have identical contents. Return 0 if the files 



differ. 
4.  Write a subroutine that simulates the roll of a die (that is, it generates a random 

number between 1 and 6) and returns the number. 
5.  Write a subroutine that uses recursion to print a list in reverse order. The 

subroutine must recursively call itself to print the entire list; each invocation 
must print one word of the list. (Assume that the first call to your subroutine 
passes the value 0 and the list to be printed.) 

6.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

for ($count = 1; $count <= 10; $count++) {
&print_ten ($count);
}

sub print_ten {
local ($multiplier) = @_;
for ($count = 1; $count <= 10; $count++) {
$printval = $multiplier * 10 + $count;
print ("$printval\n");
}

} 
7.  BUG BUSTER: What is wrong with the following program? 

#!/usr/local/bin/perl

$line = <STDIN>;
@words = split(/\s+/, $line);
$searchword = <STDIN>;
&search_for_word (@words, $searchword);

sub search_for_word {
local (@searchlist, $searchword) = @_;
foreach $word (@searchlist) {
return (1) if ($word eq $searchword);
}
$retval = 0;

} 
8.  BUG BUSTER: What is wrong with the following program? 

#!/usr/local/bin/perl

$line = <STDIN>;
@words = &split_line($line);
print ("@words\n");

sub split_line {
local ($line) = @_;
local (@words);
@words = split(/\s+/, $line);
if (@words == 0) {
@words = ("empty list");
}

} 



    



Chapter 10

Associative Arrays

CONTENTS

●     Limitations of Array Variables 
●     Definition 
●     Referring to Associative Array Elements 
●     Adding Elements to an Associative Array 
●     Creating Associative Arrays 
●     Copying Associative Arrays from Array Variables 
●     Adding and Deleting Array Elements 
●     Listing Array Indexes and Values 
●     Looping Using an Associative Array 
●     Creating Data Structures Using Associative Arrays 

❍     Linked Lists 
❍     Structures 
❍     Trees 
❍     Databases 
❍     Example: A Calculator Program 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson shows you how to use associative arrays. You'll learn the following: 

●     What an associative array is 
●     How to access and create an associative array 
●     How to copy to and from an associative array 
●     How to add and delete associative array elements 
●     How to list array indexes and values 
●     How to loop using an associative array 
●     How to build data structures using associative arrays 



To start, take a look at some of the problems that using array variables creates. Once 
you have seen some of the difficulties created by array variables in certain contexts, 
you'll see how associative arrays can eliminate these difficulties. 

Limitations of Array Variables

In the array variables you've seen so far, you can access an element of a stored list by 
specifying a subscript. For example, the following statement accesses the third element 
of the list stored in the array variable @array: 

$scalar = $array[2];

The subscript 2 indicates that the third element of the array is to be referenced. 

Although array variables are useful, they have one significant drawback: it's often 
difficult to remember which element of an array stores what. For example, suppose you 
want to write a program that counts the number of occurrences of each capitalized 
word in an input file. You can do this using array variables, but it's very difficult. 
Listing 10.1 shows you what you have to go through to do this. 

 

Listing 10.1. A program that uses array variables to keep track of 
capitalized words in an input file.

1:  #!/usr/local/bin/perl

2:

3:  while ($inputline = <STDIN>) {

4:          while ($inputline =~ /\b[A-Z]\S+/g) {

5:                  $word = $&;

6:                  $word =~ s/[;.,:-]$//;  # remove punctuation

7:                  for ($count = 1; $count <= @wordlist;

8:                                   $count++) {

9:                          $found = 0;

10:                         if ($wordlist[$count-1] eq $word) {



11:                                 $found = 1;

12:                                 $wordcount[$count-1] += 1;

13:                                 last;

14:                         }

15:                 }

16:                 if ($found == 0) {

17:                         $oldlength = @wordlist;

18:                         $wordlist[$oldlength] = $word;

19:                         $wordcount[$oldlength] = 1;

20:                 }

21:         }

22: }

23: print ("Capitalized words and number of occurrences:\n");

24: for ($count = 1; $count <= @wordlist; $count++) {

25:         print ("$wordlist[$count-1]: $wordcount[$count-1]\n");

26: }

 

$ program10_1

Here is a line of Input.

This Input contains some Capitalized words.

^D

Capitalized words and number of occurrences:

Here: 1

Input: 2

This: 1

Capitalized: 1



$

 This program reads one line of input at a time from the standard input file. 
The loop starting on line 4 matches each capitalized word in the line; the loop iterates 
once for each match, and it assigns the match being examined in this particular iteration 
to the scalar variable $word. 

Once any closing punctuation has been removed by line 6, the program must then check 
whether this word has been seen before. Lines 7-15 do this by examining each element of 
the list @wordlist in turn. If an element of @wordlist is identical to the word stored in 
$word, the corresponding element of @wordcount is incremented. 

If no element of @wordlist matches $word, lines 16-20 add a new element to @wordlist 
and @wordcount. 

Definition

As you can see, using array variables creates several problems. First, it's not obvious 
which element of @wordlist in Listing 10.1 corresponds to which capitalized word. In the 
example shown, $wordlist[0] contains Here because this is the first capitalized word in 
the input file, but this is not obvious to the reader. 

Worse still, the program has no way of knowing which element of @wordlist contains 
which word. This means that every time the program reads a new word, it has to check 
the entire list to see if the word has already been found. This becomes time-consuming as 
the list grows larger. 

All of these problems with array variables exist because elements of array variables are 
accessed by numeric subscripts. To get around these problems, Perl defines another kind 
of array, which enables you to access array variables using any scalar value you like. 
These arrays are called associative arrays. 

To distinguish an associative array variable from an ordinary array variable, Perl uses 
the % character as the first character of an associative array-variable name, instead of 
the @ character. As with other variable names, the first character following the % must 
be a letter, and subsequent characters can be letters, digits, or underscores. 

The following are examples of associative array-variable names: 

%assocarray



%a1

%my_really_long_but_legal_array_variable_name

NOTE

Use the same name for an associative array variable and 
an ordinary array variable. For example, you can define 
an array variable named @arrayname and an associative 
array variable named %arrayname. 

The @ and % characters ensure that the Perl interpreter 
can tell one variable name from another. 

Referring to Associative Array Elements

The main difference between associative arrays and ordinary arrays is that associative 
array subscripts can be any scalar value. For example, the following statement refers 
to an element of the associative array %fruit: 

$fruit{"bananas"} = 1;

The subscript for this array element is bananas. Any scalar value can be a subscript. For 
example: 

$fruit{"black_currant"}

$number{3.14159}

$integer{-7}

A scalar variable can be used as a subscript, as follows: 

$fruit{$my_fruit}

Here, the contents of $my_fruit become the subscript into the associative array %fruit. 

When an array element is referenced, as in the previous example, the name of the array 
element is preceded by a $ character, not the % character. As with array variables, this 



tells the Perl interpreter that this is a single scalar item and is to be treated as such.

NOTE

Subscripts for associative array elements are always 
enclosed in brace brackets ({}), not square brackets ([]). 
This ensures that the Perl interpreter is always able to 
distinguish associative array elements from other array 
elements. 

Adding Elements to an Associative Array

The easiest way to create an associative array item is just to assign to it. For example, 
the statement 

$fruit{"bananas"} = 1;

assigns 1 to the element bananas of the associative array %fruit. If this element does not 
exist, it is created. If the array %fruit has not been referred to before, it also is created. 

This feature makes it easy to use associative arrays to count occurrences of items. For 
example, Listing 10.2 shows how you can use associative arrays to count the number of 
capitalized words in an input file. Note how much simpler this program is than the one in 
Listing 10.1, which accomplishes the same task. 

 

Listing 10.2. A program that uses an associative array to count the 
number of capitalized words in a file.

1:  #!/usr/local/bin/perl

2:

3:  while ($inputline = <STDIN>) {

4:          while ($inputline =~ /\b[A-Z]\S+/g) {

5:                  $word = $&;

6:                  $word =~ s/[;.,:-]$//;  # remove punctuation



7:                  $wordlist{$word} += 1;

8:          }

9:  }

10: print ("Capitalized words and number of occurrences:\n");

11: foreach $capword (keys(%wordlist)) {

12:         print ("$capword: $wordlist{$capword}\n");

13: }

 

$ program10_2

Here is a line of Input.

This Input contains some Capitalized words.

^D

Capitalized words and number of occurrences:

This: 1

Input: 2

Here: 1

Capitalized: 1

$

 As you can see, this program is much simpler than the one in Listing 10.1. 
The previous program required 20 lines of code to read input and store the counts 
for each word; this program requires only seven. 

As before, this program reads one line of input at a time from the standard input 
file. The loop starting in line 4 iterates once for each capitalized word found in 
the input line; each match is assigned, in turn, to the scalar variable $word. 

Line 7 uses the associative array %wordlist to keep track of the capitalized words. 



Because associative arrays can use any value as a subscript for an element, this 
line uses the word itself as a subscript. Then, the element of the array 
corresponding to the word has 1 added to its value. 

For example, when the word Here is read in, the associative array element 
$wordlist{"Here"} has 1 added to its value. 

Lines 11-13 print the elements of the associative array. Line 11 contains a call to a 
special built-in function, keys. This function returns a list consisting of the 
subscripts of the associative array; the foreach statement then loops through this 
list, iterating once for each element of the associative array. Each subscript of 
the associative array is assigned, in turn, to the local variable $capword; in this 
example, this means that $capword is assigned Here, Input, Capitalized, and This-one 
per each iteration of the for each loop.

An important fact to remember is that associative arrays 
always are stored in "random" order. (Actually, it's the 
order that ensures fastest access, but, effectively, it is 
random.) This means that if you use keys to access all of 
the elements of an associative array, there is no 
guarantee that the elements will appear in any given 
order. In particular, the elements do not always appear 
in the order in which they are created. 

To control the order in which the associative array elements appear, use sort to 
sort the elements returned by keys. 

foreach $capword (sort keys(%wordlist)) {

        print ("$capword: $wordlist{$capword}\n");

}

When line 10 of Listing 10.2 is modified to include a call to sort, the associative 
array elements appear in sorted order. 

Creating Associative Arrays

You can create an associative array with a single assignment. To do this, alternate 
the array subscripts and their values. For example: 



%fruit = ("apples", 17, "bananas", 9, "oranges", "none");

This assignment creates an associative array of three elements: 

●     An element with subscript apples, whose value is 17 
●     An element with subscript bananas, whose value is 9 
●     An element with subscript oranges, whose value is none 

Again, it is important to remember that the elements of 
associative arrays are not guaranteed to be in any 
particular order, even if you create the entire array at 
once.

NOTE

Perl version 5 enables you to use either => or , to 
separate array subscripts and values when you assign a 
list to an associative array. For example: 

%fruit = ("apples" => 17, "bananas" => 9, "oranges" 

=> "none"); 

This statement is identical to the previous one, but is 
easier to understand; the use of => makes it easier to see 
which subscript is associated with which value. 

As with any associative array, you always can add more elements to the array 
later on. For example: 

$fruit{"cherries"} = 5;

This adds a fourth element, cherries, to the associative array %fruit, and gives it 
the value 5. 

Copying Associative Arrays from Array Variables



The list of subscripts and values assigned to %fruit in the previous example is an 
ordinary list like any other. This means that you can create an associative array 
from the contents of an array variable. For example: 

@fruit = ("apples", 6, "cherries", 8, "oranges", 11);

%fruit = @fruit;

The second statement creates an associative array of three elements-apples, 
cherries, and oranges-and assigns it to %fruit. 

If you are assigning a list or the contents of an array 
variable to an associative array, make sure that the list 
contains an even number of elements, because each pair 
of elements corresponds to the subscript and the value 
of an associative array element.

Similarly, you can copy one associative array into another. For example: 

%fruit1 = ("apples", 6, "cherries", 8, "oranges", 11);

%fruit2 = %fruit1;

You can assign an associative array to an ordinary array variable in the same way. 
For example: 

%fruit = ("grapes", 11, "lemons", 27);

@fruit = %fruit;

However, this might not be as useful, because the order of the array elements is 
not defined. Here, the array variable @fruit is assigned either the four-element 
list 

("grapes", 11, "lemons", 27)



or the list 

("lemons", 27, "grapes", 11)

depending on how the associative array is sorted. 

You can also assign to several scalar variables and an associative array at the 
same time. 

($var1, $var2, %myarray) = @list;

Here, the first element of @list is assigned to $var1, the second to $var2, and the 
rest to %myarray. 

Finally, an associative array can be created from the return value of a built-in 
function or user-defined subroutine that returns a list. Listing 10.3 is an example 
of a simple program that does just that. It takes the return value from split, 
which is a list, and assigns it to an associative array variable. 

 

Listing 10.3. A program that uses the return value from a built-in 
function to create an associative array.

1:  #!/usr/local/bin/perl

2:

3:  $inputline = <STDIN>;

4:  $inputline =~ s/^\s+|\s+\n$//g;

5:  %fruit = split(/\s+/, $inputline);

6:  print ("Number of bananas: $fruit{\"bananas\"}\n");

 



$ program10_3

oranges 5 apples 7 bananas 11 cherries 6

Number of bananas: 11

$

 This program reads a line of input from the standard input file and 
eliminates the leading and trailing white space. Line 5 then calls split, which 
breaks the line into words. In this example, split returns the following list: 

("oranges", 5, "apples", 7, "bananas", 11, "cherries", 6)

This list is then assigned to the associative array %fruit. This assignment creates 
an associative array with four elements: 

Element Value 
oranges 5 
apples 7 
bananas 11 
cherries 6 

Line 6 then prints the value of the element bananas, which is 11. 

Adding and Deleting Array Elements

As you've seen, you can add an element to an associative array by assigning to an 
element not previously seen, as follows: 

$fruit{"lime"} = 1;

This statement creates a new element of %fruit with index lime and gives it the 
value 1. 

To delete an element, use the built-in function delete. For example, the following 
statement deletes the element orange from the array %fruit: 



delete($fruit{"orange"});

DO use the delete function to delete an element of an 
associative array; it's the only way to delete elements. 

DON'T use the built-in functions push, pop, shift, or 
splice with associative arrays because the position of 
any particular element in the array is not guaranteed. 

Listing Array Indexes and Values

As you saw in Listing 10.2, the keys function retrieves a list of the subscripts used 
in an associative array. The following is an example: 

%fruit = ("apples", 9,

           "bananas", 23,

           "cherries", 11);

@fruitsubs = keys(%fruits);

Here, @fruitsubs is assigned the list consisting of the elements apples, bananas, and 
cherries. Note once again that this list is in no particular order. To retrieve the 
list in alphabetical order, use sort on the list. 

@fruitindexes = sort keys(%fruits));

This produces the list ("apples", "bananas", "cherries"). 

To retrieve a list of the values stored in an associative array, use the built-in 
function values. The following is an example: 

%fruit = ("apples", 9,

           "bananas", 23,

           "cherries", 11);



@fruitvalues = values(%fruits);

Here, @fruitvalues contains the list (9, 23, 11), not necessarily in this order. 

Looping Using an Associative Array

As you've seen, you can use the built-in function keys with the foreach statement to 
loop through an associative array. The following is an example: 

%records = ("Maris", 61, "Aaron", 755, "Young", 511);

foreach $holder (keys(%records)) {

        # stuff goes here

}

The variable $holder is assigned Aaron, Maris, and Young on successive iterations of 
the loop (although not necessarily in that order). 

This method of looping is useful, but it is inefficient. To retrieve the value 
associated with a subscript, the program must look it up in the array again, as 
follows: 

foreach $holder (keys(%records)) {

        $record = %records{$holder};

}

Perl provides a more efficient way to work with associative array subscripts and 
their values, using the built-in function each, as follows: 

%records = ("Maris", 61, "Aaron", 755, "Young", 511);

while (($holder, $record) = each(%records)) {

        # stuff goes here

}

Every time the each function is called, it returns a two-element list. The first 
element of the list is the subscript for a particular element of the associative 



array. The second element is the value associated with that particular subscript. 

For example, the first time each is called in the preceding code fragment, the pair 
of scalar variables ($holder, $record) is assigned one of the lists ("Maris", 61), 
("Aaron", 755), or ("Young", 511). (Because associative arrays are not stored in any 
particular order, any of these lists could be assigned first.) If ("Maris", 61) is 
returned by the first call to each, Maris is assigned to $holder and 61 is assigned to 
$record. 

When each is called again, it assigns a different list to the pair of scalar variables 
specified. Subsequent calls to each assign further lists, and so on until the 
associative array is exhausted. When there are no more elements left in the 
associative array, each returns the empty list.

NOTE

Don't add a new element to an associative array or 
delete an element from it if you are using the each 
statement on it. For example, suppose you are looping 
through the associative array %records using the 
following loop: 

while (($holder, $record) = each(%records)) {
# code goes here

} 

Adding a new record to %records, such as 

$records{"Rose"} = 4256; 

or deleting a record, as in

delete $records{"Cobb"}; 

makes the behavior of each unpredictable. This should be 
avoided.

Creating Data Structures Using Associative Arrays

You can use associative arrays to simulate a wide variety of data structures found 
in high-level programming languages. This section describes how you can 
implement the following data structures in Perl using associative arrays: 



●     Linked lists 
●     Structures 
●     Trees 
●     Databases 

NOTE

The remainder of today's lesson describes applications of 
associative arrays but does not introduce any new 
features of Perl. If you are not interested in 
applications of associative arrays, you can skip to the 
next chapter without suffering any loss of general 
instruction.

Linked Lists

A linked list is a simple data structure that enables you to store items in a 
particular order. Each element of the linked list contains two fields: 

●     The value associated with this element 
●     A reference, or pointer, to the next element in the list 

Also, a special header variable points to the first element in the list. 

Pictorially, a linked list can be represented as in Figure 10.1. As you can see, each 
element of the list points to the next. 

Figure 10.1: A linked list. 

In Perl, a linked list can easily be implemented using an associative array because 
the value of one associative array element can be the subscript for the next. For 
example, the following associative array is actually a linked list of words in 
alphabetical order: 

%words = ("abel", "baker",

          "baker", "charlie",

          "charlie", "delta",

          "delta", "");

$header = "abel";



In this example, the scalar variable $header contains the first word in the list. 
This word, abel, is also the subscript of the first element of the associative array. 
The value of the first element of this array, baker, is the subscript for the second 
element, and so on, as illustrated in Figure 10.2. 

Figure 10.2: A linked list of words in alphabetical order. 

The value of the last element of the subscript, delta, is the null string. This 
indicates the end of the list. 

Linked lists are most useful in applications where the amount of data to be 
processed is not known, or grows as the program is executed. Listing 10.4 is an 
example of one such application. It uses a linked list to print the words of a file in 
alphabetical order. 

 

Listing 10.4. A program that uses an associative array to build a linked 
list.

1:  #!/usr/local/bin/perl

2:

3:  # initialize list to empty

4:  $header = "";

5:  while ($line = <STDIN>) {

6:          # remove leading and trailing spaces

7:          $line =~ s/^\s+|\s+$//g;

8:          @words = split(/\s+/, $line);

9:          foreach $word (@words) {

10:                 # remove closing punctuation, if any

11:                 $word =~ s/[.,;:-]$//;

12:                 # convert all words to lower case

13:                 $word =~ tr/A-Z/a-z/;

14:                 &add_word_to_list($word);



15:         }

16: }

17: &print_list;

18:

19: sub add_word_to_list {

20:         local($word) = @_;

21:         local($pointer);

22:

23:         # if list is empty, add first item

24:         if ($header eq "") {

25:                 $header = $word;

26:                 $wordlist{$word} = "";

27:                 return;

28:         }

29:         # if word identical to first element in list,

30:         # do nothing

31:         return if ($header eq $word);

32:         # see whether word should be the new

33:         # first word in the list

34:         if ($header gt $word) {

35:                 $wordlist{$word} = $header;

36:                 $header = $word;

37:                 return;

38:         }

39:         # find place where word belongs

40:         $pointer = $header;

41:         while ($wordlist{$pointer} ne "" &&

42:                 $wordlist{$pointer} lt $word) {

43:                 $pointer = $wordlist{$pointer};

44:         }



45:         # if word already seen, do nothing

46:         return if ($word eq $wordlist{$pointer});

47:         $wordlist{$word} = $wordlist{$pointer};

48:         $wordlist{$pointer} = $word;

49: }

50:

51: sub print_list {

52:         local ($pointer);

53:         print ("Words in this file:\n");

54:         $pointer = $header;

55:         while ($pointer ne "") {

56:                 print ("$pointer\n");

57:                 $pointer = $wordlist{$pointer};

58:         }

59: }

 

$ program10_4

Here are some words.

Here are more words.

Here are still more words.

^D

Words in this file:

are

here

more

some



still

words

$

 The logic of this program is a little complicated, but don't despair. Once 
you understand how this works, you have all the information you need to build any 
data structure you like, no matter how complicated. 

This program is divided into three parts, as follows: 

●     The main program, which reads input and transforms it into the desired 
format 

●     The subroutine add_word_to_list, which builds the linked list of sorted 
words 

●     The subroutine print_list, which prints the list of words 

Lines 3-17 contain the main program. Line 4 initializes the list of words by setting 
the header variable $header to the null string. The loop beginning in line 5 reads 
one line of input at a time. Line 7 removes leading and trailing spaces from the 
line, and line 8 splits the line into words. 

The inner foreach loop in lines 9-15 processes one word of the input line at a time. If 
the final character of a word is a punctuation character, line 11 removes it; this 
ensures that, for example, word. (word with a period) is considered identical to word 
(without a period). Line 13 converts the word to all lowercase characters, and 
line 14 passes the word to the subroutine add_word_to_list. 

This subroutine first executes line 24, which checks whether the linked list of 
words is empty. If it is, line 25 assigns this word to $header, and line 26 creates the 
first element of the list, which is stored in the associative array %wordlist. In this 
example, the first word read in is here (Here converted to lowercase), and the list 
looks like Figure 10.3. 

Figure 10.3: The linked list with one element in it. 

At this point, the header variable $header contains the value here, which is also 
the subscript for the element of %wordlist that has just been created. This means 
that the program can reference %wordlist by using $header as a subscript, as 
follows: 



$wordlist{$header}

Variables such as $header that contain a reference to another data item are 
called pointers. Here, $header points to the first element of %wordlist. 

If the list is not empty, line 31 checks whether the first item of the list is 
identical to the word currently being checked. To do this, it compares the 
current word to the contents of $header, which is the first item in the list. If the 
two are identical, there is no need to add the new word to the list, because it is 
already there; therefore, the subroutine returns without doing anything. 

The next step is to check whether the new word should be the first word in the 
list, which is the case if the new word is alphabetically ahead of the existing first 
word. Line 34 checks this. 

If the new word is to go first, the list is adjusted as follows: 

1.  A new list element is created. The subscript of this element is the new word, 
and its value is the existing first word. 

2.  The new word is assigned to the header variable. 

To see how this adjustment works, consider the sample input provided. In this 
example, the second word to be processed is are. Because are belongs before here, 
the array element $wordlist{"are"} is created, and is given the value here. The 
header variable $header is assigned the value are. This means the list now looks 
like Figure 10.4. 

Figure 10.4: The linked list with two elements in it. 

The header variable $header now points to the list element with the subscript are, 
which is $wordlist{"are"}. The value of $wordlist{"are"} is here, which means that 
the program can access $wordlist{"here"} from $wordlist{"are"}. For example: 

$reference = $wordlist{"are"};

print ("$wordlist{$reference}\n");

The value here is assigned to $reference, and print prints $wordlist{$reference}, 
which is $wordlist{"here"}. 

Because you can access $wordlist{"here"} from $wordlist{"are"}, $wordlist{"are"} is 
a pointer to $wordlist{"here"}. 



If the word does not belong at the front of the list, lines 40-44 search for the 
place in the list where the word does belong, using a local variable, $pointer. 
Lines 41-44 loop until the value stored in $wordlist{$pointer} is greater than or 
equal to $word. For example, Figure 10.5 illustrates where line 42 is true when the 
subroutine processes more. 

Figure 10.5: The linked list when more is processed. 

Note that because the list is in alphabetical order, the value stored in $pointer is 
always less than the value stored in $word. 

If the word being added is greater than any word in the list, the conditional 
expression in line 41 eventually becomes true. This occurs, for example, when the 
subroutine processes some, as in Figure 10.6. 

Figure 10.6: The linked list when some is processed. 

Once the location of the new word has been determined, line 46 checks whether 
the word already is in the list. If it is, there is no need to do anything. 

If the word does not exist, lines 47 and 48 add the word to the list. First, line 47 
creates a new element of %wordlist, which is $wordlist{$word}; its value is the 
value of $wordlist{$pointer}. This means that $wordlist{$word} and 
$wordlist{$pointer} now point to the same word, as in Figure 10.7. 

Figure 10.7: The linked list as a new word is being added. 

Next, line 48 sets the value of $wordlist{$pointer} to the value stored in $word. 
This means that $wordlist{$pointer} now points to the new element, 
$wordlist{$word}, that was just created, as in Figure 10.8. 

Figure 10.8: The linked list after the new word is added. 

Once the input file has been completely processed, the subroutine print_list 
prints the list, one element at a time. The local variable $pointer contains the 
current value being printed, and $wordlist{$pointer} contains the next value to be 
printed.

NOTE



Normally, you won't want to use a linked list in a 
program. It's easier just to use sort and keys to loop 
through an associative array in alphabetical order, as 
follows: 

foreach $word (sort keys(%wordlist)) {
# print the sorted list, or whatever

} 

However, the basic idea of a pointer, which is introduced 
here, is useful in other data structures, such as trees, 
which are described later on.

Structures

Many programming languages enable you to define collections of data called 
structures. Like lists, structures are collections of values; each element of a 
structure, however, has its own name and can be accessed by that name. 

Perl does not provide a way of defining structures directly. However, you can 
simulate a structure using an associative array. For example, suppose you want to 
simulate the following variable definition written in the C programming 
language: 

struct {

        int field1;

        int field2;

        int field3;

} mystructvar;

This C statement defines a variable named mystructvar, which contains three 
elements, named field1, field2, and field3. 

To simulate this using an associative array, all you need to do is define an 
associative array with three elements, and set the subscripts for these elements 
to field1, field2, and field3. The following is an example: 

%mystructvar = ("field1", "",



             "field2", "",

             "field3", "");

Like the preceding C definition, this associative array, named %mystructvar, has 
three elements. The subscripts for these elements are field1, field2, and field3. 
The definition sets the initial values for these elements to the null string. 

As with any associative array, you can reference or assign the value of an element 
by specifying its subscript, as follows: 

$mystructvar{"field1"} = 17;

To define other variables that use the same "structure," all you need to do is 
create other arrays that use the same subscript names. 

Trees

Another data structure that is often used in programs is a tree. A tree is similar to 
a linked list, except that each element of a tree points to more than one other 
element. 

The simplest example of a tree is a binary tree. Each element of a binary tree, called 
a node, points to two other elements, called the left child and the right child. Each of 
these children points to two children of its own, and so on, as illustrated in 
Figure 10.9. 

Figure 10.9: A binary tree. 

Note that the tree, like a linked list, is a one-way structure. Nodes point to 
children, but children don't point to their parents. 

The following terminology is used when describing trees: 

●     Because each of the children of a node is a tree of its own, the left child and 
the right child are often called the left subtree and the right subtree of the 
node. (The terms left branch and right branch are also used.) 

●     The "first" node of the tree (the node that is not a child of another node), is 
called the root of the tree. 

●     Nodes that have no children are called leaf nodes. 

There are several ways of implementing a tree structure using associative arrays. 
To illustrate one way of doing so, suppose that you wish to create a tree whose 



root has the value alpha and whose children have the values beta and gamma, as in 
Figure 10.10. 

Figure 10.10: A binary tree with three nodes. 

Here, the left child of alpha is beta, and the right child of alpha is gamma. 

The problem to be solved is this: How can a program associate both beta and gamma 
with alpha? If the associative array that is to represent the tree is named %tree, do 
you assign the value of $tree{"alpha"} to be beta, or gamma, or both? How do you 
show that an element points to two other elements? 

There are several solutions to this problem, but one of the most elegant is as 
follows: Append the character strings left and right, respectively, to the name of 
a node in order to retrieve its children. For example, define alphaleft to point to 
beta and alpharight to point to gamma. In this scheme, if beta has children, betaleft 
and betaright point to their locations; similarly, gammaleft and gammaright point to 
the locations of the children of gamma, and so on. 

Listing 10.5 is an example of a program that creates a binary tree using this method 
and then traverses it (accesses every node in the tree). 

 

Listing 10.5. A program that uses an associative array to represent a 
binary tree.

1:  #!/usr/local/bin/perl

2:

3:  $rootname = "parent";

4:  %tree = ("parentleft", "child1",

5:           "parentright", "child2",

6:           "child1left", "grandchild1",

7:           "child1right", "grandchild2",

8:           "child2left", "grandchild3",

9:           "child2right", "grandchild4");



10: # traverse tree, printing its elements

11: &print_tree($rootname);

12:

13: sub print_tree {

14:         local ($nodename) = @_;

15:         local ($leftchildname, $rightchildname);

16:

17:         $leftchildname = $nodename . "left";

18:         $rightchildname = $nodename . "right";

19:         if ($tree{$leftchildname} ne "") {

20:                 &print_tree($tree{$leftchildname});

21:         }

22:         print ("$nodename\n");

23:         if ($tree{$rightchildname} ne "") {

24:                 &print_tree($tree{$rightchildname});

25:         }

26: }

 

$ program10_5

grandchild1

child1

grandchild2

parent

grandchild3

child2

grandchild4



$

 This program creates the tree depicted in Figure 10.11. 

Figure 10.11: The tree created by Listing 10.5. 

The associative array %tree stores the tree, and the scalar variable $rootname 
holds the name of the root of the tree. (Note that the grandchild nodes, such as 
grandchild1, are leaf nodes. There is no need to explicitly create grandchild1left, 
grandchild1right, and so on because the value of any undefined associative array 
element is, by default, the null string.) 

After the tree has been created, the program calls the subroutine print_tree to 
traverse it and print its values. print_tree does this as follows: 

1.  Line 17 appends left to the name of the node being examined to produce the 
name of the left child, which is stored in $leftchildname. For example, if the 
root node, parent, is being examined, the value stored in $leftchildname is 
parentleft. 

2.  Similarly, line 18 appends right to the node name and stores the result in 
$rightchildname. 

3.  Line 19 checks whether the current node has a left child, which is true if 
$tree{$leftchildname} is defined. (For example, parent has a left child, 
because $tree{"parentleft"} is defined.) If the current node has a left child, 
line 20 recursively calls print_tree to print the left subtree (the left child 
and its children). 

4.  Line 22 prints the name of the current node. 
5.  Line 23 checks whether the current node has a right child. If it does, line 24 

recursively calls print_tree to print the right subtree. 

Note that print_tree prints the names of the nodes of the tree in the following 
order: left subtree, node, right subtree. This order of traversal is called infix 
mode or infix traversal. If you move line 22 to precede line 19, the node is printed 
first, followed by the left subtree and the right subtree; this order of traversal 
is called prefix mode. If you move line 22 to follow line 25, the node is printed after 
the subtrees are printed; this is called postfix mode. 

Databases

As you have seen, you can build a tree using an associative array. To do this, you 
build the associative array subscripts by joining character strings together (such 
as joining the node name and "left"). You can use this technique of joining strings 



together to use associative arrays to build other data structures. 

For example, suppose you want to create a database that contains the lifetime 
records of baseball players. Each record is to consist of the following: 

●     For non-pitchers, a record consists of games played (GP), home runs (HR), 
runs batted in (RBI) and batting average (AVG). For example, the record on 
Lou Gehrig would read as follows:
Gehrig: 2164 GP, 493 HR, 1991 RBI, .340 BA 

●     For pitchers, a record consists of games pitched (GP), wins (W), and earned 
run average (ERA). For example, the record on Lefty Grove would read as 
follows:
Grove: 616 GP, 300 W, 3.05 ERA 

To create a database containing player and pitcher records, you need the 
following fields: 

●     A name field, for the player's name 
●     A key indicating whether the player was a pitcher 
●     The fields defined above 

You can use an associative array to simulate this in Perl. To do this, build the 
subscripts for the associative array by concatenating the name of the player with 
the name of the field being stored by this element of the array. For example, if 
the associative array is named %playerbase, $playerbase{"GehrigRBI"}, it contains 
the career RBI total for Lou Gehrig. 

Listing 10.6 shows how to build a player database and how to sequentially print 
fields from each of the player records. 

 

Listing 10.6. A program that builds and prints a database. 

1:  #!/usr/local/bin/perl

2:

3:  @pitcherfields = ("NAME", "KEY", "GP", "W", "ERA");

4:  @playerfields = ("NAME", "KEY", "GP", "HR", "RBI", "BA");

5:



6:  # Build the player database by reading from standard input.

7:  # %playerbase contains the database, @playerlist the list of

8:  # players (for later sequential access).

9:  $playercount = 0;

10: while ($input = <STDIN>) {

11:         $input =~ s/^\s+|\s+$//g;

12:         @words = split (/\s+/, $input);

13:         $playerlist[$playercount++] = $words[0];

14:         if ($words[1] eq "player") {

15:                 @fields = @playerfields;

16:         } else {

17:                 @fields = @pitcherfields;

18:         }

19:         for ($count = 1; $count <= @words; $count++) {

20:                 $playerbase{$words[0].$fields[$count-1]} =

21:                         $words[$count-1];

22:         }

23: }

24:

25: # now, print out pitcher win totals and player home run totals

26: foreach $player (@playerlist) {

27:         print ("$player: ");

28:         if ($playerbase{$player."KEY"} eq "player") {

29:                 $value = $playerbase{$player."HR"};

30:                 print ("$value home runs\n");

31:         } else {

32:                 $value = $playerbase{$player."W"};

33:                 print ("$value wins\n");

34:         }

35: }



 

$ program10_6

Gehrig        player      2164    493    1991   .340

Ruth          player      2503    714    2217   .342

Grove         pitcher     616     300    3.05

Williams      player      2292    521    1839   .344

Koufax        pitcher     397     165    2.76

^D

Gehrig: 493 home runs

Ruth: 714 home runs

Grove: 300 wins

Williams: 521 home runs

Koufax: 165 wins

$

 This program has been designed so that it is easy to add new fields to the 
database. With this in mind, lines 3 and 4 define the fields that are to be used when 
building the player and pitcher records. 

Lines 9-23 build the database. First, line 9 initializes $playercount to 0; this global 
variable keeps track of the number of players in the database. 

Lines 10-12 read a line from the standard input file, check whether the file is 
empty, remove leading and trailing white space from the line, and split the line 
into words. 

Line 13 adds the player name (the first word in the input line) to the list of player 
names stored in @playerlist. The counter $playercount then has 1 added to it; this 
reflects the new total number of players stored in the database. 

Lines 14-18 determine whether the new player is a pitcher or not. If the player is a 



pitcher, the names of the fields to be stored in this player record are to be taken 
from @pitcherfields; otherwise, the names are to be taken from @playerfields. To 
simplify processing later on, another array variable, @fields, is used to store the 
list of fields actually being used for this player. 

Lines 19-22 copy the fields into the associative array, one at a time. Each array 
subscript is made up of two parts: the name of the player and the name of the field 
being stored. For example, Sandy Koufax's pitching wins are stored in the array 
element KoufaxW. Note that neither the player name nor the field names appear in 
this loop; this means that you can add new fields to the list of fields without 
having to change this code. 

Lines 26-35 now search the database for all the win and home run totals just read 
in. Each iteration of the foreach loop assigns a different player name to the local 
variable $player. Line 28 examines the contents of the array element named 
$player."KEY" to determine whether the player is a pitcher. 

If the player is not a pitcher, lines 29-30 print out the player's home-run total by 
accessing the array element $player."HR". If the player is a pitcher, the pitcher's 
win total is printed out by lines 32-33; these lines access the array element 
$player."W". 

Note that the database can be accessed randomly as well as sequentially. To 
retrieve, for example, Babe Ruth's lifetime batting average, you would access the 
array element $playerbase{"RuthAVG"}. If the record for a particular player is not 
stored in the database, attempting to access it will return the null string. For 
example, the following assigns the null string to $cobbavg because Ty Cobb is not 
in the player database: 

$cobbavg = $playerbase{"CobbAVG"};

As you can see, associative arrays enable you to define databases with variable 
record lengths, accessible either sequentially or randomly. This gives you all the 
flexibility you need to use Perl as a database language. 

Example: A Calculator Program

Listing 10.7 provides an example of what you can do with associative arrays and 
recursive subroutines. This program reads in an arithmetic expression, possibly 
spread over several lines, and builds a tree from it. The program then evaluates 
the tree and prints the result. The operators supported are +, -, *, /, and 
parentheses (to force precedence). 



This program is longer and more complicated than the programs you have seen so 
far, but stick with it. Once you understand this program, you will know enough to 
be able to write an entire compiler in Perl! 

 

Listing 10.7. A calculator program that uses trees.

1:  #!/usr/local/bin/perl

2:  # statements which initialize the program

3:  $nextnodenum = 1;  # initialize node name generator

4:  &get_next_item;    # read first value from file

5:  $treeroot = &build_expr;

6:  $result = &get_result ($treeroot);

7:  print ("the result is $result\n");

8:  # Build an expression.

9:  sub build_expr {

10:         local ($currnode, $leftchild, $rightchild);

11:         local ($operator);

12:         $leftchild = &build_add_operand;

13:         if (&is_next_item("+") || &is_next_item("-")) {

14:                 $operator = &get_next_item;

15:                 $rightchild = &build_expr;

16:                 $currnode = &get_new_node ($operator,

17:                         $leftchild, $rightchild);

18:         } else {

19:                 $currnode = $leftchild;

20:         }

21: }

22: # Build an operand for a + or - operator.



23: sub build_add_operand {

24:         local ($currnode, $leftchild, $rightchild);

25:         local ($operator);

26:         $leftchild = &build_mult_operand;

27:         if (&is_next_item("*") || &is_next_item("/")) {

28:                 $operator = &get_next_item;

29:                 $rightchild = &build_add_operand;

30:                 $currnode = &get_new_node ($operator,

31:                         $leftchild, $rightchild);

32:        } else {

33:                 $currnode = $leftchild;

34:        }

35: }

36: # Build an operand for the * or / operator.

37: sub build_mult_operand {

38:         local ($currnode);

39:         if (&is_next_item("(")) {

40:                 # handle parentheses

41:                &get_next_item;  # get rid of "("

42:                 $currnode = &build_expr;

43:                 if (! &is_next_item(")")) {

44:                         die ("Invalid expression");

45:                 }

46:                 &get_next_item;  # get rid of ")"

47:         } else {

48:                 $currnode = &get_new_node(&get_next_item,

49:                             "", "");

50:        }

51:        $currnode;  # ensure correct return value

52: }



53: # Check whether the last item read matches

54: # a particular operator.

55: sub is_next_item {

56:         local ($expected) = @_;

57:         $curritem eq $expected;

58: }

59: # Return the last item read; read another item.

60: sub get_next_item {

61:         local ($retitem);

62:         $retitem = $curritem;

63:         $curritem = &read_item;

64:         $retitem;

65: }

66: # This routine actually handles reading from the standard

67: # input file.

68: sub read_item {

69:         local ($line);

70:         if ($curritem eq "EOF") {

71:                 # we are already at end of file; do nothing

72:                 return;

73:         }

74:         while ($wordsread == @words) {

75:                 $line = <STDIN>;

76:                 if ($line eq "") {

77:                         $curritem = "EOF";

78:                         return;

79:                 }

80:                 $line =~ s/\(/ ( /g;

81:                 $line =~ s/\)/ ) /g;



82:                 $line =~ s/^\s+|\s+$//g;

83:                 @words = split(/\s+/, $line);

84:                 $wordsread = 0;

85:         }

86:         $curritem = $words[$wordsread++];

87: }

88: # Create a tree node.

89: sub get_new_node {

90:         local ($value, $leftchild, $rightchild) = @_;

91:         local ($nodenum);

92:         $nodenum = $nextnodenum++;

93:         $tree{$nodenum} = $value;

94:         $tree{$nodenum . "left"} = $leftchild;

95:         $tree{$nodenum . "right"} = $rightchild;

96:         $nodenum;   # return value

97: }

98: # Calculate the result.

99: sub get_result {

100:         local ($node) = @_;

101:         local ($nodevalue, $result);

102:        $nodevalue = $tree{$node};

103:        if ($nodevalue eq "") {

104:                die ("Bad tree");

105:        } elsif ($nodevalue eq "+") {

106:                $result = &get_result($tree{$node . "left"}) +

107:                          &get_result($tree{$node . "right"});

108:        } elsif ($nodevalue eq "-") {

109:                $result = &get_result($tree{$node . "left"}) -

110:                          &get_result($tree{$node . "right"});

111:        } elsif ($nodevalue eq "*") {



112:                $result = &get_result($tree{$node . "left"}) *

113:                          &get_result($tree{$node . "right"});

114:        } elsif ($nodevalue eq "/") {

115:                $result = &get_result($tree{$node . "left"}) /

116:                          &get_result($tree{$node . "right"});

117:        } elsif ($nodevalue =~ /^[0-9]+$/) {

118:                $result = $nodevalue;

119:        } else {

120:                die ("Bad tree");

121:        }

122:}

 

$ program10_7

11 + 5 *

(4 - 3)

^D

the result is 16

$

 This program is divided into two main parts: a part that reads the input 
and produces a tree, and a part that calculates the result by traversing the tree. 

The subroutines build_expr, build_add_operand, and build_mult_operand build the 
tree. To see how they do this, first look at Figure 10.12 to see what the tree for 
the example, 11 + 5 * (4 - 3), should look like. 

Figure 10.12: The tree for the example in Listing 10.7. 



When this tree is evaluated, the nodes are searched in postfix order. First, the 
left subtree of the root is evaluated, then the right subtree, and finally the 
operation at the root. 

The rules followed by the three subroutines are spelled out in the following 
description: 

1.  An expression consists of one of the following: 
1.  An add_operand 
2.  An add_operand, a + or - operator, and an expression 

2.  An add_operand consists of one of the following: 
1.  A mult_operand 
2.  A mult_operand, a * or / operator, and an add_operand 

3.  A mult_operand consists of one of the following: 
1.  A number (a group of digits) 
2.  An expression enclosed in parentheses 

The subroutine build_expr handles all occurrences of condition 1; it is called 
(possibly recursively) whenever an expression is processed. Condition 1a covers the 
case in which the expression contains no + or - operators (unless they are enclosed 
in parentheses). Condition 1b handles expressions that contain one or more + or - 
operators. 

The subroutine build_add_operand handles condition 2; it is called whenever an 
add_operand is processed. Condition 2a covers the case in which the add operand 
contains no * or / operators (except possibly in parentheses). Condition 2b handles 
add operands that contain one or more * or / operators. 

The subroutine build_mult_operand handles condition 3 and is called whenever a 
mult_operand is processed. Condition 3a handles multiplication operands that 
consist of a number. Condition 3b handles multiplication operators that consist of 
an expression in parentheses; to obtain the subtree for this expression, 
build_mult_operand calls build_expr recursively and then treats the returned 
subtree as a child of the node currently being built. 

Note that the tree built by build_expr, build_mult_operand, and build_add_operand is 
slightly different from the tree you saw in Listing 10.5. In that tree, the value of 
the node could also be used as the subscript into the associative array. In this 
tree, the value of the node might not be unique. To get around this problem, a 
separate counter creates numbers for each node, which are used when building the 
subscripts. For each node numbered n (where n is an integer), the following are 
true: 



●     $tree{n} contains the value of the node, which is the number or operator 
associated with the node. 

●     $tree{n."left"} contains the number of the left child of the node. 
●     $tree{n."right"} contains the number of the right child of the node. 

The subroutines is_next_item, get_next_item, and read_item read the input from the 
standard input file and break it into numbers and operators. The subroutine 
get_next_item "pre-reads" the next item and stores it in the global variable 
$curritem; this lets is_next_item check whether the next item to be read matches a 
particular operator. To read an item, get_next_item calls read_item, which reads 
lines of input, breaks them into words, and returns the next word to be read. 

The subroutine get_new_node creates a tree node. To do this, it uses the contents of 
the global variable $nextnodenum to build the associative array subscripts 
associated with the node. $nextnodenum always contains a positive integer n, which 
means that the value associated with this node (which is a number or operator) is 
stored in $tree{n}. The location of the left and right children, if any, are stored 
in $tree{n."left"} and $tree {n."right"}. 

The subroutine get_result traverses the tree built by build_expr in postfix order 
(subtrees first), performing the arithmetic operations as it does so. get_result 
returns the final result, which is then printed. 

Note that the main part of this program is only eight lines long! This often 
happens in more complex programs. The main part of the program just calls 
subroutines, and the subroutines do the actual work.

NOTE

This program is just the tip of the iceberg: you can use 
associative arrays to simulate any data structure in any 
programming language.

Summary

In today's lesson, you learned about associative arrays, which are arrays whose 
subscripts can be any scalar value. 

You can copy a list to an associative array, provided there is an even number of 
elements in the list. Each pair of elements in the list is treated as an associated 
array subscript and its value. You also can copy an associative array to an 
ordinary array variable. 



To add an element to an associative array, just assign a value to an element whose 
subscript has not been previously seen. To delete an element, call the built-in 
function delete. 

The following three built-in functions enable you to use associative arrays with 
foreach loops: 

●     The built-in function keys retrieves each associative array subscript in turn. 
●     The built-in function values retrieves each associative array value in turn. 
●     The built-in function each retrieves each subscript-value pair in turn (as a 

two-element list). 

Associative arrays are not guaranteed to be stored in any particular order. To 
guarantee a particular order, use sort with keys, values, or each. 

Associative arrays can be used to simulate a wide variety of data structures, 
including linked lists, structures, trees, and databases. 

Q&A

Q: Are pointers implemented in Perl? 

A: Yes, if you are using Perl 5; they are discussed on Day 18, "References in Perl 5." 
Perl 4 does not support pointers. 

Q: How can I implement more complicated data structures using associative 
arrays? 

A: All you need to do is design the structure you want to implement, name each of 
the fields in the structure, and use the name-concatenation trick to build your 
associative array subscript names. 

Q: What do I do if I want to build a tree that has multiple values at each 
node? 

A: There are many ways to do this. One way is to append value1, value2, and so on, to 
the name of each node; for example, if the node is named n7, n7value1 could be 
the associative array subscript for the first value associated with the node, 
n7value2 could be the subscript for the second, and so on. 

Q: What do I do if I want to build a tree that has more than two children per 
node? 

A: Again, there are many ways to do this. A possible solution is to use child1, 
child2, child3, and so on, instead of left and right. 

Q: How do I destroy a tree that I have created? 



A: To destroy a tree, write a subroutine that traverses the tree in postfix order 
(subtrees first). Destroy each subtree (by recursively calling your subroutine), 
and then destroy the node you are looking at by calling delete. 
Note that you shouldn't use keys or each to access each element of the loop 
before deleting it. Deleting an element affects how the associative array is 
stored, which means that keys and each might not behave the way you want them 
to.
If you want to destroy the entire associative array in which the tree is stored, 
you can use the undef function, which is described on Day 14, "Scalar-Conversion 
and List-Manipulation Functions." 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of 
the material covered and exercises to give you experience in using what you've 
learned. Try and understand the quiz and exercise answers before you go on to 
tomorrow's lesson. 

Quiz

1.  Define the following terms: 
1.  associative array 
2.  pointer 
3.  linked list 
4.  binary tree 
5.  node 
6.  child 

2.  What are the elements of the associative array created by the following 
assignment?
%list = ("17.2", "hello", "there", "46", "e+6", "88"); 

3.  What happens when you assign an associative array to an ordinary array 
variable? 

4.  How can you create a linked list using an associative array? 
5.  How many times does the following loop iterate?

%list = ("first", "1", "second", "2", "third", "3");
foreach $word (keys(%list)) {
last if ($word == "second");

} 

Exercises

1.  Write a program that reads lines of input consisting of two words per line, 
such as



bananas 16

and creates an associative array from these lines. (The first word is to be 
the subscript and the second word the value.) 

2.  Write a program that reads a file and searches for lines of the form
index word

where word is a word to be indexed. Each indexed word is to be stored in an 
associative array, along with the line number on which it first occurs. 
(Subsequent occurrences can be ignored.) Print the resulting index. 

3.  Modify the program created in Exercise 2 to store every occurrence of each 
index line. (Hint: Try building the associative array subscripts using the 
indexed word, a non-printable character, and a number.) Print the resulting 
index. 

4.  Write a program that reads input lines consisting of a student name and five 
numbers representing the student's marks in English, history, mathematics, 
science, and geography, as follows:
Jones 61 67 75 80 72

Use an associative array to store these numbers in a database, and then print 
out the names of all students with failing grades (less than 50) along with 
the subjects they failed. 

5.  BUG BUSTER: What is wrong with the following code? 
%list = ("Fred", 61, "John", 72,
"Jack", 59, "Mary", 80);
$surname = "Smith";
foreach $firstname (keys (%list)) {
%list{$firstname." ".$surname} = %list{$firstname}; 

} 

    



Chapter 11

Formatting Your Output

CONTENTS

●     Defining a Print Format 
●     Displaying a Print Format 
●     Displaying Values in a Print Format 

❍     Creating a General-Purpose Print Format 
❍     Choosing a Value-Field Format 
❍     Printing Value-Field Characters 
❍     Using the Multiline Field Format 

●     Writing to Other Output Files 
❍     Saving the Default File Variable 

●     Specifying a Page Header 
❍     Changing the Header Print Format 

●     Setting the Page Length 
❍     Using print with Pagination 

●     Formatting Long Character Strings 
❍     Eliminating Blank Lines When Formatting 
❍     Supplying an Indefinite Number of Lines 

●     Formatting Output Using printf 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

The Perl programs you've seen so far produce output using the print function, which 
writes raw, unformatted text to a file. 

Perl also enables you to produce formatted output, using print formats and the built-in 
function write. Today's lesson describes how to produce formatted output. You'll learn 
the following: 

●     How to define a print format (also sometimes known as a "picture format") 



●     How to use the write function 
●     How to add formatted values to a print format 
●     Which value-field formats are available 
●     How to write to other output files 
●     How to specify page headers and the page length 
●     How to format long character strings 
●     How to use the built-in function printf 

Defining a Print Format

The following is an example of a simple print format: 

format MYFORMAT =

===================================

Here is the text I want to display.

===================================

.

This defines the print format MYFORMAT. 

The syntax for print formats is 

format formatname =

lines_of_output

.

The special keyword format tells the Perl interpreter that the following lines are a 
print-format definition. The formatname is a placeholder for the name of the print 
format being defined (for example, MYFORMAT). This name must start with an alphabetic 
character and can consist of any sequence of letters, digits, or underscores. 

The lines_of_output consists of one or more lines of text that are to be printed when 
the print format is utilized; these lines are sometimes called picture lines. In the MYFORMAT 
example, there are three lines of text printed: two lines containing = characters, and 
the line 

Here is the text I want to display.



A print-format definition is terminated with a line containing a period character. This 
line can contain nothing else; there can be no white space, and the period must be the 
first character on the line. 

Like subroutines, print-format definitions can appear anywhere in program code (even, 
for example, in the middle of a conditional statement). However, it usually is best to 
cluster them either at the beginning or the end of the program. 

Displaying a Print Format

To display output using a print format, you need to do two things: 

●     Set the system variable $~ to the format you want to use 
●     Call the built-in function write 

Listing 11.1 is an example of a simple program that displays output using a print format.

 

Listing 11.1. A program that uses a print format.

1:  #!/usr/local/bin/perl

2:  

3:  $~ = "MYFORMAT";

4:  write;

5:  

6:  format MYFORMAT =

7:  ===================================

8:  Here is the text I want to display.

9:  ===================================

10: .



 

$ program11_1

===================================

Here is the text I want to display.

===================================

$

 Line 3 of this program assigns the character string MYFORMAT to the system 
variable $~. This tells the Perl interpreter that MYFORMAT is the print format to use 
when calling write. 

Line 4 calls write, which sends the text defined in MYFORMAT to the standard output file. 

Lines 6-10 contain the definition of the print format MYFORMAT. 

NOTE

If you don't specify a print format by assigning to $~, the 
Perl interpreter assumes that the print format to use has 
the same name as the file variable being written to. In 
this example program, if line 3 had not specified MYFORMAT 
as the print format to use, the Perl interpreter would 
have tried to use a print format named STDOUT when 
executing the call to write in line 4, because the call to 
write is writing to the standard output file 

Displaying Values in a Print Format

Of course, the main reason to use print formats is to format values stored in scalar 
variables or array variables to produce readable output. Perl enables you to do this by 
specifying value fields as part of a format definition. 

Each value field specifies a value: the name of a scalar variable, for example, or an 
expression. When the write statement is invoked, the value is displayed in the format 
specified by the value field. 

Listing 11.2 shows how value fields work. This program keeps track of the number of 



occurrences of the letters a, e, i, o, and u in a text file.

 

Listing 11.2. A program that uses value fields to print output. 

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <STDIN>) {

4:          $line =~ s/[^aeiou]//g;

5:          @vowels = split(//, $line);

6:          foreach $vowel (@vowels) {

7:                  $vowelcount{$vowel} += 1;

8:          }

9:  }

10: $~ = "VOWELFORMAT";

11: write;

12: 

13: format VOWELFORMAT =

14: ==========================================================

15: Number of vowels found in text file:

16:           a: @<<<<<   e: @<<<<<

17:           $vowelcount{"a"}, $vowelcount{"e"}

18:           i: @<<<<<   o: @<<<<<

19:           $vowelcount{"i"}, $vowelcount{"o"}

20:           u: @<<<<<

21:           $vowelcount{"u"}

22: ==========================================================

23: .



 

$ program11_2

This is a test file.

This test file contains some vowels.

The quick brown fox jumped over the lazy dog.

^D

==========================================================

Number of vowels found in text file:

          a: 3        e: 10

          i: 7        o: 7

          u: 2

==========================================================

$

 This program reads one line of input at a time. Line 4 removes everything that 
is not a, e, i, o, or u from the input line, and line 5 splits the remaining characters into 
the array @vowels. Each element of @vowels is one character of the input line. 

Lines 6-8 count the vowels in the input line by examining the elements of @vowels and 
adding to the associative array %vowelcount. 

Line 10 sets the current print format to VOWELFORMAT; line 11 prints using VOWELFORMAT. 

The print format VOWELFORMAT is defined in lines 13-23. Line 16 is an example of a print 
format line that contains value fields; in this case, two value fields are defined. Each 
value field has the format @<<<<<, which indicates six left-justified characters. (For a 
complete description of the possible value fields, see the section called "Choosing a 
Value-Field Format," later today.) 

When one or more value fields appear in a print-format line, the next line must define 
the value or values to be printed in this value field. Because line 16 defines two value 
fields, line 17 defines the two values to be printed. These values are $vowelcount{"a"} 



and $vowelcount{"e"}, which are the number of occurrences of a and e, respectively. 

Similarly, line 18 defines two more value fields to be printed, and line 19 indicates that 
the values to be printed in these fields are $vowelcount{"i"} and $vowelcount{"o"}. 
Finally, line 20 defines a fifth value field, and line 21 specifies that $vowelcount{"u"} is 
to be printed in this field.

NOTE

Three things to note about the values that are specified 
for value-field formats:

●     The lines containing values to be printed are not themselves 
printed. For example, in Listing 11.2, lines 16, 18, and 20 are 
printed, but lines 17, 19, and 21 are not. 

●     The Perl interpreter ignores spacing when it looks for values 
corresponding to value fields. Many people prefer to line up 
their values with the corresponding value fields on the 
previous line, but there is no need to do so. 

●     The number of values specified must match the number of value 
fields defined on the previous line 

Creating a General-Purpose Print Format

One disadvantage of print formats as defined in Perl is that scalar-variable names are 
included as part of the definition. For example, in the following definition, the scalar 
variable $winnum is built into the print format definition MYFORMAT: 

format MYFORMAT =

==========================================================

The winning number is @<<<<<<!

$winnum

==========================================================

.

When write is called with this print format, as in the following, you have to remember 
that $winnum is being used by MYFORMAT. 

$~ = "MYFORMAT";



write;

If, later on, you accidentally delete all references to $winnum in the program, the call 
to write will stop working properly. 

One way to get around this problem is to call write from within a subroutine, and to use 
variables local to the subroutine in the print format that write uses. Listing 11.3 is a 
program that does this. It reads a file from the standard input file and prints out the 
number of occurrences of the five most frequently occurring letters.

 

Listing 11.3. A program that calls write from within a subroutine.

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <STDIN>) {

4:          $line =~ tr/A-Z/a-z/;

5:          $line =~ s/[^a-z]//g;

6:          @letters = split(//, $line);

7:          foreach $letter (@letters) {

8:                  $lettercount{$letter} += 1;

9:          }

10: }

11: 

12: $~ = "WRITEHEADER";

13: write;

14: $count = 0;

15: foreach $letter (reverse sort occurrences

16:                 (keys(%lettercount))) {

17:         &write_letter($letter, $lettercount{$letter});



18:         last if (++$count == 5);

19: }

20: 

21: sub occurrences {

22:         $lettercount{$a} <=> $lettercount{$b};

23: }

24: sub write_letter {

25:         local($letter, $value) = @_;

26: 

27:         $~ = "WRITELETTER";

28:         write;

29: }

30: format WRITEHEADER =

31: The five most frequently occurring letters are:

32: .

33: format WRITELETTER =

34:         @:  @<<<<<<

35:         $letter, $value

36: .

 

$ program11_3

This is a test file.

This test file contains some input.

The quick brown fox jumped over the lazy dog.

^D

The five most frequently occurring letters are:



        t: 10

        e: 9

        i: 8

        s: 7

        o: 6

$

 Like the vowel-counting program in Listing 11.2, this program processes one 
line of input at a time. Line 4 translates all uppercase alphabetic characters into 
lowercase, so that they can be included in the letter count. Line 5 gets rid of all 
characters that are not letters, including any white space. 

Line 6 splits the line into its individual letters; lines 7-9 examine each letter and 
increment the appropriate letter counters, which are stored in the associative array 
%lettercount. 

Lines 12 and 13 print the following line by setting the current print format to 
WRITEHEADER and calling write: 

The five most frequently occurring letters are:

Except in very special cases, never mix calls to write 
with calls to print. Your program should use one 
printing function or the other, not both 

Lines 15-19 sort the array %lettercount in order of occurrence. The first letter to 
appear in the foreach loop is the letter that appears most often in the file. To sort the 
array in order of occurrence, lines 15 and 16 specify that sorting is to be performed 
according to the rules defined in the subroutine occurrences. This subroutine tells the 
Perl interpreter to use the values of the associative array elements as the sort 
criterion. 

Line 17 passes the letter and its occurrence count to the subroutine write_letter. This 
subroutine sets the current print format to WRITELETTER; this print format refers to the 



local scalar variables $letter and $value, which contain the values passed to 
write_letter by line 17. This means that each call to write_letter prints the letter and 
value currently being examined by the foreach loop. 

Note that the first value field in the print format WRITELETTER contains only a single 
character, @. This indicates that the write field is only one character long (which makes 
sense, because this is a single letter). 

Line 18 ensures that the foreach loop quits after the five most frequently used letters 
have been examined and printed. 

TIP

Some programs, such as the one in Listing 11.3, use more 
than one print-format definition. To make it easier to see 
which print format is being used by a particular call to 
write, always keep the print format specification 
statement and the write call together. For example: 

$~ = "WRITEFORMAT";

write; 

Here, it is obvious that the call to write is using the 
print format WRITEFORMAT 

Formats and Local Variables

In Listing 11.3, you might have noticed that the subroutine write_letter calls a 
subroutine to write out a letter and its value: 

sub write_letter {

        local($letter, $value) = @_;

        $~ = "WRITELETTER";

        write;

}

This subroutine works properly even though the WRITELETTER print format is defined 
outside the subroutine. 



Note, however, that local variables defined using my cannot be written out using a print 
format unless the format is defined inside the subroutine. (To see this for yourself, 
change line 25 of Listing 11.3 to the following and run the program again: 

my($letter,$value) = @_;

You will notice that the letter counts do not appear.) This limitation is a result of the 
way local variables defined using my are stored by the Perl interpreter. To avoid this 
difficulty, use local instead of my when you define local variables that are to be 
written out using write. (For a discussion of local and my, see Day 9, "Using 
Subroutines.") 

Perl 4 users will not run into this problem, because my is not defined for that version of 
the language.

NOTE

In versions of Perl 5 earlier than version 5.001, local 
variables defined using my cannot be written out at all. 
Even in version 5.001, variables defined using my might 
not behave in the way you expect them to. As a 
consequence, it is best to avoid using my with print 
formats 

Choosing a Value-Field Format

Now that you know how print formats and write work, it's time to look at the value-
field formats that are available. Table 11.1 lists these formats.

Table 11.1. Valid value-field formats.

Field Value-field format 

@<<< Left-justified output 

@>>> Right-justified output 

@||| Centered output 

@##.## Fixed-precision numeric 

@* Multiline text 

NOTE



In left-justified output, the value being displayed appears 
at the left end of the value field. In right-justified output, 
the value being displayed appears at the right end of the 
value field 

In each of the field formats, the first character is a line-fill character. It indicates 
whether text formatting is required. If the @ character is specified as the line fill 
character, text formatting is not performed. (For a discussion of text formatting, see the 
section titled "Formatting Long Character Strings," later today.) 

In all cases, except for the multiline value field @*, the width of the field is equal to 
the number of characters specified. The @ character is included when counting the 
number of characters in the value field. For example, the following field is five 
characters wide-one @ character and four > characters: 

@>>>>

Similarly, the following field is seven characters wide-four before the decimal point, 
two after the decimal point, and the decimal point itself: 

@###.##

Listing 11.4 illustrates how you can use the value field formats to produce a neatly 
printed report. The report is redirected to a file for later printing.

 

Listing 11.4. A program that uses the various value-field formats.

1:  #!/usr/local/bin/perl

2:  

3:  $company = <STDIN>;

4:  $~ = "COMPANY";

5:  write;

6:  



7:  $grandtotal = 0;

8:  $custline = <STDIN>;

9:  while ($custline ne "") {

10:         $total = 0;

11:         ($customer, $date) = split(/#/, $custline);

12:         $~ = "CUSTOMER";

13:         write;

14:         while (1) {

15:                 $orderline = <STDIN>;

16:                 if ($orderline eq "" || $orderline =~ /#/) {

17:                         $custline = $orderline;

18:                         last;

19:                 }

20:                 ($item, $cost) = split(/:/, $orderline);

21:                 $~ = "ORDERLINE";

22:                 write;

23:                 $total += $cost;

24:         }

25:         &write_total ("Total:", $total);

26:         $grandtotal += $total;

27: }

28: &write_total ("Grand total:", $grandtotal);

29: 

30: sub write_total {

31:         local ($totalstring, $total) = @_;

32:         $~ = "TOTAL";

33:         write;

34: }

35: 



36: format COMPANY =

37: ************* @|||||||||||||||||||||||||||||| *************

38: $company

39: .

40: format CUSTOMER =

41: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<                @>>>>>>>>>>>>

42: $customer, $date

43: .

44: format ORDERLINE =

45:           @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<           @####.##

46: $item, $cost

47: .

48: format TOTAL =

49: @<<<<<<<<<<<<<<                                   @#####.##

50: $totalstring, $total

51: 

52: .

 

$ program11_4 >report

Consolidated Widgets, Inc.

John Doe#Feb 11, 1994

1 flying widget:171.42

1 crawling widget:89.99

Mary Smith#May 4, 1994

2 swimming widgets:203.43

^D



$

The following report is written to the report file: 

*************   Consolidated Widgets, Inc.    *************

John Doe                                       Feb 11, 1994

          1 flying widget                            171.42

          1 crawling widget                           89.99

Total:                                               261.41

Mary Smith                                      May 4, 1994

          2 swimming widgets                         203.43

Total:                                               203.43

Grand total:                                         464.84

 This program starts off by reading the company name from the standard input 
file and then writing it out. Line 5 writes the company name using the print format 
COMPANY, which uses a centered output field to display the company name in the center of 
the line. 

After the company name has been printed, the program starts processing data for one 
customer at a time. Each customer record is assumed to consist of a customer name and 
date followed by lines of orders. The customer name record uses a # character as the 
field separator, and the order records use : characters as the separator; this enables 
the program to distinguish one type of record from the other. 

Line 13 prints the customer information using the CUSTOMER print format. This format 
contains two fields: a left-justified output field for the customer name, and a right-
justified output field for the date of the transaction. 

Line 22 prints an order line using the ORDERLINE print format. This print format also 
contains two fields: a left-justified output field indicating the item ordered, and a 
numeric field to display the cost of the item. 

The value field format @####.## indicates that the cost is to be displayed as a floating-
point number. This number is defined as containing at most five digits before the decimal 



point, and two digits after. 

Finally, the print format TOTAL prints the customer total and the grand total. Because 
this print format is used inside a subroutine, the same print format can be used to print 
both totals.

Normally, any floating-point number you print is 
rounded up when necessary. For example, when you print 
43.999 in the value field @#.##, it appears as 44.00.

However, a floating-point number whose last decimal 
place is 5 might or might not round correctly. For 
example, if you are writing using the value field @#.##, 
some numbers whose third and last decimal place is 5 will 
round and others will not. This happens because some 
floating-point numbers cannot be stored exactly, and 
the nearest equivalent number that can be stored is a 
slightly smaller number (which rounds down, not up)

Printing Value-Field Characters

As you have seen, certain characters such as @, <, and > are treated as value fields when 
they are encountered in print formats. Listing 11.5 shows how to actually print one of 
these special characters using write.

 

Listing 11.5. A program that prints a value-field character. 

1:  #!/usr/local/bin/perl

2:

3:  format SPECIAL =

4:  This line contains the special character @.

5:  "@"



6:  .

7:

8:  $~ = "SPECIAL";

9:  write;

 

$ program11_5

This line contains the special character @.

$

 The print format line in line 4 contains the special character @, which is a one-
character value field. Line 5 specifies that the string @ is to be displayed in this value 
field when the line is printed. 

Using the Multiline Field Format

Listing 11.6 uses the multiline field format @* to write a character string over several 
lines.

 

Listing 11.6. A program that writes a string using the multiline field 
format.

1:  #!/usr/local/bin/perl

2:  

3:  @input = <STDIN>;

4:  $string = join("", @input);

5:  $~ = "MULTILINE";



6:  write;

7:  

8:  format MULTILINE =

9:  ****** contents of the input file: ******

10: @*

11: $string

12: *****************************************

13: .

 

$ program11_6

Here is a line of input.

Here is another line.

Here is the last line.

^D

****** contents of the input file: ******

Here is a line of input.

Here is another line.

Here is the last line.

*****************************************

$

 Line 3 reads the entire input file into the array variable @input. Each 
element of the list stored in @input is one line of the input file. 

Line 4 joins the input lines into a single character string, stored in $string. This 
character string still contains the newline characters that end each line. 

Line 6 calls write using the print format MULTILINE. The @* value field in this print-



format definition indicates that the value stored in $string is to be written out using as 
many lines as necessary. This ensures that the entire string stored in $string is written 
out.

If a character string contains a newline character, the 
only way to display the entire string using write is to 
use the @* multiline value field. If you use any other 
value field, only the part of the string preceding the 
first newline character is displayed 

Writing to Other Output Files

So far, all of the examples that have used the function write have written to the 
standard output file. However, you can use write also to send output to other files. 

The simplest way to do this is to pass the file to write to as an argument to write. For 
example, to write to the file represented by the file variable MYFILE using the print 
format MYFILE, you can use the following statement: 

write (MYFILE);

Here, write writes to the file named MYFILE using the default print format, which is also 
MYFILE. This is tidy and efficient, but somewhat restricting because, in this case, you can't 
use $~ to choose the print format to use. 

The $~ system variable only works with the default file variable, which is the file variable 
to which write sends output. To change the default file variable, and therefore change 
the file that $~ affects, call the built-in function select, as follows: 

select (MYFILE);

select sets the default file variable to use when writing. For example, to write to the 
file represented by the file variable MYFILE using the print format MYFORMAT, you can use 
the following statements: 

select(MYFILE);



$~ = "MYFORMAT";

write;

Here, the built-in function select indicates that the file to be written to is the file 
represented by the file variable MYFILE. The statement 

$~ = "MYFORMAT";

selects the print format to be associated with this particular file handle; in this case, 
the print format MYFORMAT is now associated with the file variable MYFILE.

NOTE

This is worth repeating: Each file variable has its own 
current print format. An assignment to $~ only changes 
the print format for the current file variable (the last 
one passed to select) 

Because select has changed the file to be written to, the call to write no longer writes 
to the standard output file. Instead, it writes to MYFILE. Calls to write continue to 
write to MYFILE until the following statement is seen: 

select(STDOUT);

This statement resets the write file to be the standard output file.

Changing the write file using select not only affects 
write; it also affects print. For example, consider the 
following: 

select (MYFILE);

print ("Here is a line of text.\n"); 

This call to print writes to MYFILE, not to the standard 
output file. As with write, calls to print continue to 
write to MYFILE until another call to select is seen 



The select function is useful if you want to be able to use the same subroutine to write 
to more than one file at a time. Listing 11.7 is an example of a simple program that does 
this.

 

Listing 11.7. A program that uses the select function.

1:  #!/usr/local/bin/perl

2:  

3:  open (FILE1, ">file1");

4:  $string = "junk";

5:  select (FILE1);

6:  &writeline;

7:  select (STDOUT);

8:  &writeline;

9:  close (FILE1);

10: 

11: sub writeline {

12:         $~ = "WRITELINE";

13:         write;

14: }

15: 

16: format WRITELINE =

17:         I am writing @<<<<< to my output files.

18:                      $string

19: .



 

$ program11_7

       I am writing junk   to my output files.

$

 Line 5 of this program calls select, which sets the default file variable to 
FILE1. Now, all calls to write or print write to FILE, not the standard output file. 

Line 6 calls writeline to write a line. This subroutine sets the current print format for 
the default file variable to WRITELINE. This means that the file FILE1 now is using the 
print format WRITELINE, and, therefore, the subroutine writes the following line to the 
file FILE1 (which is file1): 

I am writing junk   to my output files.

Line 7 sets the default file variable back to the standard output file variable, STDOUT. 
This means that write and print now send output to the standard output file. Note that 
the current print format for the standard output file is STDOUT (the default), not 
WRITELINE; the assignment to $~ in the subroutine WRITELINE affects only FILE1, not 
STDOUT. 

Line 8 calls writeline again; this time, the subroutine writes a line to the standard 
output file. The assignment 

$~ = "WRITELINE";

in line 12 associates the print format WRITELINE with the standard output file. This 
means that WRITELINE is now associated with both STDOUT and FILE1. 

At this point, the call to write in line 13 writes the line of output that you see on the 
standard output file.



DO, whenever possible, call select and assign to $~ 
immediately before calling write, as follows: 

select (MYFILE);
$~ = "MYFORMAT";

write; 

Keeping these statements together makes it clear which 
file is being written to and which print format is being 
used.

DON'T use select and $~ indiscriminately, because you 
might lose track of which print format goes with which 
file variable, and you might forget which file variable is 
the default for printing 

Saving the Default File Variable

When select changes the default file variable, it returns an internal representation of 
the file variable that was last selected. For example: 

$oldfile = select(NEWFILE);

This call to select is setting the current file variable to NEWFILE. The old file variable 
is now stored in $oldfile. To restore the previous default file variable, you can call 
select as follows: 

select ($oldfile);

At this point, the default file variable reverts back to its original value (what it was 
before NEWFILE was selected).

The internal representation of the file variable 
returned by select is not necessarily the name of the 
file variable 



You can use the return value from select to create subroutines that write to the file 
you want to write with, using the print format you want to use, without affecting the 
rest of the program. For example: 

sub write_to_stdout {

        local ($savefile, $saveformat);

        $savefile = select(STDOUT);

        $saveformat = $~;

        $~ = "MYFORMAT";

        write;

        $~ = $saveformat;

        select($savefile);

}

This subroutine calls select to set the default output file to STDOUT, the standard 
output file. The return value from select, the previous default file, is saved in 
$savefile. 

Now that the default output file is STDOUT, the next step is to save the current print 
format being used to write to STDOUT. The subroutine does this by saving the present 
value of $~ in another local variable, $saveformat. After this is saved, the subroutine 
can set the current print format to MYFORMAT. The call to write now writes to the 
standard output file using MYFORMAT. 

After the call to write is complete, the subroutine puts things back the way they were. 
The first step is to reset $~ to the value stored in $saveformat. The final step is to set 
the default output file back to the file variable whose representation is saved in 
$savefile. 

Note that the call to select must appear after the assignment to $~. If the call to 
select had been first, the assignment to $~ would change the print format associated 
with the original default file variable, not STDOUT. 

As you can see, this subroutine doesn't need to know what the default values outside 
the subroutine are. Also, it does not affect the default values outside the subroutine. 

Specifying a Page Header

If you are sending your output to a printer, you can make your output look smarter by 



supplying text to appear at the top of every page in your output. This special text is 
called a page header. 

If a page header is defined for a particular output file, write automatically paginates 
the output to that file. When the number of lines printed is greater than the length of 
a page, write starts a new page. 

To define a page header for a file, create a print format definition with the name of 
filename_TOP, where filename is a placeholder for the name of the file variable 
corresponding to the file to which you are writing. For example, to define a header for 
writing to standard output, define a print format named STDOUT_TOP, as follows: 

format STDOUT_TOP =

Consolidated Widgets Inc. 1994 Annual Report

.

In this case, when the Perl interpreter starts a new page of standard output, the 
contents of the print format STDOUT_TOP are printed automatically. 

Print formats that generate headers can contain value fields which are replaced by 
scalar values, just like any other print format. One particular value that is often used 
in page headers is the current page number, which is stored in the system variable $%. For 
example: 

format STDOUT_TOP =

Page @<<.

$%

.

In this case, when the first page is printed, the program prints the following header at 
the top of the page: 

Page 1.

NOTE



By default, $% is initially set to zero and is incremented 
every time a new page begins. 

To change the pagination, change the value of $% before 
(or during) printing 

Changing the Header Print Format

To change the name of the print format that prints a page header for a particular file, 
change the value stored in the special system variable $^. 

As with $~, only the value for the current default file can be changed. For example, to 
use the print format MYHEADER as the header file for the file MYFILE, add the following 
statements: 

$oldfile = select(MYFILE);

$^ = "MYHEADER";

select($oldfile);

.

These statements set MYFILE to be the current default file, change the header for 
MYFILE to be the print format MYHEADER, and then reset the current default file to its 
original value. 

Setting the Page Length

By default, the page length is 60 lines. To specify a different page length, change the 
value stored in the system variable $=: 

$= = 66;     # set the page length to 66 lines

This assignment must appear before the first write statement. 



If the page length is changed in the middle of the 
program, the new page length will not be used until a 
new page is started

Listing 11.8 shows how you can set the page length and define a page-header print 
format for your output file.

 

Listing 11.8. A program that sets the length and print format for a 
page.

1:  #!/usr/local/bin/perl

2:  

3:  open (OUTFILE, ">file1");

4:  select (OUTFILE);

5:  $~ = "WRITELINE";

6:  $^ = "TOP_OF_PAGE";

7:  $= = 60;

8:  while ($line = <STDIN>) {

9:          write;

10: }

11: close (OUTFILE);

12: 

13: format TOP_OF_PAGE =

14:                                     - page @<

15:                                              $%

16: .

17: format WRITELINE =

18: @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

19: $line



20: .

 

Suppose that you supply the following input: 

$ program11_8

Here is a line of input.

Here is another line.

Here is the last line.

^D

$

The following output is written to the file file1: 

                                    - page 1

                 Here is a line of input.

               Here is another line.

              Here is the last line.

 Line 3 opens the file file1 for output and associates it with the file variable 
OUTFILE. 

Line 4 sets the current default file to OUTFILE. Now, when write or print is called with 
no file variable supplied, the output is sent to OUTFILE. 

Line 5 indicates that WRITELINE is the print format to be used when writing to the file 
OUTFILE. To do this, it assigns WRITELINE to the system variable $~. This assignment does 
not affect the page header. 

Line 6 indicates that TOP_OF_PAGE is the print format to be used when printing the page 
headers for the file OUTFILE. This assignment does not affect the print format used to 



write to the body of the page. 

Line 7 sets the page length to 60 lines. This page length takes effect immediately, 
because no output has been written to OUTFILE. 

Using print with Pagination

Normally, you won't want to use print if you are using pagination, because the Perl 
interpreter keeps track of the current line number on the page by monitoring the calls 
to write. If you must use a call to print in your program and you want to ensure that 
the page counter includes the call in its line count, adjust the system variable $-. This 
system variable indicates the number of lines between the current line and the bottom 
of the page. When $- reaches 0, a top-of-form character is generated, which starts a new 
page. 

The following is a code fragment that calls print and then adjusts the $- variable: 

print ("Here is a line of output\n");

$- -= 1;

When $- has 1 subtracted from its value, the page counter becomes correct. 

Formatting Long Character Strings

As you've seen, the @* value field prints multiple lines of text. However, this field prints 
the output exactly as it is stored in the character string. For example, consider Listing 
11.9, which uses @* to write a multiline character string. 

 

Listing 11.9. A program that illustrates the limitations of the @* value 
field.

1:  #!/usr/local/bin/perl

2:  

3:  $string = "Here\nis an unbalanced line of\ntext.\n";

4:  $~ = "OUTLINE";



5:  write;

6:  

7:  format OUTLINE =

8:  @*

9:  $string

10: .

 

$ program11_9

Here

is an unbalanced line of

text.

$

 This call to write displays the character string stored in $string exactly as 
is. Perl enables you to define value fields in print-format definitions that format text. 
To do this, replace the initial @ character in the value field with a ^ character. When 
text formatting is specified, the Perl interpreter tries to fit as many words as possible 
into the output line. 

Listing 11.10 is an example of a simple program that does this. 

 

Listing 11.10. A program that uses a value field that does formatting.

1:  #!/usr/local/bin/perl

2:  

3:  $string = "Here\nis an unbalanced line of\ntext.\n";



4:  $~ = "OUTLINE";

5:  write;

6:  

7:  format OUTLINE =

8:  ^<<<<<<<<<<<<<<<<<<<<<<<<<<<

9:  $string

10: .

 

$ program11_10

Here is an unbalanced line

$

 Line 5 calls write using the print format OUTLINE. This print format contains a 
value field that specifies that formatting is to take place; this means that the Perl 
interpreter tries to fit as many words as possible into the line of output. In this case, the 
first line Here and the four-word string is an unbalanced line fit into the output line. 

Note that there are two characters left over in the output line after the four words 
have been filled in. These characters are not filled, because the next word is not short 
enough to fit into the space remaining. Only entire words are filled. 

One other feature of the line-filling operation is that the substring printed out is 
actually deleted from the scalar variable $string. This means that the value of 
$string is now of\ntext.\n. This happens because subsequent lines of output in the same 
print-format definition can be used to print the rest of the string.

NOTE

Because the line-filling write operation updates the 
value used, the value must be contained in a scalar 
variable and cannot be the result of an expression 



To see how multiple lines of formatted output work, look at Listing 11.11. This program 
reads a quotation from the standard input file and writes it out on three formatted 
lines of output.

 

Listing 11.11. A program that writes out multiple formatted lines of 
output.

1:  #!/usr/local/bin/perl

2:  

3:  @quotation = <STDIN>;

4:  $quotation = join("", @quotation);

5:  $~ = "QUOTATION";

6:  write;

7:  

8:  format QUOTATION =

9:  Quotation for the day:

10: -----------------------------

11:    ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

12:    $quotation

13:    ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

14:    $quotation

15:    ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

16:    $quotation

17: -----------------------------

18: .



 

$ program11_11

Any sufficiently advanced programming

language is indistinguishable from magic.

^D

Quotation for the day:

-----------------------------

   Any sufficiently advanced programming language is   

   indistinguishable from magic.                       

-----------------------------

$

 The print format QUOTATION defines three value fields on which formatting is 
to be employed. Each of the three value fields uses the value of the scalar variable 
$quotation. 

Before write is called, $quotation contains the entire quotation with newline 
characters appearing at the end of each input line. When write is called, the first value 
field in the print format uses as much of the quotation as possible. This means that the 
following substring is written to the standard output file: 

Any sufficiently advanced programming language is

After the substring is written, it is removed from $quotation, which now contains the 
following: 

indistinguishable from magic.

Because the written substring has been removed from $quotation, the remainder of the 
string can be used in subsequent output lines. Because the next value field in the print 
format also wants to use $quotation, the remainder of the string appears on the second 
output line and is deleted. $quotation is now the empty string. 



This means that the third value field, which also refers to $quotation, is replaced by the 
empty string, and a blank line is written out. 

The scalar variable containing the output to be printed 
is changed by a write operation. If you need to preserve 
the information, copy it to another scalar variable 
before calling write 

Eliminating Blank Lines When Formatting

You can eliminate blank lines such as the one generated by Listing 11.11. To do this, put 
a ~ character at the beginning of any output line that is to be printed only when 
needed. 

Listing 11.12 modifies the quotation-printing program to print lines only when they are 
not blank.

 

Listing 11.12. A program that writes out multiple formatted lines of 
output and suppresses blank lines.

1:  #!/usr/local/bin/perl

2:  

3:  @quotation = <STDIN>;

4:  $quotation = join("", @quotation);

5:  $~ = "QUOTATION";

6:  write;

7:  

8:  format QUOTATION =

9:  Quotation for the day:



10: -----------------------------

11: ~  ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

12:    $quotation

13: ~  ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

14:    $quotation

15: ~  ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

16:    $quotation

17: -----------------------------

18: .

 

$ program11_12

Any sufficiently advanced programming

language is indistinguishable from magic.

^D

Quotation for the day:

-----------------------------

   Any sufficiently advanced programming language is   

   indistinguishable from magic.                       

-----------------------------

$

 If the quotation is too short to require all the lines, remaining lines are left 
blank. In this case, the quotation requires only two lines of output, so the third isn't 
printed. 

The program is identical to the one in Listing 11.11 in all other respects. In particular, 
the value of $quotation after the call to write is still the empty string. 



Supplying an Indefinite Number of Lines

While Listing 11.12 suppresses blank lines, it imposes an upper limit of three lines. 
Quotations longer than three lines are not printed in their entirety. To indicate that 
the formatted output is to use as many lines as necessary, specify two ~ characters at 
the beginning of the output line containing the value field. Listing 11.13 modifies the 
quotation program to allow quotations of any length.

 

Listing 11.13. A program that writes out as many formatted lines of 
output as necessary.

1:  #!/usr/local/bin/perl

2:  

3:  @quotation = <STDIN>;

4:  $quotation = join("", @quotation);

5:  $~ = "QUOTATION";

6:  write;

7:  

8:  format QUOTATION =

9:  Quotation for the day:

10: -----------------------------

11: ~~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

12:    $quotation

13: -----------------------------

14: .

 



$ program11_13

Any sufficiently advanced programming

language is indistinguishable from magic.

^D

Quotation for the day:

----------------------------

   Any sufficiently advanced programming language is   

   indistinguishable from magic.                       

-----------------------------

$

 The ~~ characters at the beginning of the output field indicate that multiple 
copies of the output line are to be supplied. The output line is to be printed until there is 
nothing more to print. 

In Listing 11.13, two copies of the line are needed. 

Formatting Output Using printf 

If you want to write output that looks reasonable without going to all the trouble of 
using write and print formats, Perl provides a built-in function, printf, that prints 
formatted output.

NOTE

If you are familiar with the C programming language, 
the behavior of printf in Perl will be familiar; the Perl 
printf and the C printf are basically the same 

The arguments passed to the printf function are as follows: 

●     The string to be printed, which can contain one or more field specifiers 
●     One value for each field specifier appearing in the string to be printed 

When printf sees a field specifier, it substitutes the corresponding value in the printf 
argument list. The representation of the substituted value in the string depends on the 
field specifier that is supplied. 



Field specifiers consist of the % character followed by a single character that 
represents the format to use when printing. Table 11.2 lists the field-specifier formats 
and the field-specifier character that represents each.

Table 11.2. Field specifiers for printf.

Specifier Description 

%c Single character 

%d Integer in decimal (base-10) format 

%e Floating-point number in scientific 
notation 

%f Floating-point number in "normal" 
(fixed-point) notation 

%g Floating-point number in compact 
format 

%o Integer in octal (base-8) format 

%s Character string 

%u Unsigned integer 

%x Integer in hexadecimal (base-16) 
format 

Here is a simple example of a call to printf: 

printf("The number I want to print is %d.\n", $number);

The string to be printed contains one field specifier, %d, which represents an integer. The 
value stored in $number is substituted for the field specifier and printed. 

Field specifiers also support a variety of options, as follows: 

●     If you are printing an integer using the d, o, u, or x format, you can put an l 
character in front of the field-specifier character (as in, for example, %ld). This 
character specifies that the number is a decimal integer in the machine's "long 
integer" format (corresponding to the C type long). This is useful if your integer is 
large or might be. 

●     A positive integer following the % character indicates the minimum width of the 
field. For example, %20s prints a character string in a field of 20 characters. If the 
string is not large enough to fill the entire field, it is right justified (placed at 
the right end of the field) and padded with blanks. (If the integer starts with a 



leading 0, as in %08d, the field is padded with zeros, not blanks.) 
●     A negative integer following the % character indicates the width of the field and 

requests left justification. For example, %-15s prints a character string in a field 
of 15 characters, and it fills the right end of the field with blanks if the string is 
not large enough. 

●     If you are using a field specifier that prints a floating-point number (%e, %f, or %g), 
you can specify the number of digits that are to appear after the decimal point. To 
do this, specify a floating-point number after the % character. For example:
%8.3f 

●     Here, the number preceding the decimal point is the field width (as before), and the 
number after the decimal point is the number of decimal places to print. 

If a floating-point number contains more digits than the 
field specifier wants, the number is rounded to the 
number of decimal places needed. For example, if 43.499 is 
being printed using the field %5.2f, the number actually 
printed is 43.50. 

As with the write value field @##.##, printf might not 
always round up when it is handling numbers whose last 
decimal place is 5. This happens because some floating-
point numbers cannot be stored exactly, and the nearest 
equivalent number that can be stored is a slightly 
smaller number (which rounds down, not up). For 
example, 43.495 when printed by %5.2f might print 43.49, 
depending on how 43.495 is stored 

●     If you are using a field specifier that prints an integer, character, or string, 
supplying a floating-point number after the % character specifies the maximum 
length of the value to be printed. In the following example a character string is 
printed in a 15-character field, but the string itself can be at most 10 characters 
long:
%15.10s 

●     This guarantees that at least five spaces will appear in the printed line. 

NOTE



You can use printf to print to other files. To do this, 
specify the file variable corresponding to the file to 
which you want to print, just as you would with print or 
write 

printf MYFILE ("I am printing %d.\n", $value); 

This means that changing the current default file using 
select affects printf. 

Summary

Perl enables you to format your output using print-format definitions and the built-in 
function write. In print-format definitions, you can specify value fields that are to be 
replaced by either the contents of scalar variables or the values of expressions. 

Value fields indicate how to print the contents of a scalar variable or the value of an 
expression. With a value field, you can specify that the value is to be left justified 
(blanks added on the right), right justified (blanks added on the left), centered, or 
displayed as a floating-point number. 

You also can define value fields that format a multiline character string. Blank lines 
can be suppressed, and the field can be defined to use as many output lines as necessary. 

The built-in function select enables you to change the default file to which write and 
print send output. 

You can break your output into pages by defining a special header print format that 
prints header information at the top of each page. 

The following system variables enable you to control how write sends output to a file: 

●     The system variable $~ contains the name of the print format being used by the 
current default file. 

●     The system variable $^ contains the name of the print format being used as a page 
header by the current default file. 

●     The system variable $= contains the number of lines per printed page. 
●     The system variable $- contains the number of lines left on the current page. 

The built-in function printf enables you to format an individual line of text using 
format specifiers. 



Q&A

Q: Which is better, write or printf? 

A: It depends on what you want to do. If you want to print reports or control 
pagination, you'll need to use write. If you just want individual lines of output 
to look neat, printf might be what you need. 

Q: How do I generate a page break? 

A: To do this, set $- to zero. This generates a top-of-form character. 

Q: Why do value fields that format text modify the contents of the scalar 
variable containing the text? 

A: When formatted text is printed, the printed text is removed from the scalar 
variable, and the part of the string that is not printed is retained. This enables 
you to use other calls to write to print the remainder of the text. In fact, you 
can print the rest of the text in the scalar variable using a completely different 
print format. 

Q: How many print formats can I define? 

A: Basically, as many as you like, provided the resulting Perl program can still fit 
in your machine. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
to understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Define value fields that print the following:
a.    Ten left-justified characters
b.    Five right-justified characters
c.    Two centered characters
d.    A floating-point number with five digits before the decimal point and three 
after it
e.    A field that prints as many formatted lines of 30 left-justified characters as 
necessary 

2.  What do these fields print?
a.    @<<<<
b.    @|||||| 
c.    @ 
d.    @* 
e.    ~ ^>>>>>>>>> 

3.  What do these printf field specifiers print?
a.    %5d



b.    %11.4f 
c.    %010d 
d.    %-12s 
e.    %x 

4.  Why do certain floating-point numbers have round-off problems? 
5.  How do you create a page header for an output file? 

Exercises

1.  Write a program that prints the powers of 2 from 2**1 to 2**10. Use write and a 
print format to print them three to a line. Align the lines so that the right end of 
each number is lined up with the right end of the corresponding number on the 
previous line. 

2.  Repeat Exercise 1 using printf. 
3.  Write a program that reads text and formats it into 40-character lines, left-

justified. Put lines of asterisks above and below the text. 
4.  Write a program that reads a set of dollar values such as 71.43 (one per line). 

Write out two values per line (the first and second on the first line, and so on). 
Total each of the resulting columns, and produce a grand total. 

5.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

format STDOUT =
@*
.
while ($line = <STDIN>) {
chop ($line);
if ($line eq "") {
print ("<blank line>\n"); 
next;
}
write;

} 

    



Chapter 12

Working with the File System

CONTENTS

●     File Input and Output Functions 
❍     Basic Input and Output Functions 
❍     Skipping and Rereading Data 
❍     System Read and Write Functions 
❍     Reading Characters Using getc 
❍     Reading a Binary File Using binmode 

●     Directory-Manipulation Functions 
❍     The mkdir Function 
❍     The chdir Function 
❍     The opendir Function 
❍     The closedir Function 
❍     The readdir Function 
❍     The telldir and seekdir Functions 
❍     The rewinddir Function 
❍     The rmdir Function 

●     File-Attribute Functions 
❍     File-Relocation Functions 
❍     Link and Symbolic Link Functions 
❍     File-Permission Functions 
❍     Miscellaneous Attribute Functions 

●     Using DBM Files 
❍     The dbmopen Function 
❍     The dbmclose Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson teaches you how to manipulate your machine's file system using some of 



Perl's built-in library functions. Today, you learn about the following: 

●     The file input and output functions 
●     The directory-manipulation functions 
●     The file-attribute manipulation functions 
●     The DBM file functions 

Many of the functions described in today's lesson use 
features of the UNIX operating system. If you are using 
Perl on a machine that is not running UNIX, some of 
these functions might not be defined or might behave 
differently.

Check the documentation supplied with your version of 
Perl for details on which functions are supported or 
emulated on your machine

File Input and Output Functions

The following sections describe the built-in library functions that read information 
from files and write information to files. These library functions perform the following 
tasks: 

●     Basic input and output 
●     Skipping or re-reading data from a file 
●     Reading individual characters from a file 
●     Indicating that a file is a binary file 

Basic Input and Output Functions

Some of the input and output functions supplied by Perl have been discussed in earlier 
chapters. These are 

●     open, which lets a program access a file 
●     close, which terminates file access 
●     print, which writes a string to a file 
●     write, which writes information to a file using a print format 
●     printf, which formats a string and sends it to a file 



The following sections briefly describe these functions again, along with some features 
of these functions that have not been discussed previously. 

The open Function

The open function enables a Perl program to access a file. It associates a special file 
variable with each accessed file. The following is an example: 

open (MYVAR, "/u/jqpublic/file");

Here, open requests access to the file /u/jqpublic/file, and it associates the file MYVAR 
with this file after it is open. open returns a nonzero value if the open succeeds, and 
zero if the open fails. 

By default, open opens a file for reading only. To open a file for writing, put a > 
character in front of the filename, as follows: 

open (MYVAR, ">/u/jqpublic/file");

To append information to an existing file, put two > characters in front of the filename, 
as follows: 

open (MYVAR, ">>/u/jqpublic/file");

To treat the open file as a command to which to pipe data, put a pipe (|) character in 
front of the filename, as follows: 

open (MAIL, "|mail dave");

(For more information, refer to Day 6, "Reading from and Writing to Files.") 

Piping Input Using open

The open function enables you to open files in several other ways not previously 
discussed. For example, to treat the open file as a command that is piping data to this 
program, put a | character after the filename. For example: 

open (CAT, "cat file*|");



This call to open executes the command cat file*. This command creates a temporary 
file consisting of the contents of all files whose name starts with file; these contents 
are joined (concatenated) into a single file. This file is treated as an input file that is 
accessible using the file variable CAT. 

$input = <CAT>;

Listing 12.1 is another example of a program that uses piped input. This program uses the 
output from the w command to list the users who are currently logged on to the 
machine.

 

Listing 12.1. A program that receives input from a piped command. 

1:  #!/usr/local/bin/perl

2:  

3:  open (WOUT, "w|");

4:  $time = <WOUT>;

5:  $time =~ s/^ *//;

6:  $time =~ s/ .*//;

7:  <WOUT>;   # skip headings line

8:  @users = <WOUT>;

9:  close (WOUT);

10: foreach $user (@users) {

11:         $user =~ s/ .*//;

12: }

13: print ("Current time:  $time");

14: print ("Users logged on:\n");

15: $prevuser = "";

16: foreach $user (sort @users) {



17:         if ($user ne $prevuser) {

18:                 print ("\t$user");

19:                 $prevuser = $user;

20:         }

21: }

 

$ program12_1

Current time: 4:25pm

Users logged on:

        dave

        kilroy

        root

        zarquon

$

 The w command lists the current time, the machine load, and the users logged 
onto the machine. It also lists the job time and the currently executing command for 
each user. 

Here is sample output for the w command: 

  4:25pm  up 1 day,  6:37,  6 users,  load average: 0.79, 0.36, 0.28

User     tty       login@  idle   JCPU   PCPU what

dave     ttyp0     2:26pm           27      3 w

kilroy   ttyp1     9:01am  2:27   1:04     11 -csh

kilroy   ttyp2     9:02am    43   1:46     27 rn

root     ttyp3     4:22pm     2               -csh



zarquon  ttyp4     1:26pm     4     43     16 cc myprog.c

kilroy   ttyp5     9:03am         2:14     48 /usr/games/hack

This Perl program takes the output from the w command and massages it to retrieve only 
the information needed: the current time and the users who are currently logged on. 

Line 3 starts the w command. The call to open specifies that the output from w is to be 
treated as input to this program, and that the file variable WOUT is to be used to access 
this input. 

Line 4 reads the first line of the input piped from WOUT. This is the line read: 

4:25pm  up 1 day,  6:37,  6 users,  load average: 0.79, 0.36, 0.28

The following two lines extract the current time from this line. First, line 5 removes 
the leading spaces. Then, line 6 removes everything after the first word, except for the 
trailing newline character. This leaves the time, 4:25pm, along with the trailing 
newline, stored in $time. 

Line 7 reads the second line from WOUT. Because this line contains no useful information, 
there is no need to assign it to any scalar variable. 

Line 8 reads the rest of the output from w to the array variable @users. After this 
output has been read, line 9 closes WOUT, which terminates the process that is running 
the w command. 

Each element of the list stored in @users contains one line of user information. Because 
this program needs only the first word of each line, lines 10-12 get rid of everything 
else (except, again, for the trailing newline character). After this loop is complete, the 
array in @users contains a list of users logged on. 

Line 13 prints the current time, as stored in $time. Note that print does not need to 
specify a trailing newline character, because $time contains one. 

Lines 16-21 sort the list of users in @users and prints them. Because a user can be logged 
on more than once, $prevuser stores the last user name printed. The value stored in 
$user is not printed unless it is not the same as the value stored in $prevuser. 

Redirecting One File to Another

Many UNIX shells enable you to direct both the standard output file and the standard 



error file to the same output file. For example, in the Bourne shell sh, the command 

$ foo >file1 2>&1

runs the command foo and stores the output from the standard output file and the 
standard error file in file1. 

Listing 12.2 shows how you can do this in Perl.

 

Listing 12.2. A program that redirects the standard output and 
standard error files.

1:  #!/usr/local/bin/perl

2:  

3:  open (STDOUT, ">file1") || die ("open STDOUT failed");

4:  open (STDERR, ">&STDOUT") || die ("open STDERR failed");

5:  print STDOUT ("line 1\n");

6:  print STDERR ("line 2\n");

7:  close (STDOUT);

8:  close (STDERR);

 

This program produces no output. 

 The following are the contents of the output file file1: 

line 2

line 1



As you can see, these lines aren't in the order intended. To understand what is 
happening, let's examine this program in more detail. 

Line 3 redirects the standard output file. To do this, it opens the output file file1 and 
associates it with the file variable STDOUT; this closes the standard output file. 

Line 4 redirects the standard error file. The argument >&STDOUT tells the Perl 
interpreter to use the file already opened and associated with STDOUT. This means that 
the file variable STDERR refers to the same file as STDOUT. 

Lines 5 and 6 write to STDOUT and STDERR, respectively. Because these file variables refer 
to the same file, both lines are written to file1. Unfortunately, they are written in 
the wrong order. What has happened? 

The problem arises because of how UNIX handles the writing of output. When you use 
print (or any other function) to write to a file such as the standard output file, what 
the UNIX operating system really does is copy the output to a special internal storage 
area called a buffer. (You can think of a buffer as a giant character string or as an 
array of characters.) Subsequent output operations continue writing to the buffer 
until it is full; when the buffer is full, the entire buffer is written out. Copying to a 
buffer and then writing out the entire buffer takes much less time than writing 
individual lines of text. (This is because, on most machines, input-output operations are 
slower than memory-access operations.) 

When a program ends, any non-empty buffers are written out. However, the system 
maintains separate buffers for STDERR and STDOUT, and it writes out the buffer for 
STDERR first. This means that line 2, which is stored in the STDERR buffer, appears before 
line 1, which is stored in the STDOUT buffer. 

To get around this problem, you can tell the Perl interpreter not to use a buffer for a 
particular file. To do this, do the following: 

1.  Select the file using the select function. 
2.  Assign 1 to the system variable $|. 

The system variable $| indicates whether a particular file is to be buffered (in other 
words, whether it should use a buffer or not). If $| is assigned a nonzero value, no 
buffer is used. As with $~ and $^, assigning to $| affects the current default file, which 
is the file last specified in a call to select (or STDOUT, if select has not been called). 

Listing 12.3 shows how you can use $| to ensure that your output lines appear in the 
correct order. 



Listing 12.3. A program that redirects standard input and output and 
turns off buffering.

1:  #!/usr/local/bin/perl

2:  

3:  open (STDOUT, ">file1") || die ("open STDOUT failed");

4:  open (STDERR, ">&STDOUT") || die ("open STDERR failed");

5:  $| = 1;

6:  select (STDERR);

7:  $| = 1;

8:  print STDOUT ("line 1\n");

9:  print STDERR ("line 2\n");

10: close (STDOUT);

11: close (STDERR);

 

This program produces no output. 

 The contents of the output file file1 are now the following: 

line 1

line 2

Line 5 sets $| to 1, which tells the Perl interpreter that the current default file does 
not need to be buffered. Because select has not yet been called, the current default 
file is STDOUT, which means that line 5 turns off buffering for the standard output file 
(which has been redirected to file1). 

Line 6 sets the current default file to STDERR, and line 7 once again sets $| to 1. This 
turns off buffering for the standard error file (which has also been redirected to 



file1). 

Because buffering has been turned off for both STDERR and STDOUT, lines 8 and 9 write to 
file1 right away. This means that the output lines appear in file1 in the order in which 
they are printed. 

Specifying Read and Write Access

To open a file for both read and write access, specify +> before the filename, as follows: 

open (READWRITE, "+>file1");

This opens the file named file1 for both reading and writing. This enables you to 
overwrite portions of a file. 

Opening a file for reading and writing works best in conjunction with the library 
functions seek and tell, which enable you to skip to the middle of a file. (For more 
information on seek and tell, refer to the section called "Skipping and Rereading Data," 
later in today's lesson.)

NOTE

You also can use +< as the prefix to specify both reading 
and writing, as follows: 

open (READWRITE, "+<file1"); 

The prefix <, by itself, specifies that the file is to be 
opened for reading. This means that the following two 
statements are identical: 

open (READONLY, "<read");

open (READONLY, "read") 

The close Function

The library function close was discussed on Day 6, "Reading from and Writing to Files." 
It closes a file opened by open, as follows: 

close (MYFILE);



Here, MYFILE is the file variable (passed to open) that is associated with the open file.

NOTE

If you use close to close a pipe, the program will wait 
for the piped program to terminate. For example: 

open (MYPIPE, "cat file*|");

close (MYPIPE); 

When close is called, the program suspends execution 
until the command cat file* is terminated 

The print, printf, and write Functions 

The print, printf, and write functions have been covered also in previous chapters, but 
I'll briefly recap them here. 

The print function is the simplest function. It writes to the file specified, or to the 
current default file if no file is specified. For example: 

print ("Hello, there!\n");

print OUTFILE ("Hello, there!\n");

The first statement writes to the current default file (which is STDOUT unless select 
has been called). The second statement writes to the file specified by OUTFILE. 

The printf function formats a string and sends it to either the file specified or the 
current default file. For example, the statement 

printf OUTFILE ("You owe me %8.2f", $owing);

takes the value stored in $owing and substitutes it for %8.2f in the specified string. 
%8.2f is an example of a field specifier and indicates that the value stored in $owing is to 
be treated as a floating-point number. 

The write function uses a print format to send formatted output to the file that is 
specified or to the current default file. For example: 

select (OUTFILE);



$~ = "MYFORMAT";

write;

This call to write uses the print format MYFORMAT to send output to the file OUTFILE. 

For more information on printf or write, refer to Day 11, "Formatting Your Output." 

The select Function

The select function also is covered on Day 11. This function is passed a file variable, 
which becomes the new current default file. For example: 

select (MYFILE);

In this case, MYFILE is now the current default file, which means that calls to print, 
write, and printf write to MYFILE unless a file variable is explicitly specified. 

The eof Function

The library function eof checks whether the last input file read has been exhausted. If 
all of the input has been read, eof returns a nonzero value. If there is input remaining, 
eof returns zero. 

The eof function was first introduced on Day 6. You might have noticed that, on that 
day, the examples that use eof use it without parentheses. This is because the behavior 
of eof is a little tricky if you are using it in conjunction with the <> operator; in this 
case, eof and eof() behave differently. 

Listing 12.4 shows how eof interacts with <>. It prints the contents of one or more input 
files whose names are supplied on the command line. A line of dashes is printed after 
each input file is completed. 

To run this program yourself, create two files named file1 and file2. Put the 
following in file1: 

This is a line from the first file.

Here is the last line of the first file.

Then, put the following in file2: 



This is a line from the second and last file.

Here is the last line of the last file.

Finally, specify file1 and file2 on the command line when you run this program. For 
example, if you have called this program program 12_4, run it as follows: 

$ program12_4 file1 file2

This will give you the output shown in the input-output example. 

 

Listing 12.4. A program that uses eof and <> together.

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <>) {

4:          print ($line);

5:          if (eof) {

6:                  print ("-- end of current file --\n");

7:          }

8:  }

 

$ program12_4 file1 file2

This is a line from the first file.

Here is the last line of the first file.



-- end of current file --

This is a line from the second and last file.

Here is the last line of the last file.

-- end of current file --

$

 The <> operator in line 3 tells the program to read the next line of input 
from the input files supplied on the command line. Line 4 then prints the line. 

Line 5 calls eof without parentheses. This is the form of eof that you are familiar with. 
It returns true if the current input file has been completely read.

When you test for end-of-file, use either eof or eof() 
but not both 

Compare the program in Listing 12.4 with Listing 12.5, which uses eof() instead of eof.

 

Listing 12.5. A program that uses eof() and <> together.

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <>) {

4:          print ($line);

5:          if (eof()) {

6:                  print ("-- end of output --\n");

7:          }

8:  }



 

$ program12_5 file1 file2

This is a line from the first file.

Here is the last line of the first file.

This is a line from the second and last file.

Here is the last line of the last file.

-- end of output --

$

 Line 5 of this program calls eof with parentheses. Calls to eof with 
parentheses only return true when all of the files have been read. If the program is at 
the end of the first input file, eof() returns false because there is still input to be read.

NOTE

If you like, you can use eof with a particular file. For 
example: 

if (eof(MYFILE)) {
# do end-of-file stuff

} 

Here, the conditional expression returns true if all of 
MYFILE has been read. 

Also, note that the distinction between eof and eof() is 
only meaningful when you are using the <> operator. If 
you are just reading from a single file, it doesn't matter 
whether you supply parentheses or not. For example: 

while ($line = <STDIN>) {
# stuff goes here
if (eof) { # you can also use eof() here
# more stuff here
}

} 



Indirect File Variables

When you call any of the functions described so far in today's lesson, you can indicate 
which file to use by specifying a file variable. However, these functions also enable you 
to supply a scalar variable in place of a file variable; when you do, the Perl interpreter 
treats the value stored in the scalar variable as the name of the file variable. For 
example, consider the following: 

$filename = "MYFILENAME";

open ($filename, ">file1");

This call to open takes the value stored in $filename-MYFILENAME-and uses it as the file-
variable name. This means that the file variable MYFILENAME is now associated with the 
output file file1. 

Listing 12.6 is an example of a program that stores a file-variable name in a scalar 
variable and passes the library variable to Perl input and output functions.

 

Listing 12.6. A program that uses a scalar variable to store a file 
variable name.

1:  #!/usr/local/bin/perl

2:  

3:  &open_file("INFILE", "", "file1");

4:  &open_file("OUTFILE", ">", "file2");

5:  while ($line = &read_from_file("INFILE")) {

6:          &print_to_file("OUTFILE", $line);

7:  }

8:  

9:  sub open_file {

10:         local ($filevar, $filemode, $filename) = @_;



11: 

12:         open ($filevar, $filemode . $filename) ||

13:                 die ("Can't open $filename");

14: }

15: sub read_from_file {

16:         local ($filevar) = @_;

17: 

18:         <$filevar>;

19: }

20: sub print_to_file {

21:         local ($filevar, $line) = @_;

22: 

23:         print $filevar ($line);

24: }

 

This program produces no output. 

 This program is just a fancy way of copying the contents of file1 to file2. 
Line 3 opens the input file, file1, for reading by calling the subroutine open_file. This 
subroutine is passed the name of the file variable to use, which is INFILE. 

Line 4 uses the same subroutine, open_file, to open the output file, file2, for writing. 
The file variable OUTFILE is used in this open operation. 

Line 5 calls read_from_file to read a line of input and passes it the file variable name 
INFILE. Line 18 substitutes the value of $filevar, INFILE, into <$filevar>, yielding the 
result <INFILE>; then, it reads a line from this input file. Because this line-reading 
operation is the last expression evaluated in the subroutine, the line read is returned by 
the subroutine and assigned to $line. 

Line 6 then passes OUTFILE and the input line just read to the subroutine print_to_file.



NOTE

All of the functions you've seen so far in this chapter-
open, close, print, printf, write, select, and eof-enable 
you to use a scalar variable in place of a file variable. 

The functions open, close, write, select, and eof also 
enable you to use an expression in place of a file 
variable. The value of the expression must be a 
character string that can be used as a file variable 

Skipping and Rereading Data

In the programs you've seen so far,i nput files have always been read in order, starting 
with the first line of input and continuing on to the end. Perl provides two special 
functions, seek and tell, which enable you to skip forward or backward in a file so that 
you can skip or re-read data. 

The seek Function

The seek function moves backward or forward in a file. 

The syntax for the seek function is 

seek (filevar, distance, relative_to);

As you can see, seek requires three arguments: 

●     filevar, which is the file variable representing the file in which to skip 
●     distance, which is an integer representing the number of bytes (characters) to skip 
●     relative_to, which is either 0, 1, or 2 

If relative_to is 0, the number of bytes to skip is relative to the beginning of the file. If 
relative_to is 1, the skip is relative to the current position in the file (the current 
position is the location of the next line to be read). If relative_to is 2, the skip is 
relative to the end of the file. 

For example, to skip back to the beginning of the file MYFILE, use the following: 

seek(MYFILE, 0, 0);



The following statement skips forward 80 bytes: 

seek(MYFILE, 80, 1);

The following statement skips backward 80 bytes: 

seek(MYFILE, -80, 1);

And the following statement skips to the end of the file (which is useful when the file 
has been opened for reading and writing): 

seek(MYFILE, 0, 2);

The seek function returns true (nonzero) if the skip was successful, and 0 if it failed. It 
is often used in conjunction with the tell function, described in the next section. 

The tell Function

The tell function returns the distance, in bytes, between the beginning of the file and 
the current position of the file (the location of the next line to be read). 

The syntax for the tell function is 

tell (filevar);

filevar, which is required, represents the file whose current position is needed. 

For example, the following statement retrieves the current position of the file MYFILE: 

$offset = tell (MYFILE);

NOTE



tell and seek accept an expression in place of a file 
variable, provided the value of the expression is the 
name of a file variable 

You can use tell and seek to skip to a particular position in a file. For example, Listing 
12.7 uses these functions to print pairs of lines twice each. (This is, of course, not the 
fastest way to do this.)

 

Listing 12.7. A program that demonstrates seek and tell. 

1:  #!/usr/local/bin/perl

2:  

3:  @array = ("This", "is", "a", "test");

4:  open (TEMPFILE, ">file1");

5:  foreach $element (@array) {

6:          print TEMPFILE ("$element\n");

7:  }

8:  close (TEMPFILE);

9:  open (TEMPFILE, "file1");

10: while (1) {

11:         $skipback = tell(TEMPFILE);

12:         $line = <TEMPFILE>;

13:         last if ($line eq "");

14:         print ($line);

15:         $line = <TEMPFILE>;  # assume the second line exists

16:         print ($line);

17:         seek (TEMPFILE, $skipback, 0);

18:         $line = <TEMPFILE>;



19:         print ($line);

20:         $line = <TEMPFILE>;

21:         print ($line);

22: }

 

$ program12_7

This

is

This

is

a

test

a

test

$

 Lines 3-8 of this program create a temporary file named file1 consisting of 
four lines: This, is, a, and test. Line 9 opens this temporary file for reading. 

Lines 10-22 loop through the test file. Line 11 calls tell to obtain the current position 
of the file before reading the pair of lines. Lines 12-16 read the lines and print them 
(first testing whether the end of the file has been reached). 

Line 17 then calls seek, which positions the file at the point returned by tell in line 11. 
This means that the pair of lines read by lines 12 and 15 are read again by lines 18 and 20. 
Therefore, lines 19 and 21 print a second copy of the input lines.

NOTE



You cannot use seek and tell if the file variable 
actually refers to a pipe. For example, if you open a pipe 
using the statement 

open (MYPIPE, "cat file*|"); 

then the following statement makes no sense:

$illegal = tell (MYPIPE) 

System Read and Write Functions

In Perl, the easiest way to read input from a file is to use the <filevar> operator, where 
filevar is the file variable representing the file to read. Perl also provides two other 
functions that read from an input file: 

●     read, which is equivalent to the UNIX fread function 
●     sysread, which is equivalent to the read function 

Perl also enables you to write output using the built-in function syswrite, which calls 
the UNIX write function. 

These functions are described in the following sections. 

The read Function

The read function is designed to be equivalent to the UNIX function fread. It enables 
you to read an arbitrary number of characters (bytes) into a scalar variable. 

The syntax for the read function is 

read (filevar, result, length, skipval);

Here, filevar is the file variable representing the file to read, result is the scalar 
variable (or array variable element) into which the bytes are to be stored, and length is 
the number of bytes to read. 

skipval is an optional argument which specifies the number of bytes to skip before 
reading. 

For example: 



read (MYFILE, $scalar, 80);

This call to read tries to read 80 bytes from the file represented by the file variable 
MYFILE, storing the resulting character string in $scalar. It returns the number of 
bytes actually read; if MYFILE is at end-of-file, it returns 0 (read returns the null 
string if an error occurs). 

You can use read to append to an existing scalar variable by specifying a fourth 
argument, which indicates the number of bytes to skip in the scalar variable. 

read (MYFILE, $scalar, 40, 80);

This call to read reads another 40 bytes from MYFILE. When copying these bytes into 
$scalar, read first skips the first 80 bytes already stored there. 

The sysread and syswrite Functions

If you want to read data as quickly as possible, you can call sysread instead of read. 

The syntax for the sysread function is 

sysread (filevar, result, length, skipval);

These arguments are the same as for read. 

For example: 

sysread (MYFILE, $scalar, 80);

sysread (MYFILE, $scalar, 40, 80);

sysread is equivalent to the UNIX function read. The arguments to sysread are the same 
as those for the Perl read function. 

To write as quickly as possible, call the syswrite function, which is equivalent to the 
UNIX function write. 

The syntax of the syswrite function is 



syswrite (filevar, data, length, skipval);

Here, filevar is the file to write to, data is the place where the data is located, length 
is the number of bytes to write, and skipval is the number of bytes to skip before writing. 

For instance, the following call writes the first 80 bytes of $scalar to the file specified 
by MYFILE: 

syswrite (MYFILE, $scalar, 80);

Similarly, the following statement skips the first 80 bytes stored in $scalar, and then 
writes the next 40 bytes to the file specified by MYFILE: 

syswrite (MYFILE, $scalar, 40, 80);

Don't use sysread and syswrite unless you know what 
you are doing. For more information on these functions, 
refer to the UNIX system manual pages for the read and 
write functions 

Reading Characters Using getc 

Perl provides one other built-in function, getc, which reads a single character of input 
from a file. 

The syntax for calls to the getc function is 

char = getc (infile);

infile is the file from which to read, and char is the character returned. 

For example: 



$singlechar = getc(INFILE);

This statement reads a character from the file represented by INFILE and stores it (as a 
character string) in the scalar variable $singlechar. 

The getc is useful for "hot key" applications. These applications accept and process input 
one character at a time rather than one line at a time. Listing 12.8 is an example of such 
a program. It reads one character at a time and checks whether the character is 
alphanumeric. If it is, it writes out the next higher letter or number. For example, when 
you enter a, the program prints out b, and so on. In this example, the alphabetic letters a 
through z and the digits 0 through 9 are typed in.

 

Listing 12.8. A program that demonstrates the use of getc. 

1:  #!/usr/local/bin/perl

2:  

3:  &start_hot_keys;

4:  while (1) {

5:          $char = getc(STDIN);

6:          last if ($char eq "\\");

7:          $char =~ tr/a-zA-Z0-9/b-zaB-ZA1-90/;

8:          print ($char);

9:  }

10: &end_hot_keys;

11: print ("\n");

12: 

13: sub start_hot_keys {

14:         system ("stty cbreak");

15:         system ("stty -echo");

16: }



17: 

18: sub end_hot_keys {

19:         system ("stty -cbreak");

20:         system ("stty echo");

21: }

 

$ program12_8

bcdefghijklmnopqrstuvwxyza1234567890

$

 The subroutine start_hot_keys modifies the runtime environment to support 
hot-key input. To do this, it uses two calls to the built-in function system, which simply 
takes its argument and executes it. The command stty cbreak tells the system to process 
input one character at a time, and the command stty -echo tells the system not to 
display characters typed at the keyboard.

NOTE

Some machines might not support hot keys or might use 
different commands to establish the hot-key 
environment. If you are on a machine that uses different 
commands to establish the environment, you still can 
run this program; just change the stty commands to 
whatever works on your machine 

The loop in lines 4-9 reads and writes one character per loop iteration. Line 5 starts off 
by reading a character from the standard input file using getc. 

Line 6 tests whether the character read is a backslash. If it is, the loop terminates. If 
the character is not a backslash, the program continues with line 7. This line translates 
all alphanumeric characters to the next-highest letter or number; for example, it 
translates g to h, E to F, and 7 to 8. The characters z, Z, and 9 are translated to a, A, and 



0, respectively. 

Line 8 prints out the translated character. Because the characters you type at the 
keyboard are not displayed, the program makes it look like your keyboard is 
malfunctioning. (It's quite disorienting!) 

The subroutine end_hot_keys restores the normal working environment by undoing the 
system calls that are performed by start_hot_keys.

If you are using hot keys, when you clean up make sure 
you call stty-cbreak before calling stty echo. If you 
call stty echo first, your terminal might wind up not 
printing newline characters properly 

Reading a Binary File Using binmode 

If your machine distinguishes between text files and binary files (files that contain 
unprintable characters), your Perl program can tell the system that a particular file is 
a binary file. To do this, call the built-in function binmode. 

The syntax for calling the binmode function is 

binmode (filevar);

filevar is a file variable. 

binmode expects a file variable (or an expression whose value is the name of a file 
variable). It must be called after the file is opened, but before the file is read. 

The following is an example of a call to binmode: 

binmode (MYFILE);

NOTE



Normally, you won't need to use this function unless 
you are running in a DOS-like environment

Directory-Manipulation Functions

The input and output functions that you have seen earlier read and write data to files. 
Perl also provides a group of functions that enable you to manipulate UNIX directories. 
Functions exist that enable you to create, read, open, close, delete, and skip around in 
directories. The following sections describe these functions. 

The mkdir Function 

To create a new directory, call the function mkdir. 

The syntax for the mkdir function is 

mkdir (dirname, permissions);

mkdir requires two arguments: 

●     dirname, which is the name of the directory to be created (which can be a 
character string or an expression whose value is a directory name) 

●     permissions, which is an octal (base-8) number specifying the access permissions for 
the new directory 

For example, to create a directory named /u/jqpublic/newdir, you can use the 
following statement: 

mkdir ("/u/jqpublic/newdir", 0777);

To create a subdirectory of the current working directory, just specify the new 
directory name, as follows: 

mkdir ("newdir", 0777);

If the current working directory is /u/janedoe/mydir, this creates a subdirectory named 
/u

/janedoe/mydir/newdir. 



The permissions value of 0777 in both these examples grants read, write, and execute 
permissions to everybody. Table 12.1 lists each possible access permission and the octal 
number associated with it.

Table 12.1. Access permissions for the mkdir function.

Value Permission 

4000 Set user ID on execution 

2000 Set group ID on execution 

1000 Sticky bit (see the UNIX chmod 
manual page) 

0400 Read permission for file owner 

0200 Write permission for file owner 

0100 Execute permission for file owner 

0040 Read permission for owner's group 

0020 Write permission for owner's group 

0010 Execute permission for owner's group 

0004 Read permission for world 

0002 Write permission for world 

0001 Execute permission for world 

You can combine access permissions by adding (or doing a logical OR operation on) the 
appropriate octal values in the table. For example, to grant read, write, and execute 
permission to the owner but only read permission to everybody else, specify 0744 as the 
permission value.

NOTE

All of the permission values shown here are in octal 
notation, because a leading zero is specified. If you like, 
you can use decimal or hexadecimal here, but it won't be 
as easy to read.

Also note that the permission value set here is affected 
by the current value of umask. See the description of the 
umask function later today for more information 

mkdir returns true (nonzero) if the directory is successfully created. It returns false 
(0) if the directory is not. 



The chdir Function 

To set a directory to be the current working directory, use the function chdir. 

The syntax for the chdir function is 

chdir (dirname);

dirname is the name of the new current working directory. 

chdir returns true if the current directory is set properly, false if an error occurs. 

For example, to set the current working directory to /u/jqpublic/newdir, use the 
following statement: 

chdir ("/u/jqpublic/newdir");

NOTE

As with mkdir, the directory name passed to chdir can be 
either a character string or an expression whose value is 
a directory name. For example, the following sets the 
current directory to be /u/jqpublic/newdir: 

$dir = "/u/jqpublic/";

chdir ($dir . "newdir") 

The opendir Function 

You can have your program examine a list of the files contained in a directory. To do 
this, the first step is to call the built-in function opendir. 

The syntax for the opendir function is 

opendir (dirvar, dirname);

dirvar is the name the program is to use to represent the directory, also known as a 



directory variable, and dirname is the name of the directory to open (which can be a 
character string or the value of an expression). 

opendir returns true if the open operation is successful, and it returns false otherwise. 

For example, to open the directory named /u/janedoe/mydir, you can use the following 
statement: 

opendir (DIR, "/u/janedoe/mydir");

This associates the directory variable DIR with the opened directory.

NOTE

If you like, you can use the same name as both a 
directory variable and a file variable.

opendir (MYNAME, "/u/jqpublic/dir");

open (MYNAME, "/u/jqpublic/dir/file"); 

The Perl interpreter always can tell from context 
whether a name is being used as a directory variable or 
as a file variable. (However, there is no real reason to 
do so. Your programs will be easier to read if you use 
different names to represent files and directories.

The closedir Function 

To close an opened directory, call the closedir function. 

The syntax for the closedir function is 

closedir (mydir);

closedir expects one argument: the directory variable associated with the directory to 
be closed. 

The readdir Function 

After opendir has opened a directory, you can access the name of each file or 



subdirectory stored in the directory by calling the function readdir. 

The syntax for the readdir function is 

readdir (mydir);

Like closedir, readdir is passed the directory variable that is associated with the open 
directory. 

If the value returned from readdir is assigned to a scalar variable, readdir returns the 
name of the first file or subdirectory stored in the directory. For example: 

$filename = readdir(MYDIR);

The first name is returned also if the return value from readdir is assigned to an 
element of an array variable. For example: 

$filearray[3] = readdir(MYDIR);

$filearray{"foo"} = readdir(MYDIR);

If readdir is called again, it returns the next name in the directory; subsequent calls 
return other names, continuing until the directory is exhausted. Listing 12.9 uses 
readdir to list the files and subdirectories in a directory.

 

Listing 12.9. A program that lists the files and subdirectories in a 
directory.

1:  #!/usr/local/bin/perl

2:  

3:  opendir(HOMEDIR, "/u/jqpublic") ||

4:          die ("Unable to open directory");

5:  while ($filename = readdir(HOMEDIR)) {



6:          print ("$filename\n");

7:  }

8:  closedir(HOMEDIR);

 

$ program12_9

.

..

.cshrc

.Xresources

.xsession

test

bin

letter

file1

$

 Line 3 opens the directory /u/jqpublic, which is the home directory for user 
jqpublic. The opendir function associates the directory variable HOMEDIR with 
/u/jqpublic. 

Lines 5-7 read the name of each file in the directory in turn. Line 6 prints each filename 
as it is read in. 

Note that, on a UNIX system, the list of names includes two special files: 

●     The name . (a single period), which represents the current directory 
●     The name .. (two periods), which represents the parent directory 

As you can see, readdir reads the names in the order in which they appear in the 
directory. 



Listing 12.10 shows how you can display the names in alphabetical order.

 

Listing 12.10. A program that lists the files and subdirectories in a 
directory in alphabetical order.

1:  #!/usr/local/bin/perl

2:  

3:  opendir(HOMEDIR, "/u/jqpublic") ||

4:          die ("Unable to open directory");

5:  @files = readdir(HOMEDIR);

6:  closedir(HOMEDIR);

7:  foreach $file (sort @files) {

8:          print ("$file\n");

9:  }

 

$ program12_10

.

..

.Xresources

.cshrc

.xsession

bin

file1

letter



test

$

 The readdir function behaves differently when its return value is assigned 
to an array; in this case, the entire list of files and subdirectories in the directory is 
assigned to the array variable @files by line 5. 

After the entire list is stored, sort can be called to sort the list into alphabetical 
order. The foreach loop in lines 7-9 then prints the sorted list one name at a time. 

The telldir and seekdir Functions 

As you've seen, the library functions tell and seek enable you to skip backward and 
forward in a file. Similarly, the library functions telldir and seekdir enable you to 
skip backward and forward in a list of directories. 

To use telldir, pass it the directory variable defined by opendir. telldir returns the 
current directory location (where you are in the list of files). 

The syntax for the telldir function is 

location = telldir (mydir);

Here, mydir is the directory variable corresponding to the directory whose file list you 
are examining, and location is assigned the current directory location. 

To skip to the directory location returned by telldir, call seekdir. 

The syntax for the seekdir function is 

seekdir(mydir, location);

This call to seekdir sets the current directory location to the location specified by 
location.



seekdir works only with directory locations returned 
by telldir 

The rewinddir Function 

Although being able to skip anywhere you like in a directory list is useful, the most 
common skipping operation in directory lists is rewinding the directory list, or starting 
over again. Because of this, Perl provides a special function, rewinddir, that handles 
the rewind operation. 

The syntax for the rewinddir function is 

rewinddir (mydir);

rewinddir sets the current directory location to the beginning of the list of files, 
which lets you read the entire list of files again. As with the other directory functions, 
mydir is the directory variable defined by opendir. 

The rmdir Function 

The final directory function supplied by Perl is rmdir, which deletes an empty directory. 

The syntax for calling the rmdir function is 

rmdir (dirname);

rmdir returns true (nonzero) if the directory dirname is deleted successfully, and false 
if the directory is not empty or cannot be deleted. 

File-Attribute Functions

Perl provides several library functions that modify the attributes or behavior of files. 
These functions can be divided into the following groups: 

●     Functions that relocate (rename or delete) files 
●     Functions that establish links or symbolic links 
●     Functions that modify file permissions 
●     Other file-attribute functions 



These groups of functions are described in the following sections. 

File-Relocation Functions

Perl provides the following file-relocation functions: 

●     rename, which moves or renames a file 
●     unlink, which deletes a file 

The rename Function

The built-in function rename changes the name of a file. 

The syntax for the rename function is 

rename (oldname, newname);

oldname is the old filename, and newname is the new filename. 

The rename function returns true if the rename succeeds, and false if an error occurs. 

For example, to change a file named name1 to name2, use the following: 

rename ("name1", "name2");

You can use the value stored in a scalar variable as an argument to rename, or any 
variable or expression whose value is a character string, as follows: 

rename ($oldname, &get_new_name);

You can also use rename to move a file from one directory to another (provided both 
directories are in the same file system). For example: 

rename ("/u/jqpublic/name1", "/u/janedoe/name2");

NOTE



When rename moves a file, as in 

rename ("name1", "name2"); 

it does not check whether a file named name2 already 
exists. Any existing name2 is destroyed by the rename 
operation. 

To get around this problem, use the -e file-test operator, 
which checks whether a named file exists, as follows: 

-e "name2" || rename (name1, name2); 

Here, the || operator ensures that rename is called only 
when no file named name2 already exists 

The unlink Function

To delete a file, use the unlink function. 

The syntax for the unlink function is 

num = unlink (filelist);

This function takes a list as its argument and deletes all the files named in that list. 

unlink returns the number of files actually deleted. 

The following is an example of a call to unlink: 

@deletelist = ("file1", "file2");

unlink (@deletelist);

The function is called unlink, instead of delete, because what it is actually doing is 
removing a reference, or link, to the particular file. See the following section for more 
details on links in Perl. 

Link and Symbolic Link Functions



In the UNIX environment, files can be "contained" in more than one directory at a time. 
Each directory contains a reference, or link, to the file. 

The following sections describe how to create and access links. 

NOTE

If a file is referenced by multiple links, unlink removes 
only one of the links, and the file can still be 
referenced 

The link Function

To create a link to an existing file, use the built-in function link. 

The syntax for the link function is 

link (newlink, file);

newlink is the link being created, and file is the file being linked to. 

link returns true if the link is created, and false if an error occurs. 

For example: 

link ("/u/jqpublic/file", "/u/janedoe/newfile");

After link has been called, the file /u/jqpublic/file also can be thought of as the file 
/u/janedoe/newfile. If unlink is called using /u/jqpublic/file, as in 

unlink ("/u/jqpublic/file");

you can still reference the file by specifying the name /u/janedoe/newfile. 

The symlink Function

The link created by the link function is called a hard link, which means that it actually 
references the file itself. Many operating systems also support symbolic links, which are 
references to the filename, not to the file itself. 



To create a symbolic link, use the function symlink. 

The syntax for the symlink function is 

symlink (newlink, file);

newlink is the link being created, and file is the file being linked to. 

symlink, like link returns true if the link is created, and false if an error occurs. 

The following is an example of symlink: 

symlink("/u/jqpublic/file", "/u/janedoe/newfile");

Here, /u/janedoe/newfile is symbolically linked to /u/jqpublic/file. Now, when the 
following statement is executed, the file is actually deleted: 

unlink ("/u/jqpublic/file");

/u/janedoe/newfile now references nothing at all. (In this case, /u/janedoe/newfile is 
an example of an unresolved symbolic link.) When /u/jqpublic/file is created again, you 
will be able to access the new file using /u/janedoe/newfile. 

The readlink Function

If a filename, such as /u/janedoe/newfile, is actually a symbolic link to another 
filename, the function readlink returns the filename to which it is linked. 

The syntax for the readlink function is 

filename = readlink (linkname);

linkname is the symbolic link, and filename is the equivalent filename. 

readlink returns an empty string if the filename is not a symbolic link. (In particular, 
readlink fails if the filename is actually a hard link.) 

For example: 



$linkname = readlink("/u/janedoe/newfile");

# $linkname now contains "/u/jqpublic/file"

Listing 12.11 is an example of a program that prints all the symbolic links in a particular 
directory.

 

Listing 12.11. A program that prints symbolic links.

1:  #!/usr/local/bin/perl

2:  

3:  $dir = "/u/janedoe";

4:  opendir(MYDIR, $dir);

5:  while ($name = readdir(MYDIR)) {

6:          if (-l $dir . "/" . $name) {

7:                  print ("$name is linked to ");

8:                  print (readlink($dir . "/". $name) . "\n");

9:          }

10: }

11: closedir(MYDIR);

 

$ program12_11

newfile is linked to /u/jqpublic/file

$



 This program uses opendir and readdir to examine each file in the directory in 
turn. Line 6 uses the -l file-test operator to determine whether the filename is 
actually a symbolic link. If the filename is a symbolic link, the following expression 
becomes true, and the program executes the calls to print in lines 7 and 8: 

-l $dir . "/" . $name

Line 8 calls readlink, passing it the directory name and the filename stored in $name. 
Because readlink is called only if the expression in line 6 is true, $name is always a 
symbolic link. 

File-Permission Functions

As you've seen, the built-in function mkdir requires you to specify the access permissions 
for the directory you are creating. These permissions indicate, for example, whether 
particular users are allowed to read files from the directory or write into the 
directory. 

In the UNIX environment, each individual file has its own set of access permissions. The 
set of possible permissions is the same as for directories. (Refer to Table 12.1 in the 
section titled "The mkdir Function" earlier in today's lesson for a complete list of the 
possible functions.) 

In Perl, three functions are defined that deal with access permissions. 

●     chmod, which changes the access permissions for a file 
●     chown, which changes the owner of a file 
●     umask, which sets the default access permissions for a file 

The chmod Function

To change the access permissions for a list of files, call the chmod function. 

The syntax for the chmod function is 

chmod (permissions, filelist);

permissions is the set of access permissions you want to give, and is a standard UNIX file 
permissions mask. (For example, setting permissions to 0777 gives read, write, and 
execute permission to everybody. See the section called "The mkdir Function" for a 



description of the set of permissions.) filelist is the list of files whose permissions you 
want to change. 

The chmod function returns the number of files whose permissions were successfully set. 

The following is an example of a call to chmod: 

@filelist = ("file1", "file2");

chmod (0777, @filelist);

In this example, the files file1 and file2 are assigned global read, write, and execute 
permissions.

NOTE

You cannot change access permissions using chmod unless 
you have permission to do so. You need to have been 
granted write permission on a file before you can change 
its permissions 

The chown Function

Normally, the owner of a file is the person who created it. To change the owner of a 
file, use the function chown. 

The syntax for the chown function is 

chown (userid, groupid, filelist);

The chown function requires three arguments: 

●     userid, which is the (numerical) user ID of the new owner of the file 
●     groupid, which is the new numerical group ID to be assigned to the file (or -1 if the 

existing group ID is to be preserved) 
●     filelist, which is a list of files to change 

The chown function returns the number of files changed. 

The following is an example of a call to chown: 



@filelist = ("file1", "file2");

chown (17, -1, @filelist);

NOTE

On most UNIX systems, you can retrieve a user ID or 
group ID from the /etc/passwd file. You can use the Perl 
function getpwnam to retrieve information from this file. 
For more information on getpwnam, refer to Day 15, 
"System Functions." 

Also, the superuser (system administrator) is usually the 
only user allowed to change the owner of a file

The umask Function

As you've seen, you can change the access permissions for a file using chmod. To specify 
access permissions you cannot use when you create a file, use the umask function. 

The syntax for calls to umask is 

oldmaskval = umask (maskval);

maskval is the current umask value, and umask returns the previous (superseded) umask 
value in oldmaskval. Each umask value is a file creation mask, and is used to set the 
default permissions for files and directories. (See the umask manual page for more details 
on file creation masks.) 

For example, the following statement disables group and world access permissions for 
the newly created file: 

$oldperms = umask(0022);

NOTE



You can determine the current umask value by passing no 
arguments to umask, as follows: 

$currperms = umask(); 

This statement assigns the current umask value to 
$currperms. 

Permission File-Test Operators

Some file-test operators in Perl are designed to test for various permissions. Table 12.2 
lists these file-test operators; in each case, filename is the name of the file being tested. 

Table 12.2. File-test operators that test for permissions.

Operator Description 

-g Does filename have its set group ID bit set? 

-k Does filename have its "sticky bit" set? 

-r Is filename a readable file? 

-u Does filename have its set user ID bit set? 

-w Is filename a writable file? 

-x Is filename an executable file? 

-R Is filename readable only if the real user ID can 
read it? 

-W Is filename writable only if the real user ID can 
write? 

-X Is filename executable only if the real user ID can 
execute it? 

In this case, the real user ID is the user id specified at login, as opposed to the effective 
user ID, which is the user id under which you are currently running. (On some machines, 
a command such as /usr/local/etc/suid enables you to change your effective user ID.) 

(See Day 6 for more information on how to use file-test operators.) 

Miscellaneous Attribute Functions

The following sections describe other Perl functions that manipulate files. 



The truncate Function

The truncate function enables you to reduce the size of a specified file to a particular 
length. 

The syntax for the truncate function is 

truncate (filename, length);

filename is the name of the file to reduce, and length is the new length of the file. 

For example, the statement 

truncate ("/u/jqpublic/longfile", 5000);

reduces the size of /u/jqpublic/longfile to 5000 bytes in length. (If the file is already 
smaller than 5000 bytes, truncate does nothing.)

NOTE

You can use a file variable in place of the filename.

Truncate (MYFILE, 5000); 

The file variable must refer to a file opened for writing 
by the open function 

The stat Function

The stat function retrieves information about a particular file when given its name or 
a file variable representing its name. 

The syntax for the stat function is 

stat (file);

Here, file is either a filename or a file variable. 

stat returns a list containing the following elements, in this order: 



●     The device on which the file resides 
●     The internal reference number (inode number) for this file 
●     The permissions for the file 
●     The number of hard links to the file 
●     The numerical user ID of the file owner 
●     The numerical group ID of the file owner 
●     The device type, if this "file" is actually a device 
●     The size of the file (in bytes) 
●     When the file was last accessed 
●     When the file was last modified 
●     When the file status last changed 
●     The optimal block size for input-output operations on the file system containing 

the file 
●     The number of blocks allocated for this file 

Some of the items returned by stat can be obtained using file test operators. Table 12.3 
lists these items.

Table 12.3. File-test operators that check information returned by stat.

Operator Description 

-b Is filename a mountable disk (block 
device)? 

-c Is filename an I/O device (character 
device)? 

-s Is filename a non-empty file? 

-t Does filename represent a terminal? 

-A How long since filename accessed? 

-C How long since filename's inode 
accessed? 

-M How long since filename modified? 

-S Is filename a socket? 

For more information on stat or the information it returns, see the UNIX manual page 
for the stat command on your machine. 

The lstat Function

The lstat function returns the same information as stat, but it assumes that the name 
being passed as an argument is a symbolic link. 



The syntax for lstat is the same as that for stat. 

lstat (file);

file is either a filename or a file variable.

The time Function

The access and modification times returned by stat and by the -A and -M file-test 
operators are integers representing the number of elapsed seconds from January 1, 1970, 
to the time the file was accessed or modified. 

To obtain the number of elapsed seconds from January 1, 1970, to the present time, call 
the built-in function time. 

The syntax for calls to the time function is 

currtime = time();

currtime is the returned elapsed-seconds value. 

The gmtime and localtime Functions

The value returned by time can be converted to either Greenwich Mean Time or your 
computer's local time. 

To convert to Greenwich Mean Time, call the gmtime function. To convert to local time, 
call the localtime function. 

The syntax for the gmtime and localtime functions is identical: 

timelist = gmtime (timeval);

timelist = localtime (timeval);

Both functions accept the time value returned by time, stat, or the -A and -M file-test 
operators. 

Both functions return a list consisting of the following nine elements: 

●     Seconds 



●     Minutes 
●     The hour of the day, which is a value between 0 and 23 
●     The day of the month 
●     The month, which is a value between 0 (January) and 11 (December) 
●     The year 
●     The day of the week, which is a value between 0 (Sunday) and 6 (Saturday) 
●     The day of the year, which is a value between 0 and 364 
●     A flag indicating whether daylight saving time is in effect 

For more information on the list returned by gmtime or localtime, refer to the UNIX 
manual pages for the system functions with the same names. 

The utime Function

The time values returned by stat, time, and the -A and -M file-test operators can be used 
to set the access and modification times of other files. To do this, use the utime function. 

The syntax for the utime function is 

utime (acctime, modtime, filelist);

acctime is the new access time, modtime is the new modification time, and filelist is the 
list of files. 

utime returns the number of files whose access and modification times have been 
successfully changed. 

The following is an example of a call to utime: 

$acctime = -A "file1";

$modtime = -M "file1";

@filelist = ("file2", "file3");

utime ($acctime, $modtime, @filelist);

Here, the files file2 and file3 have their access and modification times changed to 
those of file1. 

The fileno Function

The fileno function returns the internal UNIX file descriptor associated with a 



particular file variable. 

The syntax for the fileno function is 

filedesc = fileno (filevar);

Here, filevar is the file variable whose descriptor is to be retrieved. 

The file descriptor returned by fileno is used in various UNIX system calls; these calls 
can be accessed using the system function (as described on Day 15). 

The flock and fcntl Functions

The flock and fcntl functions call the UNIX system commands of the same name. 

The syntax for the flock and fcntl functions is 

fcntl (filevar, fcntlrtn, value);

flock (filevar, flockop);

Here, filevar is a file variable representing an open file. fcntlrtn is a fcntl function as 
defined in the UNIX fcntl manual page, and value is the value passed to the function, if 
appropriate. Similarly, flockop is a file-locking operation, as defined in the UNIX flock 
manual page. 

For more information on these functions, refer to the manual pages or to a book about 
UNIX. (You won't really be able to use these functions effectively unless you know a 
fair bit about how your operating system works.) 

Using DBM Files

Many systems on which Perl is available support files that are created using the Data 
Base Management (DBM) library. Perl enables you to use an associative array to access 
a particular DBM file. 

The following sections describe how to access DBM files from Perl programs using the 
dbmopen and dbmclose functions. If you are running Perl 5, these functions have been 
superseded by the tie and untie functions; see Day 19, "Object-Oriented Programming in 
Perl," for more details. 

For more information on DBM, refer to your system's appropriate manual pages. 



The dbmopen Function 

To associate an associative array with a DBM file, use the dbmopen function. 

The syntax for the dbmopen function is 

dbmopen (array, dbmfilename, permissions);

This function requires three arguments: 

●     array, which is the associative array to use 
●     dbmfilename, which is the name of the DBM file to open 
●     permissions, which are the access permissions to use (See the section called "The 
mkdir Function" for more information on access permissions.) 

After the DBM file has been opened, the subscripts for the associative array represent 
the DBM file keys, and the values of the array represent the values associated with the 
keys.

Calling dbmopen destroys any existing values in the 
associative array 

The dbmclose Function 

To close a DBM file opened by dbmopen, use dbmclose. 

The syntax for the dbmclose function is 

dbmclose (array);

Here, array is the associative array specified in the call to dbmopen. 

Summary

Today, you learned how to open a pipe that directs input to the program, how to open a 



file for both reading and writing, and how to associate multiple file variables with a 
single file. You also learned how to test for the end of a particular input file or for 
the end of the last input file. 

You also learned how to skip backward and forward in files and how to read single 
characters from a file using getc. You can use getc to build hot-key applications, which 
act as soon as they read a single character from the keyboard. 

Perl provides several functions for manipulating directories. They enable you to create, 
open, read, close, delete, and skip around in directories. Other Perl functions enable 
you to move a file from one directory to another, create hard and symbolic links from 
one location to another, and delete a hard link (or a file). 

You learned about the Perl functions that enable you to change the file owner or file 
permissions, truncate a file, retrieve file information, set file access and modification 
times, retrieve the file descriptor, and call the flock and fcntl system commands. 

Finally, Perl provides an interface to the DBM library that enables you to associate 
DBM files with associative arrays. 

Q&A

Q: How can I determine whether a particular Perl function that manipulates 
the UNIX file system is defined on my machine? 

A: A Perl function that manipulates the UNIX file system normally has the same 
name as the UNIX command or C library function that performs the same task. If 
the UNIX command or C library function is defined, the Perl function is usually 
defined as well.
To check whether a UNIX command or C library function is defined, enter the 
command man name, where name is the name of the Perl library function for which 
you are checking. 

Q: Why does a list of files in a directory appear in unsorted order? 

A: The list appears in the order in which the files are stored in the directory. This 
varies, depending on the machine; usually, however, newer files appear at the 
end of the list. 

Q: Which is better to use: the file-test operators or the built-in function 
stat? 

A: Whenever possible, use the file-test operators. They are easier to use and are 
often more efficient. 

Q: Why are both read and sysread defined, when they are so similar? 

A: read, like the UNIX function fread, uses the standard UNIX input-output (I/O) 
environment. sysread and syswrite, on the other hand, bypass the standard I/O 
environment and perform low-level system calls. 



Q: Why are eof and eof() different? 

A: The short answer is: Just because. The long answer is that an empty list as an 
argument (as in eof()) refers to the list of files on the command line, as does the 
<> in 
while ($line = <>) ...

eof, on the other hand, refers only to the file currently being read. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  What do these functions do?
a.    tell
b.    mkdir
c.    link
d.    unlink

e.    truncate 
2.  What is the difference between stat and lstat? 
3.  What is the difference between tell and telldir? 
4.  How are the following files being opened?

A.    open (MYFILE, "<file1"); 
b.    open (MYFILE, "file2|");
c.    open (MYFILE, "+>file3"); 

d.     open (MYFILE, ">&STDOUT"); 
5.  What permissions are granted by the following values?

a.    0666
b.    0777
c.    0700

d.    0644 

Exercises

1.  Write a program that reads the directory /u/jqpublic and prints out all file and 
directory names that start with a period. Ignore the special files . (one period) 
and .. (two periods). 

2.  Write a program that lists all the files (not the subdirectories) in the directory 
/u/jqpublic and then lists the contents of any subdirectories, their 
subdirectories, and so on. (Hint: Use a recursive subroutine.) 

3.  Write a program that uses readdir and rewinddir to read a directory named 
/u/jqpublic and print a sorted list of the files and directories in alphabetical 
order. Ignore all names beginning with a period. (Of course, this is not the most 



efficient way to do this.) 
4.  Write a program that uses hot keys and does the following: 

❍     Reads single digits and prints out their English-language equivalents (for 
example, zero for 0, one for 1, and so on) 

❍     Terminates if it reads the Esc (escape) character 
❍     Ignores all other input 
❍     Prints out one English word per line 

5.  Write a program that reads the directory /u/jqpublic and grants global execute 
permissions for all files ending in .pl. Take away all other permissions, except user 
read, for every other file in the directory. Skip over all subdirectories. 

6.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

while ($line = <>) {
print ($line);
if (eof()) {
print ("-- end of current file --\n"); 
}

} 

    



Chapter 13

Process, String, and Mathematical Functions

CONTENTS

●     Process- and Program-Manipulation Functions 
❍     Starting a Process 
❍     Terminating a Program or Process 
❍     Execution Control Functions 
❍     Miscellaneous Control Functions 

●     Mathematical Functions 
❍     The sin and cos Functions 
❍     The atan2 Function 
❍     The sqrt Function 
❍     The exp Function 
❍     The log Function 
❍     The abs Function 
❍     The rand and srand Functions 

●     String-Manipulation Functions 
❍     The index Function 
❍     The rindex Function 
❍     The length Function 
❍     Retrieving String Length Using tr 
❍     The pos Function 
❍     The substr Function 
❍     The study Function 
❍     Case Conversion Functions 
❍     The quotemeta Function 
❍     The join Function 
❍     The sprintf Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 



Today's lesson describes three groups of built-in Perl functions: 

●     The functions that manipulate processes and programs that are currently 
running 

●     The functions that perform mathematical operations 
●     The functions that manipulate character strings 

Many of the functions described today use features of 
the UNIX operating system. If you are using Perl on a 
machine that is not running UNIX, some of these 
functions might not be defined or might behave 
differently.

Check the documentation supplied with your version of 
Perl for details on which functions are supported or 
emulated on your machine

Process- and Program-Manipulation Functions

Perl provides a wide range of functions that manipulate both the program currently 
being executed and other programs (also called processes) running on your machine. 
These functions are divided into four groups: 

●     Functions that start additional processes 
●     Functions that stop the current program or another process 
●     Functions that control the execution of a program or process 
●     Functions that manipulate processes or programs but don't fit into any of the 

preceding categories 

The following sections describe these four groups of process- and program-manipulation 
functions. 

Starting a Process

Several built-in functions provide different ways of creating processes: eval, system, 
fork, pipe, exec, and syscall. These functions are described in the following subsections. 

The eval Function



The eval function treats a character string as an executable Perl program. 

The syntax for the eval function is 

eval (string);

Here, string is the character string that is to become a Perl program. 

For example, these two lines of code: 

$print = "print (\"hello, world\\n\");";

eval ($print);

print the following message on your screen: 

hello, world

The character string passed to eval can be a character-string constant or any 
expression that has a value which is a character string. In this example, the following 
string is assigned to $print, which is then passed to eval: 

print ("hello, world\n");

The eval function uses the special system variable $@ to indicate whether the Perl 
program contained in the character string has executed properly. If no error has 
occurred, $@ contains the null string. If an error has been detected, $@ contains the 
text of the message. 

The subprogram executed by eval affects the program that called it; for example, any 
variables that are changed by the subprogram remain changed in the main program. 
Listing 13.1 provides a simple example of this.

 

Listing 13.1. A program that illustrates the behavior of eval. 



1:  #!/usr/local/bin/perl

2:  

3:  $myvar = 1;

4:  eval ("print (\"hi!\\n\"); \$myvar = 2;");

5:  print ("the value of \$myvar is $myvar\n");

 

$ program13_1

hi!

the value of $myvar is 2

$

 The call to eval in line 4 first executes the statement 

print ("hi!\n");

Then it executes the following assignment, which assigns 2 to $myvar: 

$myvar = 2;

The value of $myvar remains 2 in the main program, which means that line 5 prints the 
value 2. (The backslash preceding the $ in $myvar ensures that the Perl interpreter does 
not substitute the value of $myvar for the name before passing it to eval.)

NOTE



If you like, you can leave off the final semicolon in the 
character string passed to eval, as follows: 

eval ("print (\"hi!\\n\"); \$myvar = 2"); 

As before, this prints hi! and assigns 2 to $myvar 

The eval function has one very useful property: If the subprogram executed by eval 
encounters a fatal error, the main program does not halt. Instead, the subprogram 
terminates, copies the error message into the system variable $@, and returns to the main 
program. 

This feature is very useful if you are moving a Perl program from one machine to 
another and you are not sure whether the new machine contains a built-in function 
you need. For example, Listing 13.2 tests whether the tell function is implemented.

 

Listing 13.2. A program that uses eval to test whether a function is 
implemented.

1:  #!/usr/local/bin/perl

2:  

3:  open (MYFILE, "file1") || die ("Can't open file1");

4:  eval ("\$start = tell(MYFILE);");

5:  if ($@ eq "") {

6:          print ("The tell function is defined.\n");

7:  } else {

8:          print ("The tell function is not defined!\n");

9:  }

 



$ program13_2

The tell function is defined.

$

 The call to eval in line 4 creates a subprogram that calls the function tell. 
If tell is defined, the subprogram assigns the location of the next line (which, in this 
case, is the first line) to read to the scalar variable $start. If tell is not defined, the 
subprogram places the error message in $@. 

Line 5 checks whether $@ is the null string. If $@ is empty, the subprogram in line 4 
executed without generating an error, which means that the tell function is 
implemented. (Because assignments performed in the subprogram remain in effect in the 
main program, the main program can call seek using the value in $start, if desired.) If $@ 
is not empty, the program assumes that tell is not defined, and it prints a message 
proclaiming that fact. (This program is assuming that the only reason the subprogram 
could fail is because tell is not defined. This is a reasonable assumption, because you 
know that the file referenced by MYFILE has been successfully opened.)

Although eval is very useful, it is best to use it only for 
small programs. If you need to generate a larger 
program, it might be better to write the program to a file 
and call system to execute it. (The system function is 
described in the following section.) 

Because statements executed by eval affect the program 
that calls it, the behavior of complicated programs 
might become difficult to track if eval is used to excess. 

The system Function

You have seen examples of the system function in earlier lessons. 

The syntax for the system function is 

system (list);



This function is passed a list as follows: The first element of the list contains the name 
of a program to execute, and the other elements are arguments to be passed to the 
program. 

When system is called, it starts a process that runs the program and waits until the 
process terminates. When the process terminates, the error code is shifted left eight bits, 
and the resulting value becomes system's return value. Listing 13.3 is a simple example of 
a program that calls system. 

 

Listing 13.3. A program that calls system. 

1:  #!/usr/local/bin/perl

2:  

3:  @proglist = ("echo", "hello, world!");

4:  system(@proglist);

 

$ program13_3

hello, world!

$

 In this program, the call to system executes the UNIX program echo, which 
displays its arguments. The argument passed to echo is hello, world!.

TIP



When you start another program using system, output 
data might be mixed, out of sequence, or duplicated. 

To get around this problem, set the system variable $|, 
defined for each file, to 1. The following is an example: 

select (STDOUT); 

$| = 1; 

select (STDERR); 

$| = 1; 

When $| is set to 1, no buffer is defined for that file, and 
output is written out right away. This ensures that the 
output behaves properly when system is called. 

See "Redirecting One File to Another" on Day 12, 
"Working with the File System," for more information on 
select and $| 

The fork Function

The fork function creates two copies of your program: the parent process and the child 
process. These copies execute simultaneously. 

The syntax for the fork function is 

procid = fork();

fork returns zero to the child process and a nonzero value to the parent process. This 
nonzero value is the process ID of the child process. (A process ID is an integer that 
enables the system to distinguish this process from the other processes currently 
running on the machine.) 

The return value from fork enables you to determine which process is the child process 
and which is the parent. For example: 

$retval = fork();



if ($retval == 0) {

        # this is the child process

        exit;   # this terminates the child process

} else {

        # this is the parent process

}

If fork is unable to execute, the return value is a special undefined value for which you 
can test by using the defined function. (For more information on defined, see Day 14, 
"Scalar- Conversion and List-Manipulation Functions.") 

To terminate a child process created by fork, use the built-in function exit, which is 
described later in today's lesson.

Be careful when you use the fork function. The 
following are a few examples of what can go wrong: 

●     If both copies of the program execute calls to 
print or any other output-generating function, 
the output from one copy might be mixed with the 
output from the other copy. There is no way to 
guarantee that output from one copy will appear 
before output from the other, unless you force 
one process to wait for the other. 

●     If you use fork in a loop, the program might wind 
up generating many copies of itself. This can affect 
the performance of your system (or crash it 
completely). 

●     Your child process might wind up executing code 
that your parent process is supposed to execute, or 
vice versa 

The pipe Function

The pipe function is designed to be used in conjunction with the fork function. It 
provides a way for the child and parent processes to communicate. 



The syntax for the pipe function is 

pipe (infile, outfile);

pipe requires two arguments, each of which is a file variable that is not currently in 
use-in this case, infile and outfile. After pipe has been called, information sent via the 
outfile file variable can be read using the infile file variable. In effect, the output 
from outfile is piped to infile. 

To use pipe with fork, do the following: 

1.  Call pipe. 
2.  Call fork to split the program into parent and child processes. 
3.  Have one of the processes close infile, and have the other close outfile. 

The process in which outfile is still open can now send data to the process in which 
infile is still open. (The child can send data to the parent, or vice versa, depending on 
which process closes input and which closes output.) 

Listing 13.4 shows how pipe works. It uses fork to create a parent and child process. The 
parent process reads a line of input, which it passes to the child process. The child 
process then prints it.

 

Listing 13.4. A program that uses fork and pipe. 

 1:  #!/usr/local/bin/perl

 2:  

 3:  pipe (INPUT, OUTPUT);

 4:  $retval = fork();

 5:  if ($retval != 0) {

 6:          # this is the parent process

 7:          close (INPUT);

 8:          print ("Enter a line of input:\n");

 9:          $line = <STDIN>;



10:         print OUTPUT ($line);

11: } else {

12:         # this is the child process

13:         close (OUTPUT);

14:         $line = <INPUT>;

15:         print ($line);

16:         exit (0);

17: }

 

$ program13_4

Enter a line of input:

Here is a test line

Here is a test line

$

 Line 3 defines the file variables INPUT and OUTPUT. Data sent to OUTPUT can be 
now read from INPUT. 

Line 4 splits the program into a parent process and a child process. Line 5 then 
determines which process is which. 

The parent process executes lines 7-10. Because the parent process is sending data 
through OUTPUT, it has no need to access INPUT; therefore, line 7 closes INPUT. 

Lines 8 and 9 obtain a line of data from the standard input file. Line 10 then sends this 
line of data to the child process via the file variable OUTPUT. 

The child process executes lines 13-16. Because the child process is receiving data 
through INPUT, it does not need access to OUTPUT; therefore, line 13 closes OUTPUT. 



Line 14 reads data from INPUT. Because data from OUTPUT is piped to INPUT, the program 
waits until the data is actually sent before continuing with line 15. 

Line 16 uses exit to terminate the child process. This also automatically closes INPUT. 

Note that the <INPUT> operator behaves like any other operator that reads input (such 
as, for instance, <STDIN>). If there is no more data to read, INPUT is assumed to be at the 
"end of file," and <INPUT> returns the null string.

Traffic through the file variables specified by pipe can 
flow in only one direction. You cannot have a process 
both send and receive on the same pipe. 

If you need to establish two-way communication, you can 
open two pipes, one in each direction

The exec Function

The exec function is similar to the system function, except that it terminates the 
current program before starting the new one. 

The syntax for the exec function is 

exec (list);

This function is passed a list as follows: The first element of the list contains the name 
of a program to execute, and the other elements are arguments to be passed to the 
program. 

For example, the following statement terminates the Perl program and starts the 
command mail dave: 

exec ("mail dave");

Like system, exec accepts additional arguments that are assumed to be passed to the 
command being invoked. For example, the following statement executes the command vi 
file1: 



exec ("vi", "file1");

You can specify the name that the system is to use as the program name, as follows: 

exec "maildave" ("mail dave");

Here, the command mail dave is invoked, but the program name is set to maildave. (This 
affects the value of the system variable $0, which contains the name of the running 
program. It also affects the value of argv[0] if the program to be invoked was 
originally written in C.) 

exec often is used in conjunction with fork: when fork splits into two processes, the 
child process starts another program using exec.

exec has the same output-buffering problems as system. 
See the description of system, earlier in today's lesson, 
for a description of these problems and how to deal with 
them 

The syscall Function

The syscall function calls a system function. 

The syntax for the syscall function is 

syscall (list);

syscall expects a list as its argument. The first element of the list is the name of the 
system call to invoke, and the remaining elements are arguments to be passed to the 
call. 

If an argument in the list passed to syscall is a numeric value, it is converted to a C 
integer (type int). Otherwise, a pointer to the string value is passed. See the syscall 
UNIX manual page or the Perl documentation for more details.



NOTE

The Perl header file syscall.ph must be included in 
order to use syscall: 

require ("syscall.ph") 

For more information on require, see Day 20, 
"Miscellaneous Features of Perl." 

Terminating a Program or Process

The following sections describe the functions that terminate either the currently 
executing program or a process running elsewhere on the system: die, warn, exit, and 
kill. 

The die and warn Functions

The die and warn functions provide a way for programs to pass urgent messages back to 
the user who is running them. 

The die function terminates the program and prints an error message on the standard 
error file. 

The syntax for the die function is 

die (message);

message is the error message to be displayed. 

For example, the call 

die ("Cannot open input file\n");

prints the following message and then exits: 

Cannot open input file

die can accept a list as its argument, in which case all elements of the list are printed. 



@diemsg = ("I'm about ", "to die\n");

die (@diemsg);

This prints out the following message and then exits: 

I'm about to die

If the last argument passed to die ends with a newline character, the error message is 
printed as is. If the last argument to die does not end with a newline character, the 
program filename and line number are printed, along with the line number of the input 
file (if applicable). For example, if line 6 of the file myprog is 

die ("Cannot open input file");

the message it prints is 

Cannot open input file at myprog line 6.

The warn function, like die, prints a message on the standard error file. 

The syntax for the warn function is 

warn (message);

As with die, message is the message to be displayed. 

warn, unlike die, does not terminate. For example, the statement 

warn ("Input file is empty");

sends the following message to the standard error file, and then continues executing: 

Input file is empty at myprog line 76.



If the string passed to warn is terminated by a newline character, the warning message is 
printed as is. For example, the statement 

warn("Danger! Danger!\n");

sends 

Danger! Danger!

to the standard error file.

NOTE

If eval is used to invoke a program that calls die, the 
error message printed by die is not printed; instead, the 
error message is assigned to the system variable $@ 

The exit Function

The exit function terminates a program. 

If you like, you can specify a return code to be passed to the system by passing exit an 
argument using the following syntax: 

exit (retcode);

retcode is the return code you want to pass. 

For example, the following statement terminates the program with a return code of 2: 

exit(2);

The kill Function

The kill function enables you to send a signal to a group of processes. 

The syntax for invoking the kill function is 



kill (signal, proclist);

In this case, signal is the numeric signal to send. (For example, a signal of 9 kills the 
listed processes.) proclist is a list of process IDs (such as the child process ID returned 
by fork). 

signal also can be a signal name enclosed in quotes, as in "INT". 

For more details on the signals you can send, refer to the kill UNIX manual page. 

Execution Control Functions

The sleep, wait, and waitpid functions delay the execution of a particular program or 
process. 

The sleep Function

The sleep function suspends the program for a specified number of seconds. 

The syntax for the sleep function is 

sleep (time);

time is the number of seconds to suspend program execution. 

The function returns the number of seconds that the program was actually stopped. 

For example, the following statement puts the program to sleep for five seconds: 

sleep (5);

The wait and waitpid Functions

The wait function suspends execution and waits for a child process to terminate (such as 
a process created by fork). 

The wait function requires no arguments: 

procid = wait();



When a child process terminates, wait returns the process ID, procid, of the process that 
has terminated. If no child processes exist, wait returns -1. 

The waitpid function waits for a particular child process. 

The syntax for the waitpid function is 

waitpid (procid, waitflag);

procid is the process ID of the process to wait for, and waitflag is a special wait flag (as 
defined by the waitpid or wait4 manual page). By default, waitflag is 0 (a normal wait). 
waitpid returns 1 if the process is found and has terminated, and it returns -1 if the 
child process does not exist. 

Listing 13.5 shows how waitpid can be used to control process execution.

 

Listing 13.5. A program that uses waitpid. 

 1:  #!/usr/local/bin/perl

 2:  

 3:  $procid = fork();

 4:  if ($procid == 0) {

 5:          # this is the child process

 6:          print ("this line is printed first\n");

 7:          exit(0);

 8:  } else {

 9:          # this is the parent process

10:         waitpid ($procid, 0);

11:         print ("this line is printed last\n");

12: }



 

$ program13_5

this line is printed first

this line is printed last

$

 Line 3 splits the program into a parent process and a child process. The parent 
process is returned the process ID of the child process, which is stored in $procid. 

Lines 6 and 7 are executed by the child process. Line 6 prints the following line: 

this line is printed first

Line 7 then calls exit, which terminates the child process. 

Lines 10 and 11 are executed by the parent process. Line 10 calls waitpid and passes it 
the ID of the child process; therefore, the parent process waits until the child process 
terminates before continuing. This means that line 11, which prints the second line, is 
guaranteed to be executed after the first line is printed. 

As you can see, wait can be used to force the order of execution of processes.

NOTE

For more information on the possible values that can be 
passed as waitflag, examine the file wait.ph, which is 
available from the same place you retrieved your copy of 
Perl. (It might already be on your system.) You can find 
out more also by investigating the waitpid and wait4 
manual pages 

Miscellaneous Control Functions



The caller, chroot, local, and times functions perform various process and program-
related actions. 

The caller Function

The caller function returns the name and the line number of the program that called 
the currently executing subroutine. 

The syntax for the caller function is 

subinfo = caller();

caller returns a three-element list, subinfo, consisting of the following: 

●     The name of the package from which the subroutine was called 
●     The name of the file from which the subroutine was called 
●     The line number of the subroutine call 

This routine is used by the Perl debugger, which you'll learn about on Day 21, "The Perl 
Debugger." For more information on packages, refer to Day 20, "Miscellaneous Features 
of Perl." 

The chroot Function

The chroot function duplicates the functionality of the chroot function call. 

The syntax for the chroot function is 

chroot (dir);

dir is the new root directory. 

In the following example, the specified directory becomes the root directory for the 
program: 

chroot ("/u/jqpublic");

For more information, refer to the chroot manual page. 

The local Function



The local function was introduced on Day 9, "Using Subroutines." It declares that a 
copy of a named variable is to be defined for a subroutine. (Refer to that day for 
examples that use local inside a subroutine.) 

local can be used also to define a copy of a variable for use inside a statement block (a 
collection of statements enclosed in brace brackets), as follows: 

if ($var == 14) {

        local ($localvar);

        # stuff goes here

}

This defines a local copy of the variable $localvar for use inside the statement block. 
Any other copies of $localvar that exist are not affected by the changes to this local 
copy. 

DON'T use local inside a loop, as in this example: 

while ($var <= 14) { 

local ($myvar); 

# stuff goes here 

} 

Here, a new copy of $myvar is defined each time the loop 
iterates. This is probably not what you want. 

The times Function

The times function returns the amount of job time consumed by this program and any 
child processes of this program. 

The syntax for the times function is 



timelist = times

As you can see, times accepts no arguments. It returns timelist, a list consisting of the 
following four floating-point numbers: 

●     The user time consumed by this program 
●     The system time consumed by this program 
●     The user time consumed by the child processes, if they exist 
●     The system time consumed by the child processes, if they exist 

Mathematical Functions

Perl provides functions that perform the standard trigonometric operations, plus some 
other useful mathematical operations. The following sections describe these functions: 
sin, cos, atan2, sqrt, exp, log, abs, rand, and srand. 

The sin and cos Functions

The sin and cos functions are passed a scalar value and return the sine and cosine, 
respectively, of the value. 

The syntax of the sin and cos functions is 

retval = sin (value);

retval = cos (value);

value is a placeholder here. It can be the value stored in a scalar variable or the result 
of an expression; it is assumed to be in radians. See the following section, "The atan2 
Function," to find out how to convert from radians to degrees. 

The atan2 Function 

The atan2 function calculates and returns the arctangent of one value divided by 
another, in the range -p to p. 

The syntax of the atan2 function is 

retval = atan2 (value1, value2);

If value1 and value2 are equal, retval is the value of p divided by 4. 



Listing 13.6 shows how you can use this to convert from degrees to radians.

 

Listing 13.6. A program that contains a subroutine that converts from 
degrees to radians.

 1:  #!/usr/local/bin/perl

 2:  

 3:  $rad90 = &degrees_to_radians(90);

 4:  $sin90 = sin($rad90);

 5:  $cos90 = cos($rad90);

 6:  print ("90 degrees:\nsine is $sin90\ncosine is $cos90\n");

 7:  

 8:  sub degrees_to_radians {

 9:          local ($degrees) = @_;

10:         local ($radians);

11: 

12:         $radians = atan2(1,1) * $degrees / 45;

13: }

 

$ program13_6

90 degrees:

sine is 1

cosine is 6.1230317691118962911e-17

$



 The subroutine degrees_to_radians converts from degrees to radians by 
multiplying by p divided by 180. Because atan2(1,1) returns p divided by 4, all the 
subroutine needs to do after that is divide by 45 to obtain the number of radians. 

In the main body of the program, line 3 converts 90 degrees to the equivalent value in 
radians (p divided by 2). Line 4 then passes this value to sin, and line 5 passes it to cos. 

NOTE

The trigonometric operations provided here are 
sufficient to enable you to perform the other important 
trigonometric operations. For example, to obtain the 
tangent of a value, obtain the sine and cosine of the 
value by calling sin and cos, and then divide the sine by 
the cosine 

The sqrt Function 

The sqrt function returns the square root of the value it is passed. 

The syntax for the sqrt function is 

retval = sqrt (value);

value can be any positive number. 

The exp Function 

The exp function returns the number e ** value, where e is the standard mathematical 
constant (the base for the natural logarithm) and value is the argument passed to exp. 

The syntax for the exp function is 

retval = exp (value);

To retrieve e itself, pass exp the value 1. 



The log Function 

The log function takes a value and returns the natural (base e) logarithm of the value. 

The syntax for the log function is 

retval = log (value);

The log function undoes exp; the expression 

$var = log (exp ($var));

always leaves $var with the value it started with (if you factor in round-off error). 

The abs Function 

The abs function returns the absolute value of a number. This is defined as follows: if a 
value is less than zero, abs negates it and returns the result. 

$result = $abs(-3.5);   # returns 3.5

Otherwise, the result is identical to the value: 

$result = $abs(3.5);    # returns 3.5

$result = $abs(0);      # returns 0

The syntax for the abs function is 

retval = abs (value);

value can be any number.

NOTE

abs is not defined in Perl 4 



The rand and srand Functions

The rand and srand functions enable Perl programs to generate random numbers. 

The rand function is passed an integer value and generates a random floating-point 
number between 0 and the value. 

The syntax for the rand function is 

retval = rand (num);

num is the integer value passed to rand, and retval is a random floating-point number 
between 0 and the num. 

For example, the following statement generates a number between 0 and 10 and returns 
it in $retval: 

$retval = rand (10);

srand initializes the random-number generator used by rand. This ensures that the 
random numbers generated are, in fact, random. (If you do not use srand, you'll get the 
same set of random numbers each time.) 

The syntax for the srand function is 

srand (value);

srand accepts an integer value as an argument; if no argument is supplied, srand calls 
the time function and uses its return value as the random-number seed. 

For an example that uses rand and srand, see the section titled "Returning a Value from 
a Subroutine" on Day 9.

NOTE



The following values and functions return numbers 
that can make useful random-number seeds: 

●     The system variable $$ contains the process ID of 
the current program. (See Day 17, "System 
Variables," for more information on $$.) 

●     time returns the current time value. 
●     Many of the functions described on Day 15, 

"System Functions," return useful values. For 
example, getppid returns the process ID of the 
program's parent process. 

For best results, combine two or more of these using the 
| (bitwise OR) operator 

String-Manipulation Functions

This section describes the built-in Perl functions that manipulate character strings. 
These functions enable you to do the following: 

●     Search for a substring in a character string 
●     Create a string 
●     Replace a substring within a string 

The index Function 

The index function provides a way of indicating the location of a substring in a string. 

The syntax for the index function is 

position = index (string, substring);

string is the character string to search in, and substring is the character string being 
searched for. position returns the number of characters skipped before substring is 
located; if substring is not found, position is set to -1. 

Listing 13.7 is a program that uses index to locate a substring in a string.

 



Listing 13.7. A program that uses the index function.

1:  #!/usr/local/bin/perl

2:  

3:  $input = <STDIN>;

4:  $position = index($input, "the");

5:  if ($position >= 0) {

6:          print ("pattern found at position $position\n");

7:  } else {

8:          print ("pattern not found\n");

9:  }

 

$ program13 7

Here is the input line I have typed.

pattern found at position 8

$

 This program searches for the first occurrence of the word the. If it is found, 
the program prints the location of the pattern; if it is not found, the program prints 
pattern not found. 

You can use the index function to find more than one copy of a substring in a string. To 
do this, pass a third argument to index, which tells it how many characters to skip 
before starting to search. For example: 

$position = index($line, "foo", 5);

This call to index skips five characters before starting to search for foo in the string 



stored in $line. As before, if index finds the substring, it returns the total number of 
characters skipped (including the number specified by the third argument to index). If 
index does not find the substring in the portion of the string that it searches, it returns 
-1. 

This feature of index enables you to find all occurrences of a substring in a string. 
Listing 13.8 is a modified version of Listing 13.7 that searches for all occurrences of the 
in an input line.

 

Listing 13.8. A program that uses index to search a line repeatedly.

 1:  #!/usr/local/bin/perl

 2:  

 3:  $input = <STDIN>;

 4:  $position = $found = 0;

 5:  while (1) {

 6:          $position = index($input, "the", $position);

 7:          last if ($position == -1);

 8:          if ($found == 0) {

 9:                  $found = 1;

10:                 print ("pattern found - characters skipped:");

11:         }

12:         print (" $position");

13:         $position++;

14: }

15: if ($found == 0) {

16:         print ("pattern not found\n");

17: } else {

18:         print ("\n");

19: }



 

$ program13 8

Here is the test line containing the words.

pattern found - characters skipped: 8 33

$

 Line 6 of this program calls index. Because the initial value of $position is 0, 
the first call to index starts searching from the beginning of the string. Eight charact-
ers are skipped before the first occurrence of the is found; this means that $position is 
assigned 8. 

Line 7 tests whether a match has been found by comparing $position with -1, which is 
the value index returns when it does not find the string for which it is looking. Because 
a match has been found, the loop continues to execute. 

When the loop iterates again, line 6 calls index again. This time, index skips nine 
characters before beginning the search again, which ensures that the previously found 
occurrence of the is skipped. A total of 33 bytes are skipped before the is found again. 
Once again, the loop continues, because the conditional expression in line 7 is false. 

On the final iteration of the loop, line 6 calls index and skips 34 characters before 
starting the search. This time, the is not found, index returns -1, and the conditional 
expression in line 7 is true. At this point, the loop terminates.

NOTE

To extract a substring found by index, use the substr 
function, which is described later in today's lesson 

The rindex Function 

The rindex function is similar to the index function. The only difference is that rindex 
starts searching from the right end of the string, not the left. 



The syntax for the rindex function is 

position = rindex (string, substring);

This syntax is identical to the syntax for index. string is the character string to search 
in, and substring is the character string being searched for. position returns the 
number of characters skipped before substring is located; if substring is not found, 
position is setto -1. 

The following is an example: 

$string = "Here is the test line containing the words.";

$position = rindex($string, "the");

In this example, rindex finds the second occurrence of the. As with index, rindex returns 
the number of characters between the left end of the string and the location of the 
found substring. In this case, 33 characters are skipped, and $position is assigned 33. 

You can specify a third argument to rindex, indicating the maximum number of 
characters that can be skipped. For example, if you want rindex to find the first 
occurrence of the in the preceding example, you can call it as follows: 

$string = "Here is the test line containing the words.";

$position = rindex($string, "the", 32);

Here, the second occurrence of the cannot be matched, because it is to the right of the 
specified limit of 32 skipped characters. rindex, therefore, finds the first occurrence of 
the. Because there are eight characters between the beginning of the string and the 
occurrence, $position is assigned 8. 

Like index, rindex returns -1 if it cannot find the string it is looking for. 

The length Function 

The length function returns the number of characters contained in a character string. 

The syntax for the length function is 



num = length (string);

string is the character string for which you want to determine the length, and num is 
the returned length. 

Here is an example using length: 

$string = "Here is a string";

$strlen = length($string);

In this example, length determines that the string in $string is 16 characters long, and 
it assigns 16 to $strlen. 

Listing 13.9 is a program that calculates the average word length used in an input file. 
(This is sometimes used to determine the "complexity" of the text.) Numbers are skipped.

 

Listing 13.9. A program that demonstrates the use of length. 

 1:  #!/usr/local/bin/perl

 2:  

 3:  $wordcount = $charcount = 0;

 4:  while ($line = <STDIN>) {

 5:          @words = split(/\s+/, $line);

 6:          foreach $word (@words) {

 7:                  next if ($word =~ /^\d+\.?\d+$/);

 8:                  $word =~ s/[,.;:]$//;

 9:                  $wordcount += 1;

10:                 $charcount += length($word);

11:         }

12: }

13: print ("Average word length: ", $charcount / $wordcount, "\n");



 

$ program13 9

Here is the test input.

Here is the last line.

^D

Average word length: 3.5

$

 This program reads a line of input at a time from the standard input file, 
breaking the input line into words. Line 7 tests whether the word is a number, and skips 
it if it is. Line 8 strips any trailing punctuation character from the word, which ensures 
that the punctuation is not counted as part of the word length. 

Line 10 calls length to retrieve the number of characters in the word. This number is 
added to $charcount, which contains the total number of characters in all of the words 
that have been read so far. To determine the average word length of the file, line 13 
takes this value and divides it by the number of words in the file, which is stored in 
$wordcount. 

Retrieving String Length Using tr 

The tr function provides another way of determining the length of a character string, 
in conjunction with the built-in system variable $_. 

The syntax for the tr function is 

tr/sourcelist/replacelist/

sourcelist is the list of characters to replace, and replacelist is the list of characters 
to replace with. (For details, see the following listing and the explanation provided 
with it.) 



Listing 13.10 shows how tr works.

 

Listing 13.10. A program that uses tr to retrieve the length of a string.

1:  #!/usr/local/bin/perl

2:  

3:  $string = "here is a string";

4:  $_ = $string;

5:  $length = tr/a-zA-Z /a-zA-Z /;

6:  print ("the string is $length characters long\n");

 

$ program13 10

the string is 16 characters long

$

 Line 3 of this program creates a string named here is a string and assigns it 
to the scalar variable $string. Line 4 copies this string into a built-in scalar variable, 
$_. 

Line 5 exploits two features of the tr operator that have not yet been discussed: 

●     If the value to be translated is not explicitly specified by means of the =~ 
operator, tr assumes that the value is stored in $_. 

●     tr returns the number of characters translated. 

In line 5, both the search pattern (the set of characters to look for) and the 
replacement pattern (the characters to replace them with) are the same. This pattern, 
/a-zA-Z /, tells tr to search for all lowercase letters, uppercase letters, and blank 



spaces, and then replace them with themselves. This pattern matches every character in 
the string, which means that every character is being translated. 

Because every character is being translated, the number of characters translated is 
equivalent to the length of the string. This string length is assigned to the scalar 
variable $length. 

tr can be used also to count the number of occurrences of a specific character, as shown 
in Listing 13.11.

 

Listing 13.11. A program that uses tr to count the occurrences of 
specific characters.

 1:  #!/usr/local/bin/perl

 2:  

 3:  $punctuation = $blanks = $total = 0;

 4:  while ($input = <STDIN>) {

 5:          chop ($input);

 6:          $total += length($input);

 7:          $_ = $input;

 8:          $punctuation += tr/,:;.-/,:;.-/;

 9:          $blanks += tr/ / /;

10: }

11: print ("In this file, there are:\n");

12: print ("\t$punctuation punctuation characters,\n");

13: print ("\t$blanks blank characters,\n");

14: print ("\t", $total - $punctuation - $blanks);

15: print (" other characters.\n");



 

$ program13 11

Here is a line of input.

This line, another line, contains punctuation.

^D

In this file, there are:

         4 punctuation characters,

         10 blank characters,

         56 other characters.

$

 This program uses the scalar variable $total and the built-in function length 
to count the total number of characters in the input file (excluding the trailing 
newline characters, which are removed by the call to chop in line 5). 

Lines 8 and 9 use tr to count the number of occurrences of particular characters. Line 8 
replaces all punctuation characters with themselves; the number of replacements 
performed, and hence the number of punctuation characters found, is added to the total 
stored in $punctuation. Similarly, line 9 replaces all blanks with themselves and adds 
the number of blanks found to the total stored in $blanks. In both cases, tr operates on 
the contents of the scalar variable $_, because the =~ operator has not been used to 
specify another value to translate. 

Line 14 uses $total, $punctuation, and $blanks to calculate the total number of 
characters that are not blank and not punctuation.

NOTE



Many other functions and operators accept $_ as the 
default variable on which to work. For example, lines 4-
7 of this program also can be written as follows: 

while (<STDIN>) { 

chop(); 

$total += length(); 

For more information on $_, refer to Day 17, "System 
Variables. 

The pos Function 

The pos function, defined only in Perl 5, returns the location of the last pattern match 
in a string. It is ideal for use when repeated pattern matches are specified using the g 
(global) pattern-matching operator. 

The syntax for the pos function is 

offset = pos(string);

string is the string whose pattern is being matched. offset is the number of characters 
already matched or skipped. 

Listing 13.12 illustrates the use of pos.

 

Listing 13.12. A program that uses pos to display pattern match 
positions.

1: #!/usr/local/bin/perl

2:

3: $string = "Mississippi";



4: while ($string =~ /i/g) {

5:         $position = pos($string);

6:         print("matched at position $position\n");

7: }

 

$ program13 12

matched at position 2

matched at position 5

matched at position 8

matched at position 11

 This program loops every time an i in Mississippi is matched. The number 
displayed by line 6 is the number of characters to skip to reach the point at which 
pattern matching resumes. For example, the first i is the second character in the string, 
so the second pattern search starts at position 2.

NOTE

You can also use pos to change the position at which 
pattern matching is to resume. To do this, put the call to 
pos on the left side of an assignment: 

pos($string) = 5; 

This tells the Perl interpreter to start the next pattern 
search with the sixth character in the string. (To 
restart searching from the beginning, use 0.

The substr Function 

The substr function lets you assign a part of a character string to a scalar variable (or 
to a component of an array variable). 



The syntax for calls to the substr function is 

substr (expr, skipchars, length)

expr is the character string from which a substring is to be copied; this character string 
can be the value stored in a variable or the value resulting from the evaluation of an 
expression. skipchars is the number of characters to skip before starting copying. length 
is the number of characters to copy; length can be omitted, in which case the rest of the 
string is copied. 

Listing 13.13 provides a simple example of substr.

 

Listing 13.13. A program that demonstrates the use of substr. 

1:  #!/usr/local/bin/perl

2:  

3:  $string = "This is a sample character string";

4:  $sub1 = substr ($string, 10, 6);

5:  $sub2 = substr ($string, 17);

6:  print ("\$sub1 is \"$sub1\"\n\$sub2 is \"$sub2\"\n");

 

$ program13 13

$sub1 is "sample"

$sub2 is "character string"

$



 Line 4 calls substr, which copies a portion of the string stored in $string. This 
call specifies that ten characters are to be skipped before copying starts, and that a 
total of six characters are to be copied. This means that the substring sample is copied 
and stored in $sub1. 

Line 5 is another call to substr. Here, 17 characters are skipped. Because the length 
field is omitted, substr copies the remaining characters in the string. This means that 
the substring character string is copied and stored in $sub2. 

Note that lines 4 and 5 do not change the contents of $string. 

String Insertion Using substr

In Listing 13.13, which you've just seen, calls to substr appear to the right of the 
assignment operator =. This means that the return value from substr-the extracted 
substring-is assigned to the variable appearing to the left of the =. 

Calls to substr can appear also on the left of the assignment operator =. In this case, 
the portion of the string specified by substr is replaced by the value appearing to the 
right of the assignment operator. 

The syntax for these calls to substr is basically the same as before: 

substr (expr, skipchars, length) = newval;

Here, expr must be something that can be assigned to-for example, a scalar variable or 
an element of an array variable. skipchars represents the number of characters to skip 
before beginning the overwriting operation, which cannot be greater than the length 
of the string. length is the number of characters to be replaced by the overwriting 
operation. If length is not specified, the remainder of the string is replaced. 

newval is the string that replaces the substring specified by skipchars and length. If 
newval is larger than length, the character string automatically grows to hold it, and 
the rest of the string is pushed aside (but not overwritten). If newval is smaller than 
length, the character string automatically shrinks. Basically, everything appears 
where it is supposed to without you having to worry about it.

NOTE



By the way, things that can be assigned to are sometimes 
known as lvalues, because they appear to the left of 
assignment statements (the l in lvalue stands for "left"). 
Things that appear to the right of assignment statements 
are, similarly, called rvalues. 

This book does not use the terms lvalue and rvalue, but you 
might find that knowing them will prove useful when 
you read other books on programming languages 

Listing 13.14 is an example of a program that uses substr to replace portions of a string.

 

Listing 13.14. A program that replaces parts of a string using substr. 

1:  #!/usr/local/bin/perl

2:  

3:  $string = "Here is a sample character string";

4:  substr($string, 0, 4) = "This";

5:  substr($string, 8, 1) = "the";

6:  substr($string, 19) = "string";

7:  substr($string, -1, 1) = "g.";

8:  substr($string, 0, 0) = "Behold! ";

9:  print ("$string\n");

 

$ program13 14

Behold! This is the sample string.



$

 This program illustrates the many ways you can use substr to replace 
portions of a string. 

The call to substr in line 4 specifies that no characters are to be skipped before 
overwriting, and that four characters in the original string are to be overwritten. This 
means that the substring Here is replaced by This, and that the following is the new 
value of the string stored in $string: 

This is a sample character string

Similarly, the call to substr in line 5 specifies that eight characters are to be skipped 
and one character is to be replaced. This means that the word a is replaced by the. Now, 
$string contains the following: 

This is the sample character string

Note that the character string is now larger than the original, because the new 
substring, the, is larger than the substring it replaced. 

Line 6 is an example of a call to substr that shrinks the string. Here, 19 characters are 
skipped, and the rest of the string is replaced by the substring string (because no length 
field has been specified). Now, the following is the value stored in $string: 

This is the sample string

In line 7, the call to substr is passed -1 in the skipchars field and is passed 1 in the 
length field. This tells substr to replace the last character of the string with the 
substring g. (g followed by a period). $string now contains 

This is the sample string.

NOTE



If substr is passed a skipchars value of -n, where n is a 
positive integer, substr skips to n characters from the 
right end of the string. For example, the following call 
replaces the last two characters in $string with the 
string hello: 

substr($string, -2, 2) = "hello" 

Finally, line 8 specifies that no characters are to be skipped and no characters are to be 
replaced. This means that the substring "Behold! " (including a trailing space) is added 
to the front of the existing string and that $string now contains the following: 

Behold! This is the sample string.

Line 9 prints this final value of $string.

TIP

If you are a C programmer and are used to manipulating 
strings using pointers, note that substr with a length 
field of 1 can be used to simulate pointer-like behavior 
in Perl. 

For example, you can simulate the C statement

char = *str++; 

as follows in Perl:

$char = substr($str, $offset++, 1); 

You'll need to define a counter variable (such as 
$offset) to keep track of where you are in the string. 
However, this is no more of a chore than remembering to 
initialize your C pointer variable. 

You can simulate the following C statement:

*str++ = char; 

by assigning values using substr in the same way: 



substr($str, $offset++, 1) = $char; 

You shouldn't use substr in this way unless you really 
have to. Perl supplies more powerful and useful tools, 
such as pattern matching and substitution, to get the job 
done more efficiently 

The study Function 

The study function is a special function that tells the Perl interpreter that the 
specified scalar variable is about to be searched many times. 

The syntax for the study function is 

study (scalar);

scalar is the scalar variable to be "studied." The Perl interpreter takes the value 
stored in the specified scalar variable and represents it in an internal format that 
allows faster access. 

For example: 

study ($myvar);

Here, the value stored in the scalar variable $myvar is about to be repeatedly searched. 

You can call study for only one scalar variable at a time. Previous calls to study are 
superseded if study is called again.

TIP

To check whether study actually makes your program 
more efficient, use the function times, which displays 
the user and CPU times for a program or program 
fragment. (times is discussed earlier today. 

Case Conversion Functions

Perl 5 provides functions that perform case conversion on strings. These are 



●     The lc function, which converts a string to lowercase 
●     The uc function, which converts a string to uppercase 
●     The lcfirst function, which converts the first character of a string to lowercase 
●     The ucfirst function, which converts the first character of a string to uppercase 

The lc and uc Functions

The syntax for the lc and uc functions is 

retval = lc(string);

retval = uc(string);

string is the string to be converted. retval is a copy of the string, converted to either 
lowercase or uppercase: 

$lower = lc("aBcDe");  # $lower is assigned "abcde"

$upper = uc("aBcDe");  # $upper is assigned "ABCDE"

The lcfirst and ucfirst Functions

The syntax for the lcfirst and ucfirst functions is 

retval = lcfirst(string);

retval = ucfirst(string);

string is the string whose first character is to be converted. retval is a copy of the 
string, with the first character converted to either lowercase or uppercase: 

$lower = lcfirst("HELLO");  # $lower is assigned "hELLO"

$upper = ucfirst("hello");  # $upper is assigned "Hello"

The quotemeta Function 

The quotemeta function, defined only in Perl 5, places a backslash character in front of 
any non-word character in a string. The following statements are equivalent: 



$string = quotemeta($string);

$string =~ s/(\W)/\\$1/g;

The syntax for quotemeta is 

newstring = quotemeta(oldstring);

oldstring is the string to be converted. newstring is the string with backslashes added. 

quotemeta is useful when a string is to be used in a subsequent pattern-matching 
operation. It ensures that there are no characters in the string which are to be treated 
as special pattern-matching characters. 

The join Function 

The join function has been used many times in this book. It takes the elements of a list 
and converts them into a single character string. 

The syntax for the join function is 

join (joinstr, list);

joinstr is the character string that is to be used to glue the elements of list together. 

For example: 

@list = ("Here", "is", "a", "list");

$newstr = join ("::", @list);

After join is called, the value stored in $newstr becomes the following string: 

Here::is::a::list

The join string, :: in this case, appears between each pair of joined elements. The most 
common join string is a single blank space; however, you can use any value as the join 
string, including the value resulting from an expression. 



The sprintf Function 

The sprintf function behaves like the printf function defined on Day 11, "Formatting 
Your Output," except that the formatted string is returned by the function instead of 
being written to a file. This enables you to assign the string to another variable. 

The syntax for the sprintf function is 

sprintf (string, fields);

string is the character string to print, and fields is a list of values to substitute into 
the string. 

Listing 13.15 is an example that uses sprintf to build a string.

 

Listing 13.15. A program that uses sprintf. 

1:  #!/usr/local/bin/perl

2:  

3:  $num = 26;

4:  $outstr = sprintf("%d = %x hexadecimal or %o octal\n",

5:          $num, $num, $num);

6:  print ($outstr);

 

$ program14_9

26 = 1a hexadecimal or 32 octal

$



 Lines 4 and 5 take three copies of the value stored in $num and include them as 
part of a string. The field specifiers %d, %x, and %o indicate how the values are to be 
formatted. 

%d Indicates an integer displayed in the usual decimal (base-10) format 

%x Indicates an integer displayed in hexadecimal (base-16) format 

%o Indicates an integer displayed in octal (base-8) format 

The created string is returned by sprintf. Once it has been created, it behaves just like 
any other Perl character string; in particular, it can be assigned to a scalar variable, as 
in this example. Here, the string containing the three copies of $num is assigned to the 
scalar variable $outstr. Line 6 then prints this string.

NOTE

For more information on field specifiers or on how 
printf works, refer to Day 11, which lists the field 
specifiers defined and provides a description of the 
syntax of printf 

Summary

Today, you learned about three types of built-in Perl functions: functions that handle 
process and program control, functions that perform mathematical operations, and 
functions that manipulate strings. 

With the process- and program-control functions, you can start new processes, stop the 
current program or other processes, or temporarily halt the current program. You also 
can create a pipe that sends data from one of your created processes to another. 

With the functions that perform mathematical operations, you can obtain the sine, 
cosine, and arctangent of a value. You also can calculate the natural logarithm and 
square root of a value, or use the value as an exponent of base e. 

You also can generate random numbers and define the seed to use when generating the 
numbers. 

Functions that search character strings include index, which searches for a substring 



starting from the left of a string, and rindex, which searches for a substring starting 
from the right of a string. You can retrieve the length of a character string using 
length. By using the translate operator tr in conjunction with the system variable $_, 
you can count the number of occurrences of a particular character or set of characters 
in a string. The pos function enables you to determine or set the current pattern-
matching location in a string. 

The function substr enables you to extract a substring from a string and use it in an 
expression or assignment statement. substr also can be used to replace a portion of a 
string or append to the front or back end of the string. 

The lc and uc functions convert strings to lowercase or uppercase. To convert the first 
letter of a string to lowercase or uppercase, use lcfirst or ucfirst. 

quotemeta places a backslash in front of every non-word character in a string. 

You can create new character strings using join and sprintf. join creates a string by 
joining elements of a list, and sprintf builds a string using field specifiers that specify 
the string format. 

Q&A

Q: How does Perl generate random numbers? 

A: Basically, by performing arithmetic operations using very large numbers. If the 
numbers for these arithmetic operations are carefully chosen, a sequence of 
"pseudo-random" numbers can be generated by repeating the set of arithmetic 
operations and returning their results.
The random-number seed provided by srand supplies the initial value for one of 
the numbers used in the set of arithmetic operations. This ensures that the 
sequence of pseudo-random numbers starts with a different result each time.

Q: What programs can be called using system? 

A: Any program that you can run from your terminal can be run using system.

Q: How many processes can a program create using fork? 

A: Perl provides no limit on how many processes can be created at a time. However, 
the performance of your system will be adversely affected if you generate too 
many processes at once. In particular, programs that call fork and wind up in an 
infinite loop are sometimes called fork bombs, because they generate thousands 
of processes and grind your machine to an effective halt. (Your system 
administrator will not be pleased with you if you do this!)

Q: How can I send signals to a process without killing it? 



A: The kill function actually can send any signal supported by your machine to 
any running process (that you can access).
Refer to the UNIX system documentation for details on the signals you can send 
and what their names are.

Q: What is the difference between the %d and %ld format specifiers in sprintf? 

A: %ld defines a "long integer." It refers to the largest number of bits that your 
local machine can use to store an integer. (This is often 32 bits.) %d, on the other 
hand, is equivalent to your machine's standard integer format. On some machines, 
%ld and %d are equivalent. If you are not sure how many bits your machine uses 
to store integers, or you know you are going to be dealing with large numbers, 
it's safer to use %ld. (The same holds true for all other integer formats, such as 
%lx and %lo.)

Q: What is the difference between the %c and %s format specifiers in sprintf? 

A: %c undoes the effect of the ord function. It converts a scalar value into the 
equivalent ASCII character. (Its behavior is similar to that of the chr function 
in Pascal.) %s treats a scalar value as a character string and inserts it into the 
string at the place specified. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  What do these functions do?
a.    srand
b.    pipe
c.    atan2
d.    sleep

e.    gmtime 
2.  Explain the differences between fork, system, and exec. 
3.  Explain the differences between wait and waitpid. 
4.  How can you obtain the value of p? 
5.  How can you obtain the value of the mathematical constant e? 
6.  What sprintf specifiers produce the following?

a.    A hexadecimal number
b.    An octal number
c.    A floating-point number in exponential format
d.    A floating-point number in standard (fixed) format 

7.  If the scalar variable $string contains abcdefgh, what do the following calls 
return?
a     substr ($string, 0, 3);



b.    substr ($string, 4);
c.    substr ($string, -2, 2);

d.    substr ($string, 2, 0); 
8.  Assume $string contains the value abcdabcd. What value is returned by each of 

the following calls?
a.    index ($string, "bc"); 
b.    index ($string, "bcde");
c.    index ($string, "bc", 1); 
d.    index ($string, "cd", 3); 

e.    rindex ($string, "bc"); 
9.  Assume $string contains the value abcdabcd\n (the last character being a 

trailing newline character). What is returned in $retval by the following?
a.    $_ = $string; $retval = tr/ab/ab/; 

b.    $retval = length ($string); 

Exercises

1.  Write a program that uses fork and waitpid to generate a total of three processes 
(including the program). Have each process print a line, and have the lines appear 
in a specified order. 

2.  Write a program that reads input from a file named temp and writes it to the 
standard output file. Write another program that reads input from the standard 
output file, writes it to temp, and uses exec to call the first program. 

3.  Write a program that prints the natural logarithm of the integers between 1 and 
100. 

4.  Write a program that computes the sum of the numbers from 1 to 10 ** n for 
values of n from 1 to 6. For each computed value, use times to calculate the 
amount of time each computation takes. Print these calculation times. 

5.  Write a program that reads an integer value and prints the sine, cosine, and 
tangent of the value. Assume that the input value is in degrees. 

6.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl
print ("Here is a line of output. ");
system ("w");

print ("Here is the rest of the line.\n"); 
7.  Write a program that uses index to print out the locations of the letters a, e, i, o, 

and u in an input line. 
8.  Write a program that uses rindex to do the same thing as the one in Exercise 1. 
9.  Write a program that uses substr to do the same thing as the one in Exercise 1. 

(Hint: This will require many calls to substr!) 
10.  Write a program that uses tr to count all the occurrences of a, e, i, o, and u in an 

input line. 
11.  Write a program that reads a number. If the number is a floating-point value, 

print it in exponential and fixed-point form. If the number is an integer, print it in 
decimal, octal, and hexadecimal form. (Hint: Recall that printf and sprintf use 
the same field specifiers.) 

12.  BUG BUSTER: What is wrong with the following program? 



#!/usr/local/bin/perl

$mystring = <STDIN>;

$lastfound = length ($mystring);

while ($lastfound != -1) {

        $lastfound = index($mystring, "xyz", $lastfound);

}

    



Chapter 14

Scalar-Conversion and List-Manipulation Functions

CONTENTS

●     The chop Function 
●     The chomp Function 
●     The crypt Function 
●     The hex Function 
●     The int Function 
●     The oct Function 

❍     The oct Function and Hexadecimal Integers 
●     The ord and chr Functions 
●     The scalar Function 
●     The pack Function 

❍     The pack Function and C Data Types 
●     The unpack Function 

❍     Unpacking Strings 
❍     Skipping Characters When Unpacking 
❍     The unpack Function and uuencode 

●     The vec Function 
●     The defined Function 
●     The undef Function 
●     Array and List Functions 

❍     The grep Function 
❍     The splice Function 
❍     The shift Function 
❍     The unshift Function 
❍     The push Function 
❍     The pop Function 
❍     Creating Stacks and Queues 
❍     The split Function 
❍     The sort and reverse Functions 
❍     The map Function 
❍     The wantarray Function 

●     Associative Array Functions 
❍     The keys Function 



❍     The values Function 
❍     The each Function 
❍     The delete Function 
❍     The exists Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today, you learn about the built-in Perl functions that convert scalar values from one 
form to another, and the Perl functions that deal with variables that have not had 
values defined for them. 

You also learn about the built-in Perl functions that manipulate lists and array 
variables. These functions are divided into two groups: 

●     The functions that manipulate standard array variables and their lists 
●     The functions that manipulate associative arrays 

Many of the functions described in today's lesson use 
features of the UNIX operating system. If you are using 
Perl on a machine that is not running UNIX, some of 
these functions might not be defined or might behave 
differently.

Check the documentation supplied with your version of 
Perl for details on which functions are supported or 
emulated on your machine

The chop Function 

The chop function was first discussed on Day 3, "Understanding Scalar Values." It 
removes the last character from a scalar value. 

The syntax for the chop function is 



chop (var);

var can be either a scalar value or a list, as described in the following paragraphs. 

For example: 

$mystring = "This is a string";

chop ($mystring);

# $mystring now contains "This is a strin";

chop is used most frequently to remove the trailing newline character from an input 
line, as follows: 

$input = <STDIN>;

chop ($input);

The argument passed to chop can also be a list. In this case, chop removes the last 
character from every element of the list. For example, to read an entire input file into 
an array variable and remove all of the trailing newline characters, use the following 
statements: 

@input = <STDIN>;

chop (@input);

chop returns the character chopped. For example: 

$input = "12345";

$lastchar = chop ($input);

This call to chop assigns 5 to the scalar variable $lastchar. 

If chop is passed a list, the last character from the last element of the list is returned: 

@array = ("ab", "cd", "ef");



$lastchar = chop(@array);

This assigns f, the last character of the last element of @array, to $lastchar. 

The chomp Function 

The chomp function, defined only in Perl 5, checks whether the last characters of a 
string or list of strings match the input line separator defined by the $/ system variable. 
If they do, chomp removes them. 

The syntax for the chomp function is 

result = chomp(var)

As in the chop function, var can be either a scalar variable or a list. If var is a list, each 
element of the list is checked for the input end-of-line string. result is the total 
number of characters removed by chomp. 

Listing 14.1 shows how chomp works.

 

Listing 14.1. A program that uses the chomp function.

1:  #!/usr/local/bin/perl

2: 

3:  $/ = "::";   # set input line separator

4:  $scalar = "testing::";

5:  $num = chomp($scalar);

6:  print ("$scalar $num\n");

7:  @list = ("test1::", "test2", "test3::");

8:  $num = chomp(@list);

9:  print ("@list $num\n"); 



 

$ program14_1

testing 2

test1 test2 test3 4

$

 This program uses chomp to remove the input line separator from both a scalar 
variable and an array variable. The call to chomp in line 5 converts the value of 
$scalar from testing:: to testing. The number of characters removed, 2, is returned by 
chomp and assigned to $num. 

The call to chomp in line 8 checks each element of @list. The first element is converted 
from test1:: to test1, and the last element is converted from test3:: to test3. (The 
second element is ignored, because it is not terminated by the end-of-line specifier.) The 
total number of characters removed, 4 (two from the first element and two from the 
last), is returned by chomp and assigned to $num.

NOTE

For more information on the $/ system variable, refer to 
Day 17, "System Variables. 

The crypt Function 

The crypt function encrypts a string using the NBS Data Encryption Standard (DES) 
algorithm. 

The syntax for the crypt function is 

result = crypt (original, salt);

original is the string to be encrypted, and salt is a character string of two characters 
that defines how to change the DES algorithm (to make it more difficult to decode). 
These two characters can be any letter or digit, or one of the . and / characters. After 
the algorithm is changed, the string is encrypted using the resulting key. 



result is the encrypted string. The first two characters of result are the two 
characters specified in salt. 

You can use crypt to set up a password checker similar to those used by the UNIX login. 
Listing 14.2 is an example of a program that prompts the user for a password and compares 
it with a password stored in a special file.

 

Listing 14.2. A program that asks for and compares a password. 

1:  #!/usr/local/bin/perl

2:  

3:  open (PASSWD, "/u/jqpublic/passwd") ||

4:          die ("Can't open password file");

5:  $passwd = <PASSWD>;

6:  chop ($passwd);

7:  close (PASSWD);

8:  print ("Enter the password for this program:\n");

9:  system ("stty -echo");

10: $mypasswd = <STDIN>;

11: system ("stty echo");

12: chop ($mypasswd);

13: if (crypt ($mypasswd, substr($passwd, 0, 2)) eq $passwd) {

14:         print ("Correct! Carry on!\n");

15: } else {

16:         die ("Incorrect password: goodbye!\n");

17: }



 

$ program14_2

Enter the password for this program:

bluejays

Correct! Carry on!

$

 Note that the password you type is not displayed on the screen. 

Lines 3-7 retrieve the correct password from the file /u/jqpublic/passwd. This password 
can be created by another call to crypt. For example, if the correct password is sludge, 
the call that creates the string now stored in $passwd could be the following, where 
$salt contains some two-character string: 

$retval = crypt ("sludge", $salt);

After the correct password has been retrieved, the next step is line 8, which asks the 
user to type a password. By default, anything typed in at the keyboard is immediately 
displayed on the screen; this behavior is called input echoing. Input echoing is not 
desirable if a password is being typed in, because someone looking over the user's 
shoulder can read the password and break into the program. 

To make the password-checking process more secure, line 9 calls the UNIX command stty 
-echo, which turns off input echoing; now the password is not displayed on the screen 
when the user types it. After the password has been entered, line 11 calls the UNIX 
command stty echo, which turns input echoing back on. 

Line 13 calls crypt to check the password the user has entered. Because the first two 
characters of the actual encrypted password contain the two-character salt used in 
encryption, substr is used to retrieve these two characters and use them as the salt 
when encrypting the user's password. If the value returned by crypt is identical to the 
encrypted password, the user's password is correct; otherwise, the user has gotten it 
wrong, and die terminates the program. (A gentler password-checking program usually 
gives the user two or three chances to type a password before terminating the program.) 

This password checker is secure because the actual password does not appear in the 
program in unencrypted form. (In fact, because the password is in a separate file, it does 



not appear in the program at all.) This makes it impossible to obtain the password by 
simply examining the text file.

NOTE

The behavior of crypt is identical to that of the UNIX 
library function crypt. See the crypt(3) manual page 
for more information on DES encryption 

The hex Function 

The hex function assumes that a character string is a number written in hexadecimal 
format, and it converts it into a decimal number (a number in standard base-10 format). 

The syntax for the hex function is 

decnum = hex (hexnum);

hexnum is the hexadecimal character string, and decnum is the resulting decimal number. 

The following is an example: 

$myhexstring = "1ff";

$num = hex ($myhexstring);

This call to hex assigns the decimal equivalent of 1ff to $num, which means that the 
value of $num is now 511. The value stored in $myhexstring is not changed. 

The value passed to the string can contain either uppercase or lowercase letters 
(provided the letters are between a and f, inclusive). This value can be the result of an 
expression, as follows: 

$num = hex ("f" x 2);

Here, the expression "f" x 2 is equivalent to ff, which is converted to 255 by hex. 

NOTE



To convert a string from a decimal value to a 
hexadecimal value, use sprintf and specify either %x 
(hexadecimal integer) or %lx (long hexadecimal integer) 

hex does not handle hexadecimal strings that start with 
the characters 0x or 0X. To handle these strings, either 
get rid of these characters using a statement such as 

$myhexstring =~ s/^0[xX]//; 

or call the oct function, which is described later in 
today's lesson 

The int Function 

The int function turns a floating-point number into an integer by getting rid of 
everything after the decimal point. 

The syntax for the int function is 

intnum = int (floatnum);

floatnum is the floating-point number, and intnum is the resulting integer. 

The following is an example: 

$floatnum = 45.6;

$intnum = int ($floatnum);

This call to int converts 45.6 to 45 and assigns it to $intnum. The value stored in 
$floatnum is not changed. 

int can be used in expressions as well; for example: 



$intval = int (68.3 / $divisor) + 1;

int does not round up when you convert from floating 
point to integer. To round up when you use int, add 0.5 
first, as follows: 

$intval = int ($mynum + 0.5); 

Even then, you still might need to watch out for round-
off errors. For example, if 4.5 is actually stored in the 
machine as, say, 4.499999999, adding 0.5 might still 
result in a number less than 5, which means that int 
will truncate it to 4 

The oct Function 

The oct function assumes that a character string is a number written in octal format, 
and it converts it into a decimal number (a number in standard base-10 format). 

The syntax for the oct function is 

decnum = oct (octnum);

octnum is the octal character string, and decnum is the resulting decimal number. 

The following is an example: 

$myoctstring = "177";

$num = oct ($myoctstring);

This call to oct assigns the decimal equivalent of 177 to $num, which means that the 
value of $num is now 127. The value stored in $myoctstring is not changed. 



The value passed to oct can be the result of an expression, as shown in the following 
example: 

$num = oct ("07" x 2);

Here, the expression "07" x 2 is equivalent to 0707, which is converted to 455 by oct. 

NOTE

To convert a string from a decimal value to an octal 
value, use sprintf and specify either %o (octal integer) 
or %lo (long octal integer) 

The oct Function and Hexadecimal Integers

The oct function also handles hexadecimal integers whose first two characters start 
with 0x or 0X: 

$num = oct ("0xff");

This call treats 0xff as the hexadecimal number ff and converts it to 255. This feature 
of oct can be used to convert any non-standard Perl integer constant. 

Listing 14.3 is a program that reads a line of input and checks whether it is a valid Perl 
integer constant. If it is, it converts it into a standard (base-10) integer.

 

Listing 14.3. A program that reads any kind of integer.

1:  #!/usr/local/bin/perl

2:  

3:  $integer = <STDIN>;

4:  chop ($integer);

5:  if ($integer !~ /^[0-9]+$|^0[xX][0-9a-fa-F]+$/) {



6:          die ("$integer is not a legal integer\n");

7:  }

8:  if ($integer =~ /^0/) {

9:          $integer = oct ($integer);

10: }

11: print ("$integer\n");

 

$ program14_3

077

63

$

 The pattern in line 5 matches one of the following: 

●     One or more digits 
●     A string consisting of 0x or 0X followed by one or more digits or by uppercase or 

lowercase letters between a and f, inclusive 

The first case matches any standard base-10 integer or octal integer (because octal 
integers start with 0 and consist of the numbers 0 to 7). The second case matches any 
legal hexadecimal integer. In both cases, the pattern matches only if there are no 
extraneous characters (blank spaces, or other words or numbers) on the line. Of course, 
it is easy to use the substitution operator to get rid of these first, if you like. 

Line 8 tests whether the integer is either an octal or hexadecimal integer by searching 
for the pattern /^0/. If this pattern is found, oct converts the integer to decimal, 
placing the converted integer back in $integer. Note that line 8 does not need to 
determine which type of integer is contained in $integer because oct processes both 
octal and hexadecimal integers. 

The ord and chr Functions



The ord and chr functions are similar to the Pascal function of the same name. ord 
converts a single character to its numeric ASCII equivalent, and chr converts a number 
to its ASCII character equivalent. 

The syntax for the ord function is 

asciival = ord (char);

char is the string whose first character is to be converted, and asciival is the resulting 
ASCII value. 

For example, the following statement assigns the ASCII value for the / character, 47, 
to $ASCIIval: 

$ASCIIval = ord("/");

If the value passed to ord is a character string that is longer than one character in 
length, ord converts the first character in the string: 

$mystring = "/ignore the rest of this string";

$charval = ord ($mystring);

Here, the first character stored in $mystring, /, is converted and assigned to $charval. 

The syntax for the chr function is 

charval = chr (asciival);

asciival is the value to be converted, and charval is the one-character string 
representing the character equivalent of asciival in the ASCII character set. 

For example, the following statement assigns / to $slash, because 47 is the numeric 
equivalent of / in the ASCII character set: 

$slash = chr(47);



NOTE

The ASCII character set contains 256 characters. As a 
consequence, if the value passed to chr is greater than 
256, only the bottom eight bits of the value are used. 

This means, for example, that the following statements 
are equivalent:

$slash = chr(47);
$slash = chr(303);
$slash = chr(559);

In each case, the value of $slash is / 

The chr function is defined only in Perl 5. If you are 
using Perl 4, you will need to call sprintf to convert a 
number to a character: 

$slash = sprintf("%c", 47); 

This assigns / to $slash 

The scalar Function 

In Perl, some functions or expressions behave differently when their results are 
assigned to arrays than they do when assigned to scalar variables. For example, the 
assignment 

@var = @array;

copies the list stored in @array to the array variable @var, and the assignment 

$var = @array;



determines the number of elements in the list stored in @array and assigns that number 
to the scalar variable $var. 

As you can see, @array has two different meanings: an "array meaning" and a "scalar 
meaning." The Perl interpreter determines which meaning to use by examining the rest of 
the statement in which @array occurs. In the first case, the array meaning is intended, 
because the statement is assigning to an array variable. Statements in which the array 
meaning is intended are called array contexts. 

In the second case, the scalar meaning of @array is intended, because the statement is 
assigning to a scalar variable. Statements in which the scalar meaning is intended are 
called scalar contexts. 

The scalar function enables you to specify the scalar meaning in an array context. 

The syntax for the scalar function is 

value = scalar (list);

list is the list to be used in a scalar context, and value is the scalar meaning of the list. 

For example, to create a list consisting of the length of an array, you can use the 
following statement: 

@array = ("a", "b", "c");

@lengtharray = scalar (@array);

Here, the number of elements of @array, 3, is converted into a one-element list and 
assigned to @lengtharray. 

Another useful place to use scalar is in conjunction with the <> operator. Recall that 
the statement 

$myline = <MYFILE>;

reads one line from the input file MYFILE, and 

@mylines = <MYFILE>;



reads all of MYFILE into the array variable @mylines. To read one line into the array 
variable @mylines (as a one-element list), use the following: 

@mylines = scalar (<MYFILE>);

Specifying scalar with <MYFILE> ensures that only one line is read from MYFILE. 

The pack Function 

The pack function enables you to take a list or the contents of an array variable and 
convert (pack) it into a scalar value in a format that can be stored in actual machine 
memory or used in programming languages such as C. 

The syntax for the pack function is 

formatstr = pack(packformat, list);

Here, list is a list of values; this list of values can, as always, be the contents of an 
array variable. formatstr is the resulting string, which is in the format specified by 
packformat. 

packformat consists of one or more pack-format characters; these characters determine how 
the list is to be packed. These pack formats are listed in Table 14.1.

Table 14.1. Format characters for the pack function.

Character Description 

a ASCII character string padded with 
null characters 

A ASCII character string padded with 
spaces 

b String of bits, lowest first 

B String of bits, highest first 

c A signed character (range usually -128 
to 127) 

C An unsigned character (usually 8 bits) 

d A double-precision floating-point 
number 



f A single-precision floating-point 
number 

h Hexadecimal string, lowest digit first 

H Hexadecimal string, highest digit first 

i A signed integer 

I An unsigned integer 

l A signed long integer 

L An unsigned long integer 

n A short integer in network order 

N A long integer in network order 

p A pointer to a string 

s A signed short integer 

S An unsigned short integer 

u Convert to uuencode format 

v A short integer in VAX (little-endian) 
order 

V A long integer in VAX order 

x A null byte 

X Indicates "go back one byte" 

@ Fill with nulls (ASCII 0) 

One pack-format character must be supplied for each element in the list. If you like, you 
can use spaces or tabs to separate pack-format characters, because pack ignores white 
space. 

The following is a simple example that uses pack: 

$integer = pack("i", 171);

This statement takes the number 171, converts it into the format used to store integers 
on your machine, and returns the converted integer in $integer. This converted integer 
can now be written out to a file or passed to a program using the system or exec 
functions. 

To repeat a pack-format character multiple times, specify a positive integer after the 
character. The following is an example: 



$twoints = pack("i2", 103, 241);

Here, the pack format i2 is equivalent to ii. 

To use the same pack-format character for all of the remaining elements in the list, use 
* in place of an integer, as follows: 

$manyints = pack("i*", 14, 26, 11, 83);

Specifying integers or * to repeat pack-format characters works for all formats except 
a, A, and @. With the a and A formats, the integer is assumed to be the length of the 
string to create. 

$mystring = pack("a6", "test");

This creates a string of six characters (the four that are supplied, plus two null 
characters).

NOTE

The a and A formats always use exactly one element of 
the list, regardless of whether a positive integer is 
included following the character. For example: 

$mystring = pack("a6", "test1", "test2"); 

Here, test1 is packed into a six-character string and 
assigned to $mystring. test2 is ignored. 

To get around this problem, use the x operator to create 
multiple copies of the a pack-format character, as 
follows: 

$strings = pack ("a6" x 2, "test1", "test2"); 

This packs test1 and test2 into two six-character strings 
(joined together) 

The @ format is a special case. It is used only when a following integer is specified. This 



integer indicates the number of bytes the string must contain at this point; if the string 
is smaller, null characters are added. For example: 

$output = pack("a @6 a", "test", "test2");

Here, the string test is converted to ASCII format. Because this string is only four 
characters long, and the pack format @6 specifies that the packed scalar value must be 
six characters long at this point, two null characters are added to the string before 
test2 is packed. 

The pack Function and C Data Types

The most frequent use of pack is to create data that can be used by C programs. For 
example, to create a string terminated by a null character, use the following call to 
pack: 

$Cstring = pack ("ax", $mystring);

Here, the a pack-format character converts $mystring into an ASCII string, and the x 
character appends a null character to the end of the string. This format-a string 
followed by null-is how C stores strings. 

Table 14.2 shows the pack-format characters that have equivalent data types in C.

Table 14.2. Pack-format characters and their C equivalents.

Character C equivalent 

C char 

d double 

f float 

I int 

I unsigned int (or unsigned) 

l long 

L unsigned long 

s short 

S unsigned short 

In each case, pack stores the value in your local machine's internal format.



TIP

You usually won't need to use pack unless you are 
preparing data for use in other programs 

The unpack Function 

The unpack function reverses the operation performed by pack. It takes a value stored in 
machine format and converts it to a list of values understood by Perl. 

The syntax for the unpack function is 

list = unpack (packformat, formatstr);

Here, formatstr is the value in machine format, and list is the created list of values. 

As in pack, packformat is a set of one or more pack format characters. These characters 
are basically the same as those understood by pack. Table 14.3 lists these characters. 

Table 14.3. The pack-format characters, as used by unpack.

Character Description 

a ASCII character string, unstripped 

A ASCII character string with trailing 
nulls and spaces stripped 

b String of bits, lowest first 

B String of bits, highest first 

c A signed character (range usually -128 
to 127) 

C An unsigned character (usually 8 bits) 

d A double-precision floating-point 
number 

f A single-precision floating-point 
number 

h Hexadecimal string, lowest digit first 

H Hexadecimal string, highest digit first 

I A signed integer 



I An unsigned integer 

l A signed long integer 

L An unsigned long integer 

n A short integer in network order 

N A long integer in network order 

p A pointer to a string 

s A signed short integer 

S An unsigned short integer 

u Convert (uudecode) a uuencoded string 

v A short integer in VAX (little-endian) 
order 

V A long integer in VAX order 

x Skip forward a byte 

X Indicates "go back one byte" 

@ Go to specified position 

In almost all cases, a call to unpack undoes the effects of an equivalent call to pack. 
For example, consider Listing 14.4, which packs and unpacks a list of integers.

 

Listing 14.4. A program that demonstrates the relationship between 
pack and unpack. 

1:  #!/usr/local/bin/perl

2:  

3:  @list_of_integers = (11, 26, 43);

4:  $mystring = pack("i*", @list_of_integers);

5:  @list_of_integers = unpack("i*", $mystring);

6:  print ("@list_of_integers\n");



 

$ program14_4

11 26 43

$

 Line 4 calls pack, which takes all of the elements stored in 
@list_of_integers, converts them to the machine's integer format, and stores them in 
$mystring. 

Line 5 calls unpack, which assumes that the string stored in $mystring is a list of values 
stored in the machine's integer format; it takes this string, converts each integer in the 
string to a Perl value, and stores the resulting list of values in @list_of_integers. 

Unpacking Strings

The only unpack operations that do not exactly mirror pack operations are those 
specified by the a and A formats. The a format converts a machine-format string into a 
Perl value as is, whereas the A format converts a machine-format string into a Perl 
value and strips any trailing blanks or null characters. 

The A format is useful if you want to convert a C string into the string format 
understood by Perl. The following is an example: 

$perlstring = unpack("A", $Cstring);

Here, $Cstring is assumed to contain a character string stored in the format used by the 
C programming language (a sequence of bytes terminated by a null character). unpack 
strips the trailing null character from the string stored in $Cstring, and stores the 
resulting string in $perlstring. 

Skipping Characters When Unpacking

The @ pack-format character tells unpack to skip to the position specified with the @. For 
example, the following statement skips four bytes in $packstring, and then unpacks a 
signed integer and stores it in $skipnum. 

$skipnum = unpack("@4i", $packstring);



NOTE

If unpack is unpacking a single item, it can be stored in 
either an array variable or a scalar variable. If an 
array variable is used to store the result of the unpack 
operation, the resulting list consists of a single element 

If an * character appears after the @ pack-format character, unpack skips to the end of 
the value being unpacked. This can be used in conjunction with the X pack-format 
character to unpack the right end of the packed value. For example, the following 
statement treats the last four bytes of a packed value as a long unsigned integer and 
unpacks them: 

$longrightint = unpack("@* X4 L", $packstring);

In this example, the @* pack format specifier skips to the end of the value stored in 
$packstring. Then, the X4 specifier backs up four bytes. Finally, the L specifier treats the 
last four bytes as a long unsigned integer, which is unpacked and stored in 
$longrightint.

The number of bytes unpacked by the s, S, i, I, l, and L 
formats depends on your machine. Many UNIX machines 
store short integers in two bytes of memory, and integer 
and long integer values in four bytes. However, other 
machines might behave differently. In general, you 
cannot assume that programs that use pack and unpack 
will behave in the same way on different machines 

The unpack Function and uuencode

The unpack function enables you to decode files that have been encoded by the uuencode 
encoding program. To do this, use the u pack-format specifier.

NOTE



uuencode, a coding mechanism available on most UNIX 
systems, converts all characters (including unprintable 
characters) into printable ASCII characters. This 
ensures that you can safely transmit files across remote 
networks 

Listing 14.5 is an example of a program that uses unpack to decode a uuencoded file.

 

Listing 14.5. A program that decodes a uuencoded file.

1:  #!/usr/local/bin/perl

2:  

3:  open (CODEDFILE, "/u/janedoe/codefile") ||

4:          die ("Can't open input file");

5:  open (OUTFILE, ">outfile") ||

6:          die ("Can't open output file");

7:  while ($line = <CODEDFILE>) {

8:          $decoded = unpack("u", $line);

9:          print OUTFILE ($decoded);

10: }

11: close (OUTFILE);

12: close (CODEDFILE);

 The file variable CODEDFILE represents the file that was previously encoded 
by uuencode. Lines 3 and 4 open the file (or die trying). Lines 5 and 6 open the output file, 
which is represented by the file variable OUTFILE. 

Lines 7-10 read and write one line at a time. Line 7 starts off by reading a line of 



encoded input into the scalar variable $line. As with any other input file, the null 
string is returned if CODEDFILE is exhausted. 

Line 8 calls unpack to decode the line. If the line is a special line created by uuencode 
(for example, the first line, which lists the filename and the size, or the last line, which 
marks the end of the file), unpack detects it and converts it into the null string. This 
means that the program does not need to contain special code to handle these lines. 

Line 9 writes the decoded line to the output file represented by OUTFILE.

NOTE

You can use pack to uuencode lists of elements, as in the 
following: 

@encoded = pack ("u", @decoded); 

Here, the elements in @decoded are encoded and stored in 
the array variable @encoded. The list in @encoded can 
then be decoded using unpack, as follows: 

@decoded = unpack ("u", @encoded); 

Although pack uses the same uuencode algorithm as the 
UNIX uuencode utility, you cannot use the UNIX 
uudecode program on data encoded using pack because 
pack does not supply the header and footer (beginning 
and ending) lines expected by uudecode. 

If you really need to use uudecode with a file created by 
writing out the output from pack, you'll need to write 
out the header and footer files as well. (See the UNIX 
manual page for uuencode for more details. 

The vec Function 

The vec function enables you to treat a scalar value as a collection of chunks, with 
each chunk consisting of a specified number of bits; this collection is known as a vector. 
Each call to vec accesses a particular chunk of bits in the vector (known as a bit vector). 

The syntax for the vec function is 



retval = vec (vector, index, bits);

vector is the scalar value that is to be treated as a vector. It can be any scalar value, 
including the value of an expression. 

index behaves like an array subscript. It indicates which chunk of bits to retrieve. An 
index of 0 retrieves the first chunk, 1 retrieves the second, and so on. Note that 
retrieval is from right to left. The first chunk of bits retrieved when the index 0 is 
specified is the chunk of bits at the right end of the vector. 

bits specifies the number of bits in each chunk; it can be 1, 2, 4, 8, 16, or 32. 

retval is the value of the chunk of bits. This value is an ordinary Perl scalar value, and 
it can be used anywhere scalar values can be used. 

Listing 14.6 shows how you can use vec to retrieve the value of a particular chunk of 
bits.

 

Listing 14.6. A program that illustrates the use of vec. 

1:  #!/usr/local/bin/perl

2:  

3:  $vector = pack ("B*", "11010011");

4:  $val1 = vec ($vector, 0, 4);

5:  $val2 = vec ($vector, 1, 4);

6:  print ("high-to-low order values: $val1 and $val2\n");

7:  $vector = pack ("b*", "11010011");

8:  $val1 = vec ($vector, 0, 4);

9:  $val2 = vec ($vector, 1, 4);

10: print ("low-to-high order values: $val1 and $val2\n");



 

$ program14_6

high-to-low order values: 3 and 13

low-to-high order values: 11 and 12

$

 The call to pack in line 3 assumes that each character in the string 11010011 
is a bit to be packed. The bits are packed in high-to-low order (with the highest bit first), 
which means that the vector stored in $vector consists of the bits 11010011 (from left to 
right). Grouping these bits into chunks of four produces 1101 0011, which are the binary 
representations of 13 and 3, respectively. 

Line 4 retrieves the first chunk of four bits from $vector and assigns it to $val1. This is 
the chunk 0011, because vec is retrieving the chunk of bits at the right end of the bit 
vector. Similarly, line 5 retrieves 1101, because the index 1 specifies the second chunk of 
bits from the right; this chunk is assigned to $val2. (One way to think of the index is as 
"the number of chunks to skip." The index 1 indicates that one chunk of bits is to be 
skipped.) 

Line 7 is similar to line 3, but the bits are now stored in low-to-high order, not high-to-
low. This means that the string 11010011 is stored as the following (which is 11010011 
reversed): 

11001011

When this bit vector is grouped into chunks of 4 bits, you get the following, which are 
the binary representations of 12 and 11, respectively: 

1100 1011

Lines 8 and 9, like lines 4 and 5, retrieve the first and second chunk of bits from $vector. 
This means that $val1 is assigned 11 (the first chunk), and $val2 is assigned 12 (the 
second chunk).

NOTE



You can use vec to assign to a chunk of bits by placing 
the call to vec to the left of an assignment operator. 
For example: 

vec ($vector, 0, 4) = 11; 

This statement assigns 11 to the first chunk of bits in 
$vector. Because the binary representation of 11 is 1011, 
the last four bits of $vector become 1011 

The defined Function 

By default, all scalar variables and elements of array variables that have not been 
assigned to are assumed to contain the null string. This ensures that Perl programs 
don't crash when using uninitialized scalar variables. 

In some cases, a program might need to know whether a particular scalar variable or 
array element has been assigned to or not. The built-in function defined enables you to 
check for this. 

The syntax for the defined function is 

retval = defined (expr);

Here, expr is anything that can appear on the left of an assignment statement, such as a 
scalar variable, array element, or an entire array. (An array is assumed to be defined if 
at least one of its elements is defined.) retval is true (a nonzero value) if expr is 
defined, and false (0) if it is not. 

Listing 14.7 is a simple example of a program that uses defined. 

 

Listing 14.7. A program that illustrates the use of defined. 

1:  #!/usr/local/bin/perl

2:  



3:  $array[2] = 14;

4:  $array[4] = "hello";

5:  for ($i = 0; $i <= 5; $i++) {

6:          if (defined ($array[$i])) {

7:                  print ("element ", $i+1, " is defined\n");

8:          }

9:  }

 

$ program14_7

element 3 is defined

element 5 is defined

$

 This program assigns values to two elements of the array variable @array: the 
element with subscript 2 (the third element), and the element with subscript 4 (the fifth 
element). 

The loop in lines 5-9 checks each element of @array to see whether it is defined. Because 
the third and fifth elements-$array[2] and $array[4], respectively-are defined, defined 
returns true when $i is 2 and when $i is 4.

NOTE



Many functions that return the null string actually 
return a special "undefined" value that is treated as if it 
is the null string. If this undefined value is passed to 
defined, defined returns false. 

Functions that return undefined include the read 
function (discussed on Day 12, "Working with the File 
System") and fork (introduced on Day 13, "Process, 
String, and Mathematical Functions"). Many functions 
discussed today and on Day 15, "System Functions," also 
return the special undefined value when an error 
occurs. 

The general rule is: A function that returns the null 
string when an error or exceptional condition occurs is 
usually really returning the undefined value

The undef Function 

The undef function undefines a scalar variable, array element, or an entire array. 

The syntax of the undef function is 

retval = undef (expr);

As in calls to defined, expr can be anything that can appear to the left of a Perl 
assignment statement. retval is always the special undefined value discussed in the 
previous section, "The defined Function"; this undefined value is equivalent to the null 
string. 

The following are some examples of undef: 

undef ($myvar);

undef ($array[3]);

undef (@array);

In the first case, the scalar variable $myvar becomes undefined. The Perl interpreter 
now treats $myvar as if it has never been assigned to. Needless to say, any value 
previously stored in $myvar is now lost. 



In the second example, the fourth element of @array is marked as undefined. Its value, if 
any, is lost. Other elements of @array are unaffected. 

In the third and final example, all the elements of @array are marked as undefined. This 
lets the Perl interpreter free up any memory used to store the values of @array, which 
might be useful if your program is working with large arrays. For example, if you have 
used an array to read in an entire file, as in the following: 

@bigarray = <STDIN>;

you can use the following statement to tell the Perl interpreter that you don't need 
the contents of the input file and that the interpreter can throw them away: 

undef (@bigarray);

Calls to undef can omit expr. In this case, undef does nothing and just returns the 
undefined value. Listing 14.8 shows how this can be useful.

 

Listing 14.8. A program that illustrates the use of undef to represent 
an unusual condition.

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the number to divide:\n");

4:  $value1 = <STDIN>;

5:  chop ($value1);

6:  print ("Enter the number to divide by:\n");

7:  $value2 = <STDIN>;

8:  chop ($value2);

9:  $result = &safe_division($value1, $value2);

10: if (defined($result)) {



11:         print ("The result is $result.\n");

12: } else {

13:         print ("Can't divide by zero.\n");

14: }

15: 

16: sub safe_division {

17:         local ($dividend, $divisor) = @_;

18:         local ($result);

19: 

20:         $result = ($divisor == 0) ? undef :

21:                 $dividend / $divisor;

22: }

 

$ program14_8

Enter the number to divide:

26

Enter the number to divide by:

0

Can't divide by zero.

$

 Lines 20 and 21 illustrate how you can use undef. If $divisor is 0, the program 
is attempting to divide by 0. In this case, the subroutine safe_division calls undef, which 
returns the special undefined value. This value is assigned to $result and passed back to 
the main part of the program. 

Line 10 tests whether safe_division has returned the undefined value by the calling 
defined function. If defined returns false, $result contains the undefined value, and 



an attempted division by 0 has been detected.

NOTE

You can use undef to undefine an entire subroutine, if 
you like. The following example: 

undef (&mysub); 

frees the memory used to store mysub; after this, mysub 
can no longer be called. 

You are not likely to need to use this feature of undef, 
but it might prove useful in programs that consume a lot 
of memory 

Array and List Functions

The following functions manipulate standard array variables and the lists that they 
store: 

●     grep 
●     splice 
●     shift 
●     unshift 
●     push 
●     pop 
●     split 
●     sort 
●     reverse 
●     map 
●     wantarray 

The grep Function 

The grep function provides a convenient way of extracting the elements of a list that 
match a specified pattern. (It is named after the UNIX search utility of the same name.) 

The syntax for the grep function is 

foundlist = grep (pattern, searchlist);



pattern is the pattern to search for. searchlist is the list of elements to search in. 
foundlist is the list of elements matched. 

Here is an example: 

@list = ("This", "is", "a", "test");

@foundlist = grep(/^[tT]/, @list);

Here, grep examines all the elements of the list stored in @list. If a list element 
contains the letter t (in either uppercase or lowercase), the element is included as part 
of @foundlist. As a result, @foundlist consists of two elements: This and test. 

Listing 14.9 is an example of a program that uses grep. It searches for all integers on an 
input line and adds them together. 

 

Listing 14.9. A program that demonstrates the use of grep. 

1:  #!/usr/local/bin/perl

2:  

3:  $total = 0;

4:  $line = <STDIN>;

5:  @words = split(/\s+/, $line);

6:  @numbers = grep(/^\d+[.,;:]?$/, @words);

7:  foreach $number (@numbers) {

8:          $total += $number;

9:  }

10: print ("The total is $total.\n");

 



$ program14_9

This line of input contains 8, 11 and 26.

The total is 45.

$

 Line 5 splits the input line into words, using the standard pattern /\s+/, 
which matches one or more tabs or blanks. Some of these words are actually numbers, 
and some are not. 

Line 6 uses grep to match the words that are actually numbers. The pattern 
/^\d+[.,;:]?$/ matches if a word consists of one or more digits followed by an optional 
punctuation character. The words that match this pattern are returned by grep and 
stored in @numbers. After line 6 has been executed, @numbers contains the following list: 

("8,", "11", "26.")

Lines 7-9 use a foreach loop to total the numbers. Note that the totaling operation 
works properly even if a number being added contains a closing punctuation character: 
when the Perl interpreter converts a string to an integer, it reads from left to right 
until it sees a character that is not a digit. This means that the final word, 26., is 
converted to 26, which is the expected number. 

Because split and grep each return a list and foreach expects a list, you can combine 
lines 5-9 into a single loop if you want to get fancy. 

foreach $number (grep (/^\d+[.,;:]?$/, split(/\s+/, $line))) {

        $total += $number;

}

As always, there is a trade-off of speed versus readability: this code is more concise, but 
the code in Listing 14.9 is more readable. 

Using grep with the File-Test Operators

A useful feature of grep is that it can be used to search for any expression, not just 
patterns. For example, grep can be used in conjunction with readdir and the file-test 
operators to search a directory. 



Listing 14.10 is an example of a program that searches all the readable files of the 
current directory for a particular word (which is supplied on the command line). Files 
whose names begin with a period are ignored.

 

Listing 14.10. A program that uses grep with the file-test operators.

1:  #!/usr/local/bin/perl

2:  

3:  opendir(CURRDIR, ".") ||

4:          die("Can't open current directory");

5:  @filelist = grep (!/^\./, grep(-r, readdir(CURRDIR)));

6:  closedir(CURRDIR);

7:  foreach $file (@filelist) {

8:          open (CURRFILE, $file) ||

9:                  die ("Can't open input file $file");

10:         while ($line = <CURRFILE>) {

11:                 if ($line =~ /$ARGV[0]/) {

12:                         print ("$file:$line");

13:                 }

14:         }

15:         close (CURRFILE);

16: }

 

$ program14_10 pattern



file1:This line of this file contains the word "pattern".

myfile:This file also contains abcpatterndef.

$

 Line 3 of this program opens the current directory. If it cannot be opened, line 
4 calls die, which terminates the program. 

Line 5 is actually three function calls in one, as follows: 

1.  readdir retrieves a list of all of the files in the directory. 
2.  This list of files is passed to grep, which uses the -r file test operator to search 

for all files that the user has permission to read. 
3.  This list of readable files is passed to another call to grep, which uses the 

expression !/^\./ to match all the files whose names do not begin with a period. 

The resulting list-all the files in the current directory that are readable and whose 
names do not start with a period-is assigned to @filelist. 

The rest of the program contains nothing new. Line 6 closes the open directory, and 
lines
7-16 read each file in turn, searching for the word specified on the command line. 
(Recall that the built-in array @ARGV lists all the arguments supplied on the command 
line and that the first word specified on the command line is stored in $ARGV[0].) Line 11 
prints any lines containing the word to search for, using the format employed by the 
UNIX grep command (the filename, followed by :, followed by the line itself). 

The splice Function 

The splice function enables you to modify the list stored in an array variable. By 
passing the appropriate arguments to splice, you can add elements to the middle of a 
list, delete a portion of a list, or replace a portion of a list. 

The syntax for the splice function is 

retval = splice (array, skipelements, length, newlist)

array is the array variable containing the list to be spliced. skipelements is the number 
of elements to skip before splicing. length is the number of elements to be replaced. 
newlist is the list to be spliced in; this list can be stored in an array variable or specified 
explicitly. 



If length is greater than 0, retval is the list of elements replaced by splice. 

The following sections provide examples of what you can do with splice. 

Replacing List Elements

You can use splice to replace a sublist (a set of elements in a list) with another sublist. 
The following is an example: 

@array = ("1", "2", "3", "4");

splice (@array, 1, 2, ("two", "three"));

This call to splice takes the list stored in @array, skips over the first element, and 
replaces the next two elements with the list ("two", "three"). The new value of 
@array is the list 

("1", "two", "three", "4")

If the replacement list is longer than the original list, the elements to the right of the 
replaced list are pushed to the right. For example: 

@array = ("1", "2", "3", "4");

splice (@array, 1, 2, ("two", "2.5", "three"));

After this call, the new value of @array is the following: 

("1", "two", "2.5", "three", "4")

Similarly, if the replacement list is shorter than the original list, the elements to the 
right of the original list are moved left to fill the resulting gap. For example: 

@array = ("1", "2", "3", "4");

splice (@array, 1, 2, "twothree");

After this call to splice, @array contains the following list: 



("1", "twothree", "4")

NOTE

You do not need to put parentheses around the list you 
pass to splice. For example, the following two 
statements are equivalent: 

splice (@array, 1, 2, ("two", "three"));

splice (@array, 1, 2, "two", "three") 

When the Perl interpreter sees the second form of 
splice, it assumes that the fourth and subsequent 
arguments are the replacement list. 

Listing 14.11 is an example of a program that uses splice to replace list elements. It 
reads a file containing a form letter, and replaces the string <name> with a name read 
from the standard input file. It then writes out the new letter. 

The output shown assumes that the file form contains 

Hello <name>!

This is your lucky day, <name>!

 

Listing 14.11. A program that uses splice to replace list elements.

1:  #!/usr/local/bin/perl

2:  

3:  open (FORM, "form") || die ("Can't open form letter");

4:  @form = <FORM>;

5:  close (FORM);



6:  $name = <STDIN>;

7:  @nameparts = split(/\s+/, $name);

8:  foreach $line (@form) {

9:          @words = split(/\s+/, $line);

10:         $i = 0;

11:         while (1) {

12:                 last if (!defined($words[$i]));

13:                 if ($words[$i] eq "<name>") {

14:                         splice (@words, $i, 1, @nameparts);

15:                         $i += @nameparts;

16:                 } elsif ($words[$i] =~ /^<name>/) {

17:                         $punc = $words[$i];

18:                         $punc =~ s/<name>//;

19:                         @temp = @nameparts;

20:                         $temp[@temp-1] .= $punc;

21:                         splice (@words, $i, 1, @temp);

22:                         $i += @temp;

23:                 } else {

24:                         $i++;

25:                 }

26:         }

27:         $line = join (" ", @words);

28: }

29: $i = 0;

30: while (1) {

31:         if (!defined ($form[$i])) {

32:                 $~ = "FLUSH";

33:                 write;

34:                 last;

35:         }



36:         if ($form[$i] =~ /^\s*$/) {

37:                 $~ = "FLUSH";

38:                 write;

39:                 $~ = "BLANK";

40:                 write;

41:                 $i++;

42:                 next;

43:         }

44:         if ($writeline ne "" &&

45:                 $writeline !~ / $/) {

46:                 $writeline .= " ";

47:         }

48:         $writeline .= $form[$i];

49:         if (length ($writeline) < 60) {

50:                 $i++;

51:                 next;

52:         }

53:         $~ = "WRITELINE";

54:         write;

55:         $i++;

56: }

57: format WRITELINE =

58: ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~

59: $writeline

60: .

61: format FLUSH =

62: ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~

63: $writeline

64: .



65: format BLANK =

66: 

67: .

 

$ program14_11

Fred

Hello Fred! This is your lucky day, Fred!

$

 This program starts off by reading the entire form letter from the file named 
form into the array variable @form. This makes it possible to format the form letter 
output later on. 

Lines 6 and 7 read the name from the standard input file and break into individual 
words. This list of words is stored in the array variable @nameparts. 

The loop in lines 8-28 reads each line in the form letter and looks for occurrences of 
the string <name>. First, line 9 breaks the line into individual words. This list of words is 
stored in the array variable @words. 

The while loop starting in line 11 then examines each word of @words in turn. Line 12 
checks whether the loop has reached the end of the list by calling defined; if the loop 
is past the end of the list, defined will return false, indicating that the array element 
is not defined. 

Lines 13-15 check whether a word consists entirely of the string <name>. If it does, line 
14 calls splice; this call replaces the word <name> with the words in the name list 
@nameparts. 

If a word is not equal to the string <name>, it might still contain <name> followed by a 
punctuation character. To test for this, line 16 tries to match the pattern /^<name>/. If 
it matches, lines 17 and 18 isolate the punctuation in a single word. This punctuation is 
stored in the scalar variable $punc. 



Lines 19 and 20 create a copy of the name array @nameparts and append the punctuation 
to the last element of the array. This ensures that the punctuation will appear in the 
form letter where it is supposed to-right after the last character of the substituted 
name. Line 21 then calls splice as in line 14. 

After the words in @words have been searched and the name substituted for <name>, line 
27 joins the words back into a single line. As an additional benefit, the multiple spaces 
and tabs in the original line have now been replaced by a single space, which will make 
the eventual formatted output look nicer. 

Lines 30-56 write out the output. The string to be written is stored in the scalar 
variable $writeline. The program ensures that the form-letter output is formatted by 
doing the following: 

1.  First, the print format WRITELINE is defined to use the ^<<<< value-field format. 
This format fits as much of the contents of $writeline into the line as possible 
and then deletes the part of $writeline that has been written out. 

2.  Lines 36-43 enable you to add paragraphs to your form letter. Line 36 tests 
whether an input line is blank. If it is, the FLUSH print format is used to write out 
any output from previous lines that has not yet been printed. (Because the output 
line specified by FLUSH starts with ~~, the line is printed only if it is not blank-in 
other words, if $writeline actually contains some leftover text.) Then, the BLANK 
print format writes a blank line. 

3.  Lines 44-47 check whether a space needs to be placed between the end of one input 
line and the beginning of the next when formatting. 

4.  Lines 49-52 ensure that $writeline is always long enough to fill the value field 
specified by WRITELINE. This guarantees that there will be no unnecessary space in 
any of the output lines. 

5.  When @form has been completely read, lines 32-34 ensure that all of the output 
from previous lines has been written by using the FLUSH print format. 

(For more information on the print formats used in this example, refer to Day 11, 
"Formatting Your Output.")

NOTE

You can use splice to splice the contents of a scalar 
variable into an array. For example: 

splice (@array, 8, 1, $name); 

This creates a one-element list consisting of the 
contents of $name and adds it to the list stored in @array 
(as the eighth element) 



Appending List Elements

You can use splice to add a sublist anywhere in a list. To do this, specify a length field 
of 0. For example: 

splice (@array, 5, 0, "Hello", "there");

This call to splice adds the list ("Hello", "there") to the list stored in @array. Hello 
becomes the new sixth element of $list, and there becomes the new seventh element; 
the existing sixth and seventh elements, if they exist, become the new eighth and ninth 
elements, and every other element is also pushed to the right. 

To add a new element to the end of an existing array, specify a skipelements value of -
1, as shown in the following: 

splice (@array, -1, 0, "Hello");

This adds Hello as the last element of the list stored in @array. 

Listing 14.12 is an example of a program that uses splice to insert an element into a list. 
This program inserts a word count after every tenth word in a file.

 

Listing 14.12. A program that uses splice to insert array elements.

1:  #!/usr/local/bin/perl

2:  

3:  $count = 0;

4:  while ($line = <STDIN>) {

5:          chop ($line);

6:          @words = split(/\s+/, $line);

7:          $added = 0;

8:          for ($i = 0; $i+$added < @words; $i++) {



9:                  if ($count > 0 && ($count + $i) % 10 == 0) {

10:                         splice (@words, $i+$added, 0,

11:                                 $count + $i);

12:                         $added += 1;

13:                 }

14:         }

15:         $count += @words - $added;

16:         $line = join (" ", @words);

17:         print ("$line\n");

18: }

 

$ program14_12

Here is a line with some words on it.

Here are some more test words to count.

A B C D E F G H I J K L M N O P

^D

Here is a line with some words on it.

Here 10 are some more test words to count.

A B C 20 D E F G H I J K L M 30 N O P

$

 This program, like many of the others you have seen, reads one line at a time 
and breaks the line into words; the array variable @words contains the list of words for 
a particular line. 

The scalar variable $count contains the number of words in the lines previously read. 
Lines 8 through 14 read each word in the current input line in turn; at any given point, 



the counting variable $i lists the number of words read in the line, and the sum of 
$count and $i lists the total number of words read in all input lines. 

Line 9 adds the value stored in $count to the value stored in $i; if this value, the 
current word number, is a multiple of ten, lines 10 and 11 call splice and insert the 
current word number into the list. As a result, every tenth word is followed by its 
word number. 

The scalar variable $added counts the number of elements added to the list; this ensures 
that the word numbers added by lines 10 and 11 are not included as part of the word 
count. 

After the word numbers have been inserted into the list, line 16 rebuilds the input line 
by joining the elements of @words; this new input line includes the word numbers. Line 17 
then prints the rebuilt line. 

Deleting List Elements

You can use splice to delete list elements without replacing them. To do this, call 
splice and omit the newlist argument. For example: 

@deleted = splice (@array, 8, 2);

This call to splice deletes the ninth and tenth elements of the list stored in @array. If 
@array contains subsequent elements, these elements are shifted left to fill the gap. 
The list of deleted elements is returned and stored in @deleted. 

Listing 14.13 reads an input file, uses splice to delete all words greater than five 
characters long, and writes out the result.

 

Listing 14.13. A program that uses splice to delete words.

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <STDIN>) {

4:          @words = split(/\s+/, $line);



5:          $i = 0;

6:          while (defined($words[$i])) {

7:                  if (length($words[$i]) > 5) {

8:                          splice(@words, $i, 1);

9:                  } else {

10:                         $i++;

11:                 }

12:         }

13:         $line = join (" ", @words);

14:         print ("$line\n");

15: }

 

$ program14_13

this is a test of the program which removes long words

^D

this is a test of the which long words

$

 This program reads one line of input at a time and breaks each input line into 
words. Line 7 calls length to determine the length of a particular word. If the word is 
greater than five characters in length, line 8 calls splice to remove the word from the 
list.

NOTE



You also can omit the length argument when you call 
splice. If you do, splice deletes everything after the 
element specified by skipelements: 

splice (@array, 7); 

This deletes the seventh and all subsequent elements of 
the list stored in @array. 

To delete the last element of a list, specify -1 as the 
skipelements argument. 

splice (@array, -1); 

In all cases, splice returns the list of deleted elements 

The shift Function 

One list operation that is frequently needed in a program is to remove an element from 
the front of a list. Because this operation is often performed, Perl provides a special 
function, shift, that handles it. 

shift removes the first element of the list and moves (or "shifts") every remaining 
element of the list to the left to cover the gap. shift then returns the removed 
element. 

The syntax for the shift function is 

element = shift (arrayvar);

shift is passed one argument: an array variable that contains a list. element is the 
returned element.

NOTE

shift returns the undefined value (equivalent to the 
null string) if the list is empty 

Here is a simple example using shift: 



@mylist = ("1", "2", "3");

$firstval = shift(@mylist);

This call to shift removes the first element, 1, from the list stored in @mylist. This 
element is assigned to $firstval. @mylist now contains the list ("2", "3"). 

If you do not specify an array variable when you call shift, the Perl interpreter 
assumes that shift is to remove the first element from the system array variable @ARGV. 
This variable lists the arguments supplied on the command line when the program is 
started up. For example, if you call a Perl program named foo with the following 
command: 

foo arg1 arg2 arg3

@ARGV contains the list ("arg1", "arg2", "arg3"). 

This default feature of shift makes it handy for processing command-line arguments. 
Listing 14.14 is a simple program that prints out its arguments.

 

Listing 14.14. A program that uses shift to process the command-line 
arguments.

1:  #!/usr/local/bin/perl

2:  

3:  while (1) {

4:          $currarg = shift;

5:          last if (!defined($currarg));

6:          print ("$currarg\n");

7:  }



 

$ program14_14 arg1 arg2 arg3

arg1

arg2

arg3

$

 When this program is called, the array variable @ARGV contains a list of the 
values supplied as arguments to the program. Line 4 calls shift to remove the first 
argument from the list and assign it to $currarg. 

If there are no elements (or none remaining), shift returns the undefined value, and 
the call to defined in line 5 returns false. This ensures that the loop terminates when 
there are no more arguments to read.

NOTE

The shift function is equivalent to the following call 
to splice: 

splice (@array, 0, 1) 

The unshift Function 

To undo the effect of a shift function, call unshift. 

The syntax for the unshift function is 

count = unshift (arrayvar, elements);

arrayvar is the list (usually stored in an array variable) to add to, and elements is the 
element or list of elements to add. count is the number of elements in the resulting list. 

The following is an example of a call to unshift: 



unshift (@array, "newitem");

This adds the element newitem to the front of the list stored in @array. The other 
elements of the list are moved to the right to accommodate the new item. 

You can use unshift to add more than one element to the front of an array. For 
example: 

unshift (@array, @sublist1, "newitem", @sublist2);

This adds a list consisting of the list stored in @sublist1, the element newitem, and the 
list stored in @sublist2 to the front of the list stored in @array. 

unshift returns the number of elements in the new list, as shown in the following: 

@array = (1, 2, 3);

$num = unshift (@array, "newitem");

This assigns 4 to $num.

NOTE

The unshift function is equivalent to calling splice 
with a skipelements value of 0 and a length value of 0. 
For example, the following statements are equivalent: 

unshift (@array, "item1", "item2");

splice (@array, 0, 0, "item1", "item2") 

The push Function 

As you have seen, the unshift function adds an element to the front of a list. To add an 
element to the end of a list, call the push function. 

The syntax for the push function is 

push (arrayvar, elements);



arrayvar is the list (usually stored in an array variable) to add to, and elements is the 
element or list of elements to add. 

The following is an example that uses push: 

push (@array, "newitem");

This adds the element newitem to the end of the list. 

The end of the list is always assumed to be the last defined element. For example, 
consider the following statements: 

@array = ("one", "two");

$array[3] = "four";

push (@array, "five");

Here, the first statement creates a two-element list and assigns it to @array. The second 
statement assigns four to the fourth element of @array. Because the fourth element is 
now the last element of @array, the call to push creates a fifth element, even though 
the third element is undefined. @array now contains the list 

("one", "two", "", "four", "five");

The undefined third element is, as always, equivalent to the null string. 

As with unshift, you can use push to add multiple elements to the end of a list, as in this 
example: 

push (@array, @sublist1, "newitem", @sublist2);

Here, the list consisting of the contents of @sublist1, the element newitem, and the 
contents of @sublist2 is added to the end of the list stored in @array.

NOTE



push is equivalent to a call to splice with the 
skiparguments argument set to the length of the array. 
This means that the following statements are 
equivalent: 

push (@array, "newitem");

splice (@array, @array, 0, "newitem") 

The pop Function 

The pop function undoes the effect of push. It removes the last element from the end of 
a list. The removed element is returned. 

The syntax for the pop function is 

element = pop (arrayvar);

arrayvar is the array element from which an element is to be removed. element is the 
returned element. 

For example, the following statement removes the last element from the list stored in 
@array and assigns it to the scalar variable $popped: 

$popped = pop (@array);

If the list passed to pop is empty, pop returns the undefined value.

NOTE

pop is equivalent to a call to splice with a 
skipelements value of -1 (indicating the last element of 
the array). This means that the following statements 
behave in the same way: 

$popped = pop (@array);

$popped = splice (@array, -1) 

Creating Stacks and Queues



The functions you have just seen are handy for constructing two commonly used data 
structures: stacks and queues. The following sections provide examples that use a stack 
and a queue. 

Creating a Stack

A stack is a data structure that behaves like a stack of plates in a cupboard: the last 
item added to the stack is always the first item removed. Data items that are added to 
the stack are said to be pushed onto the stack; items which are removed from the stack 
are popped off the stack. 

As you might have guessed, the functions push and pop enable you to create a stack in a 
Perl program. Listing 14.15 is an example of a program that uses a stack to perform 
arithmetic operations. It works as follows: 

1.  Two numbers are pushed onto the stack. 
2.  The program reads an arithmetic operator, such as + or -. The two numbers are 

popped off the stack, and the operation is performed. 
3.  The result of the operation is pushed onto the stack, enabling it to be used in 

further arithmetic operations. 

After all the arithmetic operations have been performed, the stack should consist of a 
single element, which is the final result. 

The numbers and operators are read from the standard input file. 

Note that Listing 14.15 is the "inverse" of Listing 9.12. In the latter program, the 
arithmetic operators appear first, followed by the values.

 

Listing 14.15. A program that uses a stack to perform arithmetic. 

1:  #!/usr/local/bin/perl

2:  

3:  while (defined ($value = &read_value)) {

4:          if ($value =~ /^\d+$/) {

5:                  push (@stack, $value);

6:          } else {



7:                  $firstpop = pop (@stack);

8:                  $secondpop = pop (@stack);

9:                  push (@stack,

10:                    &do_math ($firstpop, $secondpop, $value));

11:         }

12: }

13: $result = pop (@stack);

14: if (defined ($result)) {

15:         print ("The result is $result.\n");

16: } else {

17:         die ("Stack empty when printing result.\n");

18: }

19: 

20: sub read_value {

21:         local ($retval);

22:         $input =~ s/^\s+//;

23:         while ($input eq "") {

24:                 $input = <STDIN>;

25:                 return if ($input eq "");

26:                 $input =~ s/^\s+//;

27:         }

28:         $input =~ s/^\S+//;

29:         $retval = $&;

30: }

31: 

32: sub do_math {

33:         local ($val2, $val1, $operator) = @_;

34:         local ($result);

35: 



36:         if (!defined($val1) || !defined($val2)) {

37:                 die ("Missing operand");

38:         }

39:         if ($operator =~ m.^[+-/*]$. ) {

40:                 eval ("\$result = \$val2 $operator \$val1");

41:         } else {

42:                 die ("$operator is not an operator");

43:         }

44:         $result;  # ensure the proper return value

45: }

 

$ program14_15

11 4 + 26 -

^D

The result is 11.

$

 Before going into details, let's first take a look at how the program produces 
the final result, which is 11: 

1.  The program starts off by reading the numbers 11 and 4 and pushing them onto the 
stack. If the stack is listed from the top down, it now looks like this:
4
11

Another way to look at the stack is this: At present, the list stored in @stack is 
(11, 4). 

2.  The program then reads the + operator, pops the 4 and 11 off the stack, and 
performs the addition, pushing the result onto the stack. The stack now contains 
a single value: 
15 



3.  The next value, 26, is pushed onto the stack, which now looks like this:
26

15 
4.  The program then reads the - operator, pops 15 and 26 off the stack, and subtracts 

15 from 26. The result, 11, is pushed onto the stack. 
5.  Because there are no more operations to perform, 11 becomes the final result. 

This program delegates to the subroutine read_value the task of reading values and 
operators. This subroutine reads a line of the standard input file and extracts the non-
blank items on the line. Each call to read_value extracts one item from an input line; 
when an input line is exhausted, read_value reads the next one. When the input file is 
exhausted and there are no more items to return, $input becomes the undefined value, 
which is equivalent to the null string; the call to defined in line 3 tests for this 
condition. 

If an item returned by read_value is a number, line 5 calls push, which pushes the number 
onto the stack. If an item is not a number, the program assumes it is an operator. At this 
point, pop is called twice to remove the last two numbers from the stack, and do_math is 
called to perform the arithmetic operation. 

The do_math subroutine uses a couple of tricks. First, defined is called to see whether 
there are, in fact, two numbers to add. If one or both of the numbers does not exist, the 
program terminates. 

Next, the subroutine uses the pattern m.^[+-*/]$. to check whether the character 
string stored in $operator is, in fact, a legal arithmetic operator. (Recall that you can 
use a pattern delimiter other than / by specifying m followed by the character you 
want to use as the delimiter. In this case, the period character is the pattern delimiter.) 

Finally, the subroutine calls eval to perform the arithmetic operation. eval replaces 
the name $operator with its current value, and then treats the resulting character 
string as an executable statement; this performs the arithmetic operation specified by 
$operator. Using eval here saves space; the only alternative is to use a complicated if-
elseif structure. 

The result of the operation is returned in $result. Lines 9 and 10 then pass this value to 
push, which pushes the result onto the stack. This enables you to use the result in 
subsequent operations. 

When the last arithmetic operation has been performed, the final result is stored as the 
top element of the stack. Line 13 pops this element, and line 15 prints it. 

Note that this program always assumes that the last element pushed onto the stack is 
to be on the left of the arithmetic operation. To reverse this, all you need to do is 
change the order of $val1 and $val2 in line 33. (Some programs that manipulate stacks 



also provide an operation which reverses the order of the top two elements of a stack.)

The pop function returns the undefined value if the 
stack is empty. Because the undefined value is 
equivalent to the null string, and the null string is 
treated as 0 in arithmetic operations, your program will 
not complain if you try to pop a number from an empty 
stack. 

To ensure that you get the result you want, always 
call defined after you call pop to ensure that a value 
has actually been popped from the stack 

Creating a Queue

A queue is a data structure that processes data in the order in which it is entered; such 
data structures are known as first-in, first-out (or FIFO) structures. (A stack, on the 
other hand, is an example of a last-in, first-out, or LIFO, structure.) 

To create a queue, use the function push to add items to the queue, and call shift to 
remove elements from it. Because push adds to the right of the list and shift removes 
from the left, elements are processed in the order in which they appear. 

Listing 14.16 is an example of a program that uses a queue to add a set of numbers 
retrieved via a pipe. Each input line can consist of more than one number, and the 
numbers are added in the order listed. 

The input/output example shown for this listing assumes that the numbers retrieved via 
the pipe are 11, 12, and 13.

 

Listing 14.16. A program that illustrates the use of a queue. 

1:  #!/usr/local/bin/perl

2:  



3:  open (PIPE, "numbers|") ||

4:          die ("Can't open pipe");

5:  $result = 0;

6:  while (defined ($value = &readnum)) {

7:          $result += $value;

8:  }

9:  print ("The result is $result.\n");

10: 

11: sub readnum {

12:         local ($line, @numbers, $retval);

13:         while ($queue[0] eq "") {

14:                 $line = <PIPE>;

15:                 last if ($line eq "");

16:                 $line =~ s/^\s+//;

17:                 @numbers = split (/\s+/, $line);

18:                 push (@queue, @numbers);

19:         }

20:         $retval = shift(@queue);

21: }

 

$ program14_16

The result is 36.

$

 This program assumes that a program named numbers exists, and that its out-



put is a stream of numbers. Multiple numbers can appear on a single line of this output. 
Lines 3 and 4 associate the file variable PIPE with the output from the numbers command. 

Lines 6-8 call the subroutine readnum to obtain a number and then add it to the result 
stored in $result. This subroutine reads input from the pipe, breaks it into individual 
numbers, and then calls push to add the numbers to the queue stored in @queue. Line 20 
then calls shift to retrieve the first element in the queue, which is returned to the 
main program. 

If an input line is blank, the call to split in line 17 produces the empty list, which 
means that nothing is added to @queue. This ensures that input is read from the pipe until 
a non-blank line is read or until the input is exhausted. 

The split Function 

The split function was first discussed on Day 5, "Lists and Array Variables." It splits a 
character string into a list of elements. 

The usual syntax for the split function is 

list = split (pattern, value);

Here, value is the character string to be split. pattern is a pattern to be searched for. A 
new element is started every time pattern is matched. (pattern is not included as part of 
any element.) The resulting list of elements is returned in list. 

For example, the following statement breaks the character string stored in $line into 
elements, which are stored in @list: 

@list = split (/:/, $line);

A new element is started every time the pattern /:/ is matched. If $line contains 
This:is:a:string, the resulting list is ("This", "is", "a", "string"). 

If you like, you can specify the maximum number of elements of the list produced by 
split by specifying the maximum as the third argument. For example: 

$line = "This:is:a:string";

@list = split (/:/, $line, 3);



As before, this breaks the string stored in $line into elements. After three elements 
have been created, no more new elements are created. Any subsequent matches of the 
pattern are ignored. In this case, the list assigned to @list is ("This", "is", 
"a:string"). 

TIP

If you use split with a limit, you can assign to several 
scalar variables at once: 

$line = "11 12 13 14 15";

($var1, $var2, $line) = split (/\s+/, $line, 3); 

This splits $line into the list ("11", "12", "13 14 15"). 
$var1 is assigned 11, $var2 is assigned 12, and $line is 
assigned "13 14 15". This enables you to assign the 
"leftovers" to a single variable, which can then be split 
again at a later time 

The sort and reverse Functions

The sort function sorts a list in alphabetical order, as follows: 

@sorted = sort (@list);

The sorted list is returned. 

The reverse function reverses the order of a list: 

@reversed = reverse (@list);

For more information on the sort and reverse functions, see Day 5. For information on 
how you can specify the sort order that sort is to use, see Day 9, "Using Subroutines." 

The map Function 

The map function, defined only in Perl 5, enables you to use each of the elements of a 
list, in turn, as an operand in an expression. 

The syntax for the map function is 



resultlist = map(expr, list);

list is the list of elements to be used as operands or arguments; this list is copied by map, 
but is not itself changed. expr is the expression to be repeated. The results of the 
repeated evaluation of the expression are stored in a list, which is returned in 
resultlist. 

expr assumes that the system variable $_ contains the element of the list currently 
being used as an operand. For example: 

@list = (100, 200, 300);

@results = map($_+1, @list);

This evaluates the expression $_+1 for each of 100, 200, and 300 in turn. The results, 101, 
201, and 301, respectively, are formed into the list (101, 201, 301). This list is then 
assigned to @results. 

To use map with a subroutine, just pass $_ to the subroutine, as in the following: 

@results = map(&mysub($_), @list);

This calls the subroutine mysub once for each element of the list stored in @list. The 
values returned by mysub are stored in a list, which is assigned to @results. 

This also works with built-in functions: 

@results = map(chr($_), @list);

@results = map(chr, @list);  # same as above, 

Âsince $_ is the default argument for chr

This converts each element of the list in @list to its ASCII character equivalent. The 
resulting list of characters is stored in @results.

NOTE



For more information on the $_ system variable, refer to 
Day 17 

The wantarray Function 

In Perl, the behavior of some built-in functions depends on whether they are dealing 
with scalar values or lists. For example, the chop function either chops the last 
character of a single string or chops the last character of every element of a list: 

chop($scalar);    # chop a single string

chop(@array);     # chop every element of an array

Perl 5 enables you to define similar two-way behavior for your subroutines using the 
wantarray function. (This function is not defined in Perl 4.) 

The syntax for the wantarray function is 

result = wantarray();

result is a non-zero value if the subroutine is expected to return a list, and is zero if 
the subroutine is expected to return a scalar value. 

Listing 14.17 illustrates how wantarray works.

 

Listing 14.17. A program that uses the wantarray function.

1:  #!/usr/local/bin/perl

2: 

3:  @array = &mysub();

4:  $scalar = &mysub();

5:



6:  sub mysub {

7:          if (wantarray()) {

8:                  print ("true\n");

9:          } else {

10:                 print ("false\n");

11:         }

12: }  

 

$ program14_17

true

false

$

 When mysub is first called in line 3, the return value is expected to be a list, 
which means that wantarray returns a non-zero (true) value in line 7. The second call 
to mysub in line 4 expects a scalar return value, which means that wantarray returns 
zero (false). 

Associative Array Functions

Perl provides a variety of functions that operate on associative arrays. Most of these 
functions are described in detail on Day 10, "Associative Arrays"; a brief description of 
each function is presented here. 

The keys Function 

The keys function returns a list of the subscripts of the elements of an associative 
array. 

The syntax for keys is straightforward: 



list = keys (assoc_array);

assoc_array is the associative array from which subscripts are to be extracted, and list 
is the returned list of subscripts. 

For example: 

%array = ("foo", 26, "bar", 17);

@list = keys(%array);

This call to keys assigns ("foo", "bar") to @list. (The elements of the list might be in a 
different order. To specify a particular order, sort the list using the sort function.) 

keys often is used with foreach, as in the following example: 

foreach $subscript (keys (%array)) {

        # stuff goes here

}

This loops once for each subscript of the array. 

The values Function 

The values function returns a list consisting of all the values in an associative array. 

The syntax for the values function is 

list = values (assoc_array);

assoc_array is the associative array from which values are to be extracted, and list is 
the returned list of values. 

The following is an example that uses values: 

%array = ("foo", 26, "bar", 17);

@list = values(%array);



This assigns the list (26, 17) to @list (not necessarily in this order). 

The each Function 

The each function returns an associative array element as a two-element list. The list 
consists of the associative array subscript and its associated value. Successive calls to 
each return another associative array element. 

The syntax for the each function is 

pair = each (assoc_array);

assoc_array is the associative array from which pairs are to be returned, and pair is the 
subscript-element pair returned. 

The following is an example: 

%array = ("foo", 26, "bar", 17);

@list = each(%array);

The first call to each assigns either ("foo", 26) or ("bar", 17) to @list. A subsequent 
call returns the other element, and a third call returns an empty list. (The order in 
which the elements are returned depends on how the list is stored; no particular order 
is guaranteed.) 

The delete Function 

The delete function deletes an associative array element. 

The syntax for the delete function is 

element = delete (assoc_array_item);

assoc_array_item is the associative array element to be deleted, and element is the 
value of the deleted element. 

The following is an example: 



%array = ("foo", 26, "bar", 17);

$retval = delete ($array{"foo"});

After delete is called, the associative array %array contains only one element: the 
element with the subscript bar. $retval is assigned the value of the deleted element foo, 
which in this case is 26. 

The exists Function 

The exists function, defined only in Perl 5, enables you to determine whether a 
particular element of an associative array exists. 

The syntax for the exists function is 

result = exists(element);

element is the element of the associative array that is being tested for existence. result 
is non-zero if the element exists, and zero if it does not. 

The following is an example: 

$result = exists($myarray{$mykey});

$result is nonzero if $myarray{$mykey} exists. 

Summary

Today, you learned about functions that manipulate scalar values and convert them 
from one form to another, and about functions that manipulate lists. 

The chop function removes the last character from a scalar value or from each element 
of a list. 

The crypt function encrypts a scalar value, using the same method that the UNIX 
password encryptor uses. 

The int function takes a floating-point number and gets rid of everything after the 
decimal point. 



The defined function checks whether a scalar variable, array element, or array has 
been assigned to. The undef function enables you to treat a previously defined scalar 
variable, array element, or array as if it is undefined. scalar enables you to treat an 
array or list as if it is a scalar value. 

The other functions described in today's lesson convert values from one form into 
another. The hex and oct functions read hexadecimal and octal constants and convert 
them into decimal form. The ord function converts a character into its ASCII decimal 
equivalent. pack and unpack convert a scalar value into a format that can be stored in 
machine memory, and vice versa. vec enables you to treat a value as an array of numeric 
values, each of which is a certain number of bits long. 

The grep function enables you to extract the elements of a list that match a particular 
pattern. This function can be used in conjunction with the file-test operators. 

The splice function enables you to extract a portion of a list or insert a sublist into a 
list. The shift and pop functions remove an element from the left and right ends of a 
list, and the unshift and push functions add one or more elements to the left and right 
ends of a list. You can use push, pop, and shift to create stacks and queues. 

The split function enables you to break a character string into list elements. You can 
impose an upper limit on the number of list elements to be created. 

The sort function sorts a list in a specified order. The reverse function reverses the 
order of the elements in a list. 

The map function copies a list and then performs an operation on every element of the 
list. 

The wantarray function enables you to determine whether the statement that called a 
subroutine is expecting a scalar return value or a list. 

Five functions are defined that manipulate associative arrays: 

●     keys, which returns a list of the array subscripts 
●     values, which returns a list of the array values 
●     each, which returns a two-element list consisting of an array subscript and its 

value 
●     delete, which deletes an element 
●     exists, which checks whether a particular element exists 

Q&A

Q: Why is the undefined value equivalent to the null string? 



A: Basically, to keep Perl programs from blowing up if they try to access a variable 
that has not yet been assigned to. 

Q: Why does oct handle hexadecimal constants that start with 0x or 0X? 

A: There is no particular reason, except that it's a little more convenient. If you 
find that it bothers you to use oct to convert a hexadecimal constant, get rid of 
the leading 0x or 0X (using the substitute operator) and call hex instead. 

Q: I want to put a password check in my program. How can I ensure that it is 
secure? 

A: Do two things: 

●     Don't include the unencrypted text of your password in your program 
source. People can then find out the password just by reading the file. 

●     Use a password that is not a real English-language word or proper name. 
Include at least one digit. This makes your password harder to "crack." 

Q: Why does int truncate instead of rounding? 

A: Some programs might find it useful to just retrieve the integer part of a floating-
point number. (For example, in earlier chapters, you have seen int used in 
conjunction with rand to return a random integer.) 
You can always add 0.5 to your number before calling int, which will 
effectively round it up when necessary. 

Q: When I pack integers using the s or i pack-format characters, the bits don't 
appear in the order I was expecting. What is happening? 

A: Most machines enable you to store integers that are more than one byte long 
(two- and four-byte integers usually are supported). However, each machine does 
not store a multibyte integer in the same way. Some machines store the most 
significant byte of a word at a lower address; these machines are called big-
endian machines because the big end of a word is first. Other machines, called little-
endian machines, store the least significant byte of a word at a lower byte 
address. 
If you are not getting the result you expect, you might be expecting big-endian 
and getting little-endian, or vice versa. 

Q: The splice function works by shifting elements to the right or left to make 
room or fill gaps. Is this inefficient? 

A: No. The Perl interpreter actually stores a list as a sequence of pointers (memory 
addresses). All splice has to do is rearrange the pointers. This holds true also 
for sort and reverse. 

Q: Can I use each to work through an associative array in a specified order? 

A: No. If you need to access the elements of an associative array in a specified order, 
use keys and sort to sort the subscripts, and then retrieve the value associated 
with each element. 



Q: If I am using values with foreach, can I retrieve the subscript associated 
with a particular value if I need it? 

A: No. If you are likely to need the subscripts as well as their values, use each or 
keys. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  What format does each of the following pack-format characters specify?
a.    A
b.    A
c.    d
d.    p

e.    @ 
2.  What do these unpack-format specifiers do?

a.    "a"
b.    "@4A10i*" 
c.    "@*X4C*"
d.    "ix4iX8i"

e.    "b*X*B*" 
3.  What value is stored in $value by the following? 

a.    The statements 
$vector = pack ("b*", "10110110");
$value = vec ($vector, 3, 1);

b.    The statements
$vector = pack ("b*", "10110110");

$value = vec ($vector, 1, 2); 
4.  What's the difference between defined and undef? 
5.  Assume @list contains ("1", "2", "3", "4", "5"). What are the contents of 

@list after the following statement?
a.    splice (@list, 0, 1, "new"); 
b.    splice (@list, 2, 0, "test1", "test2");
c.    splice (@list, -1, 1, "test1", "test2");
d.    splice (@list, 2, 1);

e.    splice (@list, 3); 
6.  What do the following statements return?

a.    grep (!/^!/, @array);
b.    grep (/\b\d+\b/, @array);
c.    grep (/./, @array);

d.    grep (//, @array); 
7.  What is the difference between shift and unshift? 
8.  What arguments to splice are equivalent to the following function calls?



a.    shift (@array);
b.    pop (@array); 
c.    push (@array, @sublist);

d.    unshift (@array, @sublist);> 
9.  How can you create a stack using shift, pop, push, or unshift? 

10.  How can you create a queue using shift, pop, push, or unshift? 

Exercises

1.  Write a program that reads two binary strings of any length, adds them together, 
and writes out the binary output. (Hint: This is a really nasty problem. To get this 
to work, you will need to ensure that your bit strings are a multiple of eight bits 
by adding zeros at the front.) 

2.  Write a program that reads two hexadecimal strings of any length, adds them 
together, and writes out the hexadecimal output. (Hint: This is a straightforward 
modification of Exercise 1.) 

3.  Write a program that uses int to round a value to two decimal places. (Hint: This 
is trickier than it seems.) 

4.  Write a program that encrypts a password and then asks the user to guess it. Give 
the user three chances to get it right. 

5.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl
$bitstring = "00000011";
$packed = pack("b*", $bitstring);
$highbit = vec($packed, 0, 1);

print ("The high-order bit is $highbit\n"); 
6.  Write a program that uses splice to sort a list in numeric order. 
7.  Write a program that "flips" an associative array; that is, the subscripts of the old 

array become the values of the new, and vice versa. Print an error message if the 
old array has two subscripts with identical values. 

8.  Write a program that reads a file from standard input, breaks each line into 
words, uses grep to get rid of all words longer than five characters, and prints 
the file. 

9.  Write a program that reads an input line and uses split to read and print one 
word of the line at a time. 

10.  BUG BUSTER: What is wrong with the following subroutine? 
sub retrieve_first_element {
local ($retval);

$retval = unshift(@array);

} 

    





Week
2

Week 2 in Review

By now, you know enough about programming in Perl to write some quite powerful 
programs. The program in Listing R2.1 illustrates some of the concepts you've learned 
this week. It prompts you for a directory name, lists the subdirectories for that 
directory, and stores them in an associative array for later access. It also enables you 
to move about in the directory hierarchy and print the names of the files in any 
directory. 

 

Listing R2.1. Browsing directories and printing their contents. 

1:   #!/usr/local/bin/perl

2:   

3:   $dircount = 0;

4:   $curdir = "";

5:   while (1) {

6:           # if we don't have a current directory, get one

7:           if ($curdir eq "") {

8:                   print ("Enter directory to list:\n");

9:                   $curdir = <STDIN>;

10:                  $curdir =~ s/^\s+|\s+$//g;

11:                  $curdir = &followlink($curdir);

12:                  &readsubdirs($curdir);



13:          }

14:          $curdir = &menudir($curdir);

15:  }

16:  

17:  

18:  # Find all subdirectories of the given directory,

19:  # and store them in an associative array.

20:  #

21:  # The associative array subscripts and values are: 

22:  # <directory name>:       1

23:  #       (indicates that directory has been read)

24:  # <directory name>.<num>  the <num>th subdirectory

25:  

26:  sub readsubdirs {

27:          local ($dirname) = @_;

28:          local ($dirvar, $subdircount, $name, $index);

29:  

30:          # open the current directory;

31:          # $dircount ensures that each file variable is unique

32:          $dirvar = "DIR" . ++$dircount;

33:          if (!opendir ($dirvar, $dirname)) {

34:                  warn ("Can't open $dirname\n");

35:                  return;

36:          }

37:  

38:          # read all the subdirectories; store in a standard array

39:          chdir ($dirname);

40:          $subdircount = 0;

41:          while ($name = readdir ($dirvar)) {

42:                  next if ($name eq ".");



43:                  if ($dirname eq "/") {

44:                          $name = $dirname . $name;

45:                  } else {

46:                          $name = $dirname . "/" . $name;

47:                  }

48:                  if (-d $name) {

49:                          $dirarray[$subdircount++] = $name;

50:                  }

51:          }

52:          closedir ($dirvar);

53:  

54:          # sort the standard array; assign the sorted array to the

55:          # associative array

56:          @dirarray = sort (@dirarray);

57:          for ($index = 0; $index < $subdircount; $index++) {

58:                  $dirarray {$dirname . $index} = 
$dirarray[$index];

59:          }

60:          undef (@dirarray);

61:          $dirarray{$dirname} = 1;

62:  }

63:  

64:  

65:  # Display the subdirectories of the current directory and the

66:  # available menu options.

67:  

68:  sub menudir {

69:          local ($curdir) = @_;

70:          local ($base) = 0;

71:          local ($command, $count, $subdir);



72:  

73:          while (1) {

74:                  print ("\nCurrent directory is: $curdir\n");

75:                  print ("\nSubdirectories:\n");

76:                  if ($base > 0) {

77:                          print ("<more up>\n");

78:                  }

79:                  for ($count=0; $count<10; $count++) {

80:                          $subdir = $count+$base;

81:                          $subdir = $dirarray{$curdir.$subdir};

82:                          last if ($subdir eq "");

83:                          print ("$count: $subdir\n");

84:                  }

85:                  if ($dirarray{$curdir.($base+10)} ne "") {

86:                          print ("<more down>\n");

87:                  }

88:                  print ("\nEnter a number to move to the ");

89:                  print ("specified directory,\n");

90:                  if ($base > 0) {

91:                          print ("enter < to move up in the 
list,\n");

92:                  }

93:                  if ($dirarray{$curdir.($base+10)} ne "") {

94:                          print ("enter > to move down in the 
list,\n");

95:                  }

96:                  print ("enter d to display the files,\n");

97:                  print ("enter e to specify a new directory,\n");

98:                  print ("or enter q to quit entirely.\n");

99:                  print ("> ");



100:                 $command = <STDIN>;

101:                 $command =~ s/^\s+|\s+$//g;

102:                 if ($command eq "q") {

103:                         exit (0);

104:                 } elsif ($command eq ">") {

105:                         if ($dirarray{$curdir.($base+10)} ne "") 
{

106:                                 $base += 10;

107:                         }

108:                 } elsif ($command eq "<") {

109:                         $base -= 10 if $base > 0;

110:                 } elsif ($command eq "d") {

111:                         &display ($curdir);

112:                 } elsif ($command eq "e") {

113:                         # set the current directory to "" to 
force

114:                         # the main program to prompt for a name

115:                         return ("");

116:                 } elsif ($command =~ /^\d+$/) {

117:                         $subdir = 
$dirarray{$curdir.($command+$base)};

118:                         # if subdirectory is the parent 
directory,

119:                         # remove .. and the last directory name

120:                         # from the path

121:                         if ($subdir =~ /\.\.$/) {

122:                                 $subdir =~ s#(.*)/.*/..#$1#;

123:                         }

124:                         # if subdirectory is defined, it becomes

125:                         # the new current directory

126:                         if ($subdir ne "") {



127:                                 if ($dirarray{$subdir} != 1) {

128:                                        $subdir = 
&followlink($subdir);

129:                                        &readsubdirs ($subdir);

130:                                 }

131:                                 return ($subdir);

132:                         }

133:                 } else {

134:                         warn ("Invalid command $command\n");

135:                 }

136:         }

137: }

138: 

139: 

140: # Display the files in a directory, three per line.

141: 

142: sub display {

143:         local ($dirname) = @_;

144:         local ($file, $filecount, $printfile);

145:         local (@filelist);

146: 

147:         if (!opendir(LOCALDIR, "$dirname")) {

148:                 warn ("Can't open $dirname\n");

149:                 return;

150:         }

151:         chdir ($dirname);

152:         print ("\n\nFiles in directory $dirname:\n");

153:         $filecount = 0;

154:         while ($file = readdir (LOCALDIR)) {

155:                 next if (-d $file);



156:                 $filelist[$filecount++] = $file;

157:         }

158:         closedir ($dirname);

159:         if ($filecount == 0) {

160:                 print ("\tDirectory contains no files.\n");

161:                 return;

162:         }

163:         @filelist = sort(@filelist);

164:         $filecount = 0;

165:         foreach $printfile (@filelist) {

166:                 if ($filecount == 30) {

167:                         print ("<Press return to continue>");

168:                         <STDIN>;

169:                         $filecount = 0;

170:                 }

171:                 if ($filecount % 3 == 0) {

172:                         print ("\t");

173:                 }

174:                 printf ("%-20s", $printfile);

175:                 $filecount += 1;

176:                 if ($filecount % 3 == 0) {

177:                         print ("\n");

178:                 }

179:         }

180: }

181: 

182: 

183: # Check whether the directory name is really a symbolic link.

184: # If it is, find the real name and use it.

185: 



186: sub followlink {

187:         local ($dirname) = @_;

188: 

189:         if (-l $dirname) {

190:                 $dirname = readlink ($dirname);

191:         }

192:         $dirname;        # return value

193: }

 

$ programR2_1

Enter directory to list:

/ag1/dave

Current directory is: /ag1/dave

Subdirectories:

0: /ag1/dave/..

1: /ag1/dave/.elm

2: /ag1/dave/.mosaic

3: /ag1/dave/.nn

4: /ag1/dave/Mail

5: /ag1/dave/News

6: /ag1/dave/bin

7: /ag1/dave/dave

8: /ag1/dave/ems

<more down>



Enter a number to move to the specified directory,

enter > to move down in the list,

enter d to display the files,

enter e to specify a new directory,

or enter q to quit entirely.

> d

Files in directory /ag1/dave:

         .Xauthority         .Xnormal           .Xresources

         .cshrc              .login             .newsrc

         .xsession           README             calendar

         doclist             foo                ideas

         letter              letter2            sched

Current directory is: /ag1/dave

Subdirectories:

0: /ag1/dave/..

1: /ag1/dave/.elm

2: /ag1/dave/.mosaic

3: /ag1/dave/.nn

4: /ag1/dave/Mail

5: /ag1/dave/News

6: /ag1/dave/bin

7: /ag1/dave/dave

8: /ag1/dave/ems

<more down>

Enter a number to move to the specified directory,

enter > to move down in the list,



enter d to display the files,

enter e to specify a new directory,

or enter q to quit entirely.

> 6

Current directory is: /ag1/dave/bin

Subdirectories:

0: /ag1/dave/bin/..

Enter a number to move to the specified directory,

enter d to display the files,

enter e to specify a new directory,

or enter q to quit entirely.

> q

$

 The program in Listing R2.1 consists of five parts: 

●     A very simple main program 
●     The subroutine &readsubdirs, which reads and stores the subdirectories of a 

directory 
●     The subroutine &menudir, which displays the subdirectories of the current 

directory, lists the menu options, and processes the menu choices 
●     The subroutine &display, which lists the files in the current directory 
●     The subroutine &followlink, which checks whether a directory name is really a 

symbolic link 

The main program is quite simple: all it does is prompt for a directory name and call the 
subroutines &readsubdirs and &menudir. (Many complicated programs are like this: the 
main portion of the program just calls a few subroutines.) 

The subroutine &readsubdirs is passed the name of a directory to examine. Line 33 opens 
the directory using opendir, and lines 38-51 store the subdirectories in a (standard) 
array named @dirarray. After this, line 56 sorts the array, and lines 57-59 load the 
sorted elements into an associative array named %dirarray. (Recall that Perl programs 
can use the same name for an associative array and for a standard array because the 
program always can tell them apart.) 



The subscripts for the associative array use a simple scheme: 

●     When a directory is read, line 61 defines an associative array element whose 
subscript is the directory name, and sets its value to 1. (For example, if the 
directory /ag1/dave is being read, the array element $dirarray{"/ag1/dave"} is 
set to 1.) This is the way the program indicates that a particular directory has 
been read. 

●     Line 49 stores the subdirectory names in associative array elements whose 
subscripts consist of the name of the directory joined with a unique integer. For 
example, if the first subdirectory of /ag1/dave is named /ag1/dave/foo, the 
associative array element $dirarray{"/ag1/dave0"} is assigned the value 
ag1/dave/foo. Similarly, the second subdirectory of /ag1/dave has its name stored 
in $dirarray{"/ag1/dave1"}, and so on. 

Line 60 introduces a function you have not yet seen: undef. This function basically just 
throws away the contents of @dirarray because the program no longer needs them. (For 
more details on undef, see Day 14, "Scalar-Conversion and List-Manipulation 
Functions.") 

The subroutine &menudir uses this associative array to display the subdirectories of the 
current directory. Line 74 prints the name of the current directory, and lines 79-84 
print the names of the subdirectories of the directory. If there are more than ten 
subdirectories, &menudir displays only a "window" of ten subdirectories, and it prints 
<more down> or <more up> to show that there are more subdirectories available. Each 
subdirectory is printed with a corresponding number that you can use to select the 
subdirectory and set it to be the current directory. 

After &menudir prints the subdirectory names, lines 88-99 print a list of the available 
menu commands. These commands are 

●     d, which displays the files stored in the current directory 
●     e, which enables you to enter the name of a directory to display 
●     q, which enables you to quit the program 
●     a number between 0 and 9, which changes the current directory to the specified 

subdirectory 
●     <, which moves up in the list of subdirectories (if possible) 
●     >, which moves down in the list of subdirectories (again, if possible) 

Line 100 reads a command from the standard input file, and line 101 gets rid of any 
leading or trailing white space. Lines 102-135 determine which command has been 
entered. 

If q has been entered, line 103 calls exit, which terminates the program. 



If either > or < has been entered, lines 104-109 move up or down in the directory list. 
They do this by modifying the value of a variable named $base, which determines how 
many subdirectory names to skip before lines 79-84 start printing. 

If d has been entered, line 111 calls &display, which prints the list of files. 

If e has been entered, line 115 exits the subroutine with a return value of the null 
string. This forces the main program to execute lines 7-13 again, which prompt you for a 
directory name. 

If a number has been entered, line 117 takes the number, joins it to the current 
directory name, and uses the resulting string as the subscript into the associative array 
%dirarray. (For example, if the current directory is /ag1/dave and the number 6 has been 
entered, line 117 accesses the associative array element %dirarray{"/ag1/dave6"}). This 
is one of the array elements that line 49 of &readsubdirs created; its value is the name 
of a subdirectory. 

Line 127 takes the name of this subdirectory and uses it, in turn, as an associative array 
subscript. (For example, if the value of %dirarray{"/ag1/dave6"} is "/ag1/dave/bin", line 
127 checks the associative array element %dirarray{"/ag1/dave/bin"}.) If the value of 
this element is 1, &readsubdirs has already read this directory and stored its 
subdirectory names in the associative array, so the program does not need to do it again. 
If this element is not defined, the program calls &readsubdirs, which reads and stores 
the names of the subdirectories of this directory. 

The subroutine &display prints the names of the files stored in a particular directory. 
To save space, it prints the filenames three per line. &display prints only ten lines at a 
time. If there are more than ten lines (in other words, 30 filenames), line 168 pauses and 
waits for you to press Enter before continuing to print. This gives you time to read all 
of the currently displayed names. 

The final subroutine is &followlink, which always is called immediately before the 
subroutine &readsubdirs is called. Its job is to check whether a directory name is really 
a symbolic link. If it is, line 190 calls readlink, which retrieves the real directory name. 
This directory name is returned to the calling subroutine or main program and then is 
passed to &readsubdirs. 

As you can see, you now know enough about Perl to write programs that manipulate the 
file system and use complex data structures. In Week 3, you'll learn about the 
remainder of Perl's built-in functions and the rest of the features of Perl. 



    



Week
3

Week 3 at a Glance

CONTENTS

●     Where You're Going 

You've finished your second week of learning how to program with Perl. By now, you 
know enough about Perl to consider yourself an accomplished Perl programmer. 

Where You're Going

The third week covers the rest of the Perl library functions, describes some of the more 
esoteric concepts of the language, and introduces some features unique to version 5 of 
Perl. Here's a summary of what you'll learn. 

Day 15, "System Functions," describes the functions that work with lists and array 
variables. 

Day 16, "Command-Line Options," describes the options you can supply with Perl to 
control how your program runs. 

Day 17, "System Variables," describes the built-in variables that are included 
automatically as part of every Perl program. 

Day 18, "References in Perl 5," describes the use of Perl references and the concept of 
pointers. 

Day 19, "Object-Oriented Programming in Perl," covers how to construct objects in Perl 
and how to use OOP features offered by Perl. 

Day 20, "Miscellaneous Features of Perl," covers some of the more exotic or obscure 



features of the language. 

Finally, Day 21, "The Perl Debugger," shows you how to use the Perl debugger to 
quickly discover errors. 

By the end of the third week, you'll know all the features and capabilities of Perl. 

    



Chapter 15

System Functions

CONTENTS

●     System Library Emulation Functions 
❍     The getgrent Function 
❍     The setgrent and endgrent Functions 
❍     The getgrnam Function 
❍     The getgrid Function 
❍     The getnetent Function 
❍     The getnetbyaddr Function 
❍     The getnetbyname Function 
❍     The setnetent and endnetent Functions 
❍     The gethostbyaddr Function 
❍     The gethostbyname Function 
❍     The gethostent, sethostent, and endhostent Functions 
❍     The getlogin Function 
❍     The getpgrp and setpgrp Functions 
❍     The getppid Function 
❍     The getpwnam Function 
❍     The getpwuid Function 
❍     The getpwent Function 
❍     The setpwent and endpwent Functions 
❍     The getpriority and setpriority Functions 
❍     The getprotoent Function 
❍     The getprotobyname and getprotobynumber Functions 
❍     The setprotoent and endprotoent Functions 
❍     The getservent Function 
❍     The getservbyname and getservbyport Functions 
❍     The setservent and endservent Functions 
❍     The chroot Function 
❍     The ioctl Function 
❍     The alarm Function 
❍     Calling the System select Function 
❍     The dump Function 

●     Socket-Manipulation Functions 



❍     The socket Function 
❍     The bind Function 
❍     The listen Function 
❍     The accept Function 
❍     The connect Function 
❍     The shutdown Function 
❍     The socketpair Function 
❍     The getsockopt and setsockopt Functions 
❍     The getsockname and getpeername Functions 

●     The UNIX System V IPC Functions 
❍     IPC Functions and the require Statement 
❍     The msgget Function 
❍     The msgsnd Function 
❍     The msgrcv Function 
❍     The msgctl Function 
❍     The shmget Function 
❍     The shmwrite Function 
❍     The shmread Function 
❍     The shmctl Function 
❍     The semget Function 
❍     The semop Function 
❍     The semctl Function 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson describes the built-in Perl functions that perform various system-level 
operations. These functions are divided into three groups: 

●     The functions that emulate system library functions 
●     The functions that work with Berkeley UNIX sockets 
●     The functions that perform UNIX System V IPC operations 



Many of the functions described in today's lesson use 
features of the UNIX operating system. If you are using 
Perl on a machine that is not running UNIX, some of 
these functions might not be defined or might behave 
differently.

Check the documentation supplied with your version of 
Perl for details on which functions are supported or 
emulated on your machine

System Library Emulation Functions

Several built-in Perl functions enable you to execute various system library calls from 
within your Perl program. Each one corresponds to a UNIX system library function. 

The following sections briefly describe these system library functions. For more 
information on a particular system library function, refer to the on-line manual page 
for that function. For example, to find out more about the getnetent function, refer to 
your UNIX system's getnetent manual page. 

The getgrent Function 

In the UNIX environment, each user belongs to a user group. Being in a user group 
enables you to define files that only certain users-the people in your user group-can 
read from or write to. 

On UNIX systems, the file /etc/group lists the user groups defined for your machine. 
Each entry in the user group file consists of four components: 

●     The user group name 
●     The user group password, if one exists 
●     The group ID, which is a unique integer that the system uses to identify this 

particular user group 
●     A list of the user IDs that belong to this group 

The Perl function getgrent enables you to retrieve an item from the user group file. 

The syntax for the getgrent function is 

(gname, gpasswd, gid, gmembers) = getgrent;



This function returns a four-element list consisting of the four components of a group 
line entry, as just described. gname contains the user group name, gpasswd contains the 
user group password, gid is the group ID, and gmembers is a character string consisting of 
a list of the user IDs belonging to this group. The user IDs listed in gmembers are 
separated by spaces. 

Each call to getgrent returns another line from the /etc/group file. Therefore, you 
can put getgrent inside a while loop. 

while (($gname, $gpasswd, $gid, $gmembers) = getgrent) {

        # do stuff here

}

When the /etc/group file is exhausted, getgrent returns the empty list. 

Listing 15.1 is an example of a program that uses getgrent to list all the user IDs 
associated with each group on your system. 

 

Listing 15.1. A program that uses getgrent. 

1:  #!/usr/local/bin/perl

2:  

3:  while (($gname, $gpasswd, $gid, $gmembers) = getgrent) {

4:          $garray{$gname} = $gmembers;

5:  }

6:  foreach $gname (sort keys (%garray)) {

7:          print ("Userids belonging to group $gname:\n");

8:          $gmembers = $garray{$gname};

9:          $userids = 0;

10:         while (1) {

11:                 last if ($gmembers eq "");



12:                 ($userid, $gmembers) =

13:                      split (/\s+/, $gmembers, 2);

14:                 printf ("  %-20s", $userid);

15:                 $userids++;

16:                 if ($userids % 3 == 0) { 

17:                         print ("\n");

18:                 }

19:         }

20:         if ($userids % 3 != 0) {

21:                 print ("\n");

22:         }

23: }

 

$ program15_1

Userids belonging to group adm:

  adm                   daemon

Userids belonging to group develop:

  dave                  jqpublic              kilroy

  mpython               ralomar               xyzzy

Userids belonging to group root:

  root

$

 Line 3 of this program calls getgrent. This function returns a four-element 
list whose elements are the components of a group entry stored in the /etc/group file. If 
/etc/group is exhausted, getgrent returns the empty list. 



Line 4 takes the list of group members in $gmembers and stores it in an associative array 
named %garray. The subscript for this array element is the name of the group, which is 
contained in $gname. 

Lines 6-23 print the list of user IDs for each group. The loop iterates once for each group 
name, and the call to sort in line 6 ensures that the group names appear in alphabetical 
order. First, line 7 prints the name of the group. Then, line 8 retrieves the list of user 
IDs in the group by accessing the associative array %garray. This list is stored, once 
again, in $gmembers. 

Lines 12 and 13 call split to extract the next user ID from the list. split breaks the 
string into two parts when it sees the first white space. The first part, the substring 
before the first space, contains one user ID and is assigned to $userid; the rest of the 
string is reassigned to $gmembers. 

The rest of the loop prints the extracted user ID. User IDs are printed three per line to 
save space. 

The setgrent and endgrent Functions 

The setgrent function affects the behavior of getgrent: it tells the Perl interpreter to 
rewind the /etc/group file. After setgrent is called, the next call to getgrent 
retrieves the first element of the /etc/group file. 

The endgrent function tells the Perl interpreter that you no longer need to access the 
/etc/group file. It frees the memory used to store group information. 

Neither setgrent nor endgrent accepts any arguments or returns any values. 

The syntax for these functions is 

setgrent();

endgrent();

The getgrnam Function 

The getgrnam function enables you to retrieve the group file entry corresponding to a 
particular group name. 

The syntax for the getgrnam function is 



(gname, gpasswd, gid, gmembers) = getgrnam (name);

Here, name is the group name to search for. getgrnam returns the same four-element list 
that getgrent returns: gname is the group name (which is the same as name), gpasswd is the 
group password, gid is the group ID, and gmembers is the list of user IDs in the group. If 
getgrnam does not find a group entry matching name, it returns the empty list. 

Listing 15.2 is a modification of Listing 15.1. It asks you for a group name and then prints 
the user IDs in that group.

 

Listing 15.2. A program that uses getgrnam. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the group name to list:\n");

4:  $name = <STDIN>;

5:  chop ($name);

6:  if (!(($gname, $gpasswd, $gid, $gmembers) = getgrnam ($name))) {

7:          die ("Group $name does not exist.\n");

8:  }

9:  $userids = 0;

10: while (1) {

11:         last if ($gmembers eq "");

12:         ($userid, $gmembers) = split (/\s+/, $gmembers, 2);

13:         printf ("  %-20s", $userid);

14:         $userids++;

15:         if ($userids % 3 == 0) {

16:                 print ("\n");

17:         }

18: }



19: if ($userids % 3 != 0) {

20:         print ("\n");

21: }

 

$ program15_2

Enter the group name to list:

develop

  dave                  jqpublic              kilroy

  mpython               ralomar               xyzzy

$

 Line 6 takes the group name stored in $name and passes it to getgrnam. If a 
group corresponding to that name exists, getgrnam returns the name, password, group ID, 
and members. If no such group exists, getgrnam returns the empty list, the conditional 
expression in line 6 fails, and line 7 calls die to terminate the program. 

The rest of the program is taken verbatim from Listing 15.1: the while loop in lines 10-18 
extracts a user ID from the list of user IDs in $gmembers and prints it, continuing until 
the list is exhausted. 

The getgrid Function 

The getgrid function is similar to getgrnam, except that it retrieves the group file entry 
corresponding to a given group ID. 

The syntax for the getgrid function is 

(gname, gpasswd, gid, gmembers) = getgrid (id);

Like getgrname, getgrid returns a four-element list consisting of the group name, 
password, ID, and member list. If the group specified by id does not exist, getgrid returns 



the empty list. 

This function often is used to retrieve the associated group name: 

($gname) = getgrid (11);

This line retrieves the group name associated with group ID 11. (The other elements of 
the list are thrown away.)

You must place parentheses around $gname to denote 
that getgrid is assigning to a list. The statement 

$gname = getgrid (11); 

assigns the list returned by getgrid to the scalar 
variable $gname. In Perl, assigning a list to a scalar 
variable actually assigns the length of the list to the 
variable, so this statement assigns 4 to $gname because 
there are four elements in the list returned by getgrid 

The getnetent Function 

The getnetent function enables you to step through the file /etc/networks, which lists 
the names and addresses of the networks your machine is on. 

The syntax for the getnetent function is 

(name, altnames, addrtype, net) = getnetent();

name is the name of a network. altnames is a list of alternative names for the network; 
this list of names is returned as a character string, with spaces separating the individual 
names. addrtype is the address type; at present, this is always whatever value is defined 
for the system constant AF_INET, which indicates that the address is an Internet address.

NOTE



To get the value of AF_INET on your machine, refer to 
the header file
/usr/include/netdb.h or /usr/include/bsd/netdb.h, and 
look for a statement similar to the following: 

#define AF_INET 2 

The number that appears after AF_INET is the one you 
want 

net is the Internet address of this network. This address is represented as a string of 
four bytes, which can be unpacked into Perl scalar values using the unpack function. 

Listing 15.3 shows how you can use getnetent to list the machine names and addresses at 
your site.

 

Listing 15.3. A program that uses getnetent. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Networks this machine is connected to:\n");

4:  while (($name, $altnames, $addrtype, $rawaddr) = getnetent()) {

5:          @addrbytes = unpack ("C4", $rawaddr);

6:          $address = join (".", @addrbytes);

7:          print ("$name, at address $address\n");

8:  }

 

$ program15_3



Networks this machine is connected to:

silver, at address 192.75.236.168

$

 Line 4 calls getnetent, which reads from the file /etc/networks. If the file 
has been exhausted, getnetent returns the empty list, and the while loop terminates. If 
/etc/networks still contains an unread entry, getnetent retrieves it and assigns its 
components to $name, $altnames, $addrtype, and $rawaddr. 

$rawaddr contains the Internet address for a particular network. This address is stored 
as a four-byte integer; each byte contains one component of the address. (This method 
works because each number in an Internet address has a maximum value of 255, which is 
the largest value that can fit in a byte.) Line 5 converts this four-byte integer into a 
list of integers by calling unpack, and it stores the list in @addrbytes. 

Line 6 calls join to convert the list of integers into a character string that contains 
the readable address. Line 7 then prints the network name and the readable address of 
the network. 

The getnetbyaddr Function

The getnetbyaddr function enablesyou to retrieve the line of input from /etc/networks 
that matches a particular network number. 

The syntax for the getnetbyaddr function is 

(name, altnames, addrtype, addr) = getnetbyaddr (inaddr, inaddrtype);

Here, inaddr is the network number or address for which you want to search. This 
address must be a packed four-byte integer whose four bytes are the four components of 
the address. (An example of a network address is 192.75.236.168, which is the machine 
on which I work.) To build a packed address, use the pack command: 

@addrbytes = (192, 75, 236, 168);

$packedaddr = pack ("C4", @addrbytes);

The packed address in $packedaddr can now be passed to getnetbyaddr. 



inaddrtype is the address type, which is always AF_INET (whose value is located in the 
file
/usr/include/netdb.h or /usr/include/bsd/netdb.h). 

The getnetbyaddr function returns the same four-element list as getnetent: the name of 
the network, the list of alternative names, the address type, and the packed address. 

The getnetbyname Function

The getnetbyname function is similar to getnetbyaddr, except that it enables you to 
search in the /etc/networks file for a network of a particular name. 

The syntax for the getnetbyname function is 

(name, altnames, addrtype, net) = getnetbyname (inname);

Here, inname is the machine name to search for. Like getnetbyaddr and getnetent, 
getnetbyname returns a four-element list consisting of the network name, alternative 
name list, address type, and packed address.

NOTE

You can pass getnetbyname either the principal network 
name or one of its aliases 

The setnetent and endnetent Functions 

The setnetent function rewinds the /etc/networks file; after setnetent has been 
called, a call to getnetent returns the first entry in the /etc/networks file. 

The syntax for the setnetent function is 

setnetent (keepopen);

keepopen is a scalar value. If keepopen is not zero, the /etc/networks file is not closed 
after getnetbyname or getnetbyaddr is called; therefore, you can efficiently call these 
functions repeatedly. If keepopen is zero, the file is closed. 

The endnetent function tells the Perl interpreter that your program is finished with 
the /etc/networks file. It closes the file and frees any memory used by your program to 



store related information. 

The syntax for the endnetent function is 

endnetent;

It accepts no arguments and returns no values. 

The gethostbyaddr Function

The gethostbyaddr function searches the file /etc/hosts (or the equivalent name 
server) for the host name corresponding to a particular Internet address. 

The syntax for the gethostbyaddr function is 

(name, altnames, addrtype, len, addrs) = gethostbyaddr (inaddr, 
inaddrtype);

This function requires two arguments. The first, inaddr, is the Internet address to 
search for, stored in packed four-byte format (identical to that used by getnetbyaddr). 
The second argument, inaddrtype, is the address type; at present, only Internet address 
types are understood, and inaddrtype is always AF_INET. (The value of AF_INET can be 
found in /usr/include/netdb.h or /usr/include/sys/netdb.h.) 

gethostbyaddr returns a five-element list. The first element, name, is the host name 
corresponding to the Internet address specified by inaddr. altnames is the list of aliases 
or alternative names by which the host can be referred. addrtype, like inaddrtype, is 
always AF_INET. 

addrs is a list of addresses (main address and alternatives) corresponding to the host 
node named name. Each address is stored as a four-byte integer. len is the length of the 
addrs field; this length is always four multiplied by the number of addresses returned in 
addrs. 

Listing 15.4 shows how you can use gethostbyaddr to retrieve the Internet address 
corresponding to a particular machine name. 

 



Listing 15.4. A program that uses gethostbyaddr. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter an Internet address:\n");

4:  $machine = <STDIN>;

5:  $machine =~ s/^\s+|\s+$//g;

6:  @bytes = split (/\./, $machine);

7:  $packaddr = pack ("C4", @bytes);

8:  if (!(($name, $altnames, $addrtype, $len, @addrlist) =

9:          gethostbyaddr ($packaddr, 2))) {

10:         die ("Address $machine not found.\n");

11: }

12: print ("Principal name: $name\n");

13: if ($altnames ne "") {

14:         print ("Alternative names:\n");

15:         @altlist = split (/\s+/, $altnames);

16:         for ($i = 0; $i < @altlist; $i++) {

17:                 print ("\t$altlist[$i]\n");

18:         }

19: }

 

$ program15_4

Enter an Internet address:

128.174.5.59

Principal name: ux1.cso.uiuc.edu



$

 The program starts by prompting you for an Internet address. (In this example, 
the Internet address specified is 128.174.5.59, which is the location of a popular public 
access Gopher site.) Lines 5-7 then convert the address into a four-byte packed integer, 
which is stored in $packaddr. 

Lines 8 and 9 call gethostbyaddr. This function searches the /etc/hosts file for an 
entry matching the specified machine name. If the entry is not found, the conditional 
expression becomes false, and line 10 calls die to terminate the program.

NOTE

Line 9 uses the value 2 as the address type to pass to 
gethostbyaddr. If your machine defines a different value 
of AF_INET, as defined in the files /usr/include/netdb.h 
or /usr/include/bsd/netdb.h, replace 2 with that value 

If the entry is found, line 12 prints the principal machine name, which was returned by 
gethostbyaddr and is now stored in the scalar variable $name. Line 13 then checks 
whether the returned entry lists any alternative machine names corresponding to this 
Internet address. 

If alternative machine names exist, lines 14-18 split the alternative name list into 
individual names and print each name on a separate line.

NOTE

gethostbyaddr and the other functions that access 
/etc/hosts expect the following format for a host 
entry: 

address mainname altname1 altname2 ... 

Here, address is an Internet address; mainname is the 
name associated with the address; and altname1, 
altname2, and so on are the (optional) alternative names 
for the host. 

If your /etc/hosts file is in a different format, 
gethostbyaddr might not work properly 



The gethostbyname Function

The gethostbyname function is similar to gethostbyaddr, except that it searches for an 
/etc/hosts entry that matches a specified machine name or Internet site name. 

The syntax for the gethostbyname function is 

(name, altnames, addrtype, len, addrs) = gethostbyname (inname);

Here, inname is the machine name or Internet site name to search for. gethostbyname, like 
gethostbyaddr, returns a five-element list consisting of the machine name, a character 
string containing a list of alternative names, the address type, the length of the 
address list, and the address list. 

Listing 15.5 is a simple program that searches for an Internet address when given the 
name of a site.

 

Listing 15.5. A program that uses gethostbyname. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a machine name or Internet site name:\n");

4:  $machine = <STDIN>;

5:  $machine =~ s/^\s+|\s+$//g;

6:  if (!(($name, $altnames, $addrtype, $len, @addrlist) =

7:          gethostbyname ($machine))) {

8:          die ("Machine name $machine not found.\n");

9:  }

10: print ("Equivalent addresses:\n");

11: for ($i = 0; $i < @addrlist; $i++) {

12:         @addrbytes = unpack("C4", $addrlist[$i]);



13:         $realaddr = join (".", @addrbytes);

14:         print ("\t$realaddr\n");

15: }

 

$ program15_5

Enter a machine name or Internet site name:

ux1.cso.uiuc.edu

Equivalent addresses:

128.174.5.59

$

 This program prompts for a machine name and then removes the leading and 
trailing white space from it. After the machine name has been prepared, lines 6 and 7 
call gethostbyname, which searches for the /etc/hosts entry matching the specified 
machine name. If gethostbyname does not find the entry, it returns the null string, the 
conditional expression becomes false, and line 8 calls die to terminate the program. 

If gethostbyname finds the entry, the loop in lines 11-15 examines the list of addresses in 
@addrlist, assembling and printing one address at a time. Line 12 assembles an address by 
unpacking one element of @addrlist and storing the individual bytes in @addrbytes. Line 
13 joins the bytes into a character string, placing a period between each pair of bytes. 
The resulting string is a readable Internet address, which line 14 prints.

NOTE

The machine name passed to gethostbyname can be either 
the principal machine name (as specified in the first 
element of the returned list) or one of the alternative 
names (aliases) 

The gethostent, sethostent, and endhostent Functions 



The gethostent function enables you to read each item of the /etc/hosts file in turn. 

The syntax for the gethostent function is 

(name, altnames, addrtype, len, addrs) = gethostent();

The first call to gethostent returns the first element in the /etc/hosts file; 
subsequent calls to gethostent return successive elements. Each call to gethostent 
returns a five-element list identical to the list returned by gethostbyaddr or 
gethostbyname. This list consists of a machine name, a character string listing the 
alternative machine names, the address type (always AF_INET), the length of the address 
field, and the address field itself.

Many machines simulate an /etc/hosts file using a name 
server. When a program that is running on a machine 
using a name server attempts to access /etc/hosts, the 
server queries various Internet sites for machine names, 
addresses, and other information. 

If a Perl program running on such a machine calls 
gethostent repeatedly, the program might try to access 
many Internet sites to obtain machine information. This 
takes a lot of time and is a strain on Internet resources; 
do not do it unless you absolutely must, and do it during 
off-peak hours if possible 

The sethostent function rewinds the /etc/hosts file, which means that the next call to 
gethostent will return the first entry in the file. 

The syntax for the sethostent function is 

sethostent (keepopen);

keepopen is a scalar value. If keepopen is nonzero, the Perl program keeps /etc/hosts 
information in memory, which ensures that subsequent calls to gethostent are 
performed as efficiently as possible. If keepopen is zero, no information is retained after 
sethostent finishes executing. 



The endhostent function closes the /etc/hosts file and indicates that the program is to 
free any internal memory retaining host-related information. 

The endhostent function expects no arguments and returns no values: 

endhostent(); 

The getlogin Function 

The getlogin function returns the user ID under which you are logged in. The user ID is 
retrieved from the file /etc/utmp. 

The syntax for the getlogin function is 

logname = getlogin();

logname is the returned user ID. 

The following is a simple example using getlogin: 

$logname = getlogin();

if ($logname == "dave") {

        print ("Hello, dave! How are you?\n");

}

The getpgrp and setpgrp Functions 

In the UNIX environment, processes are organized into collections of processes known as 
process groups. Each process group is identified by a unique integer known as a process 
group ID. 

The getpgrp function retrieves the process group ID for a particular process. 

The syntax of the getpgrp function is 

pgroup = getpgrp (pid);



pid is the process ID whose group you want to retrieve, and pgroup is the returned 
process group ID, which is a scalar value. 

If pid is not specified or is zero, getpgrp assumes that you want the process group ID for 
the current process (the program you are running). 

Listing 15.6 is an example of a program that retrieves its own process group ID.

 

Listing 15.6. A program that uses getpgrp. 

1:  #!/usr/local/bin/perl

2:  

3:  $pgroup = getpgrp (0);

4:  print ("The process group for this program is $pgroup.\n");

 

$ program15_6

The process group for this program is 3313.

$

 Line 3 calls getpgrp with the argument 0, which indicates the current process 
(the current program). The process group ID for this process is returned in $pgroup and 
then printed. 

The setpgrp function enables you to set the process group ID for a process. 

The syntax of the setpgrp function is 

setpgrp (pid, groupid);



pid is the ID of the process whose group you want to change, and groupid is the process 
group ID you want your process to be part of. (This group ID is usually returned by a 
call to getpgrp.)

Not all machines support setpgrp, and some machines 
impose limitations on how you can use it. If your program 
uses setpgrp, you should call getpgrp immediately 
afterward to ensure that the process group ID has been 
set properly 

The getppid Function 

On UNIX machines, as you have seen, every running program or other executing process 
has its own unique process ID. Each program and process also is associated with a parent 
process, which is the process that started it. For example, when you execute a command 
that starts a Perl program, the parent process of the Perl program is the shell program 
from which you entered the command. 

To retrieve the process ID for the parent process for your program, call the function 
getppid. 

The syntax of the getppid function is 

parentid = getppid();

Here, parentid is the process ID of your program. 

You can use getppid with fork to ensure that each of the two processes produced by 
fork knows the process ID of the other. 

Listing 15.7 shows how to do this.

 



Listing 15.7. A program that calls fork and getppid. 

1:  #!/usr/local/bin/perl

2:  

3:  $otherid = fork();

4:  if ($otherid == 0) {

5:          # this is the child; retrieve parent ID

6:          $otherid = getppid();

7:  } else {

8:          # this is the parent

9:  }

 

This program requires no input and generates no output. 

 When line 3 calls fork, the program splits into two separate processes (or 
running programs, if you want to think of them that way). fork returns 0 to the child 
process and returns the process ID of the child process to the parent process. At this 
point, the parent process knows the process ID of the child, but the child does not know 
the process ID of the parent. 

Line 6, which is executed only by the child process, fixes this imbalance by calling 
getppid and returning the process ID of the parent (the other process created by fork). 
After the child process executes line 6, both the parent and the child process have 
stored the process ID of the other process in the scalar variable $otherid. 

After each process has the ID of the other, the processes can send signals to one another 
using the kill function (which is discussed on Day 13, "Process, String, and 
Mathematical Functions"). 

The getpwnam Function 

On UNIX machines, the /etc/passwd file (also known as the password file) contains 
information on each of the users who are authorized to use the machine. The getpwnam 



function enables you to retrieve the password file entry for a particular user. 

The syntax of the getpwnam function is 

(username, password, userid, groupid, quota, comment, infofield, 

Â_homedir, shell) = getpwnam (name);

name is the login user ID of the user whose information you want to retrieve. If an entry 
in the /etc/passwd file corresponds to this name, getpwnam returns a nine-element list 
containing the contents of the entry. These contents are 

●     username, which is identical to name 
●     password, which is the user's encrypted password 
●     userid, which is the unique numerical ID that represents this user 
●     groupid, which is the ID of the group to which this user belongs 
●     quota and comment, which mean different things on different machines (check your 

local getpwnam manual page for details) 
●     infofield, which is a character string containing personal information about the 

user (such as the room number of the user's office, or the user's phone number) 
●     homedir, which is the user's home directory (the directory that becomes the 

current directory when the user logs in) 
●     shell, which is the command shell that is started when the user logs in 

getpwnam returns the empty list if no password file entry for name exists. 

You can use getpwnam in various ways. The most common way is to retrieve the user ID or 
group ID corresponding to a particular user name. Listing 15.8 is a program that 
retrieves and prints the user ID for a particular user.

 

Listing 15.8. A program that retrieves the user ID
for a user. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter a username:\n");

4:  $username = <STDIN>;



5:  $username =~ s/^\s+|\s+$//g;

6:  if (($username, $passwd, $userid) = getpwnam ($username)) {

7:          print ("Username $username has user id $userid.\n");

8:  } else {

9:          print ("Username not found.\n");

10: }

 

$ program15_8

Enter a username:

dave

Username dave has userid 127.

$

 After lines 4 and 5 have retrieved the user name and removed any extraneous 
white space, line 6 passes the user name to getpwnam. If a password file entry exists for 
this user name, the nine-element entry is returned, and the first three elements are 
assigned to $username, $password, and $userid. (The remaining elements are thrown 
away.) The third element, the user ID, is stored in $userid and is printed by line 7. 

The getpwuid Function 

The getpwuid function is similar to the getpwnam function because it also accesses the 
/etc/passwd file. getpwuid, however, searches for the password file entry that matches 
a particular user ID. 

The syntax of the function is 

(username, password, userid, groupid, quota, comment, infofield, 

Â_homedir, shell) = getpwuid (inputuid);



inputuid is the user ID that is to be searched for; it must be a nonzero integer. The nine-
element list returned by getpwuid is identical to that returned by getpwnam.

NOTE

The userid field in the nine-element list returned by 
getpwuid is always identical to the inputuid field that is 
passed as an argument 

The getpwent Function 

The getpwnam and getpwuid functions enable you to retrieve a single entry from the 
password file. To access each entry of the password file in turn, call getpwent. 

The syntax for the getpwent function is 

(username, password, userid, groupid, quota, comment, infofield, 

Â_homedir, shell) = getpwent();

When a program calls getpwent for the first time, it retrieves the first entry in the 
/etc/passwd file. Subsequent calls retrieve further entries; if no more entries remain, 
the empty list is returned. 

The components of the nine-element list returned by getpwent are the same as those in 
the lists returned by getpwnam and getpwuid. 

Listing 15.9 is an example of a program that uses getpwent. It lists the user names known 
by the machine as well as their user IDs.

 

Listing 15.9. A program that uses getpwent. 

1:  #!/usr/local/bin/perl

2:  

3:  while (1) {



4:          last unless (($username, $password, $userid)

5:                        = getpwent());

6:          $userlist{$username} = $userid;

7:  }

8:  print ("Users known to this machine:\n");

9:  foreach $user (sort keys (%userlist)) {

10:         printf ("%-20s %d\n", $user, $userlist{$user});

11: }

 

$ program15_9

Users known to this machine:

adm                 4

daemon              1

dave                127

ftp                 8

jimmy               711

root                0

$

 The while loop in lines 3-7 uses getpwent to read every entry in the password 
file. Only the first three elements of the returned list are saved-in the scalar variables 
$username, $password, and $userid-the rest are thrown away. After the /etc/passwd file 
has been completely read, line 4 terminates the while loop. 

Line 6 creates an associative array element for each user. The subscript for the array 
element is the user name, and the value of the element is the user ID. 

Lines 9-11 print the list of users, sorting them in order by user name and printing the 
name and user ID for each. 



The setpwent and endpwent Functions 

Like getpwent, setpwent and endpwent manipulate the /etc/passwd file. 

The setpwent function rewinds the /etc/passwd file. 

The syntax of the setpwent function is 

setpwent (keepopen);

If keepopen is nonzero, the Perl interpreter assumes that the /etc/passwd file is to be 
accessed again, and it keeps information about the password file stored in internal 
memory. If keepopen is zero, any information the program has related to the password 
file is thrown away. 

The endpwent function closes the password file and tells the program to throw away 
any internal memory related to it. 

The endpwent function accepts no arguments and returns no values. 

endpwent();

The getpriority and setpriority Functions

In the UNIX environment, each process has a priority, which tells the system which 
processes are important and which are not. Priorities are integer values that vary from 
system to system: a typical range is from -20 (most important) to 20 (least important), 
with a default value of 0.

NOTE

Although priority ranges might vary from system to 
system, the general rule under UNIX is always this: the 
higher the priority number associated with a process, the 
less important the process is

To change the priority for your program, process, process group, or user ID, call the 
setpriority function. 

The syntax of the setpriority function is 



setpriority (category, id, priority);

category is a scalar value that indicates what processes are to have their priorities 
altered. To find the value to use, take the following actions: 

●     Examine the header file /usr/include/sys/resource.h 
●     In this file, look up and note the values of the constants PRIO_PROCESS, PRIO_PGRP, 

and PRIO_USER 
●     Pick the appropriate value to use, as described in the remainder of this section 

NOTE

If you are not familiar with the C programming 
language, the value of a constant is specified by a 
statement of the following form:

#define constant value 

Here, constant is a constant such as PRIO_PROCESS, and 
value is its defined value 

If category is the value associated with PRIO_PROCESS, only one process has its priority 
altered. If category is the value of PRIO_PGRP, every process in a process group has its 
priority altered. If category is the value of PRIO_USER, every process belonging to a 
particular user has its priority altered. 

The value of id depends on category. If category is the value of PRIO_PROCESS, id is the 
process ID for the process whose priority is to be altered. If category is the value of 
PRIO_PGRP, id is the process group ID for the group whose priority is to be altered. If 
category is PRIO_USER, id is the user ID for the group whose priority is to be altered.

NOTE

If category is the value of PRIO_PROCESS or PRIO_PGRP 
and id is 0, id is assumed to be the ID of the current 
process or process group 

priority is the new priority for the process, group, or user. You can specify a lower 
priority value for your process or processes (in other words, specify that your processes 
are "more important") only if you are a privileged user (the superuser). 



The function getpriority retrieves the current priority for a process, process group, or 
user. 

The syntax of the getpriority function is 

priority = getpriority (category, id);

Here, category and id are identical to the equivalent arguments in setpriority. 
priority is the returned current priority. 

Listing 15.10 is a program that lowers the priority of every process you are currently 
running. It uses several of the functions you have seen in today's lesson.

 

Listing 15.10. A program that uses setpriority and getpriority. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("You're not in a hurry today, are you?\n");

4:  $username = getlogin();

5:  ($username, $password, $userid) = getpwnam ($username);

6:  $oldpriority = getpriority (2, $userid);

7:  setpriority (2, $userid, $oldpriority + 1);

 

$ program15_10

You're not in a hurry today, are you?

$



 Line 4 of this program calls getlogin, which retrieves the user's login name. 
Then, line 5 passes this name to getpwnam, which retrieves the user ID from the 
/etc/passwd file. 

Line 6 calls getpriority. Because the first argument to getpriority is 2 (the value of 
the system constant PRIO_USER), the current priority for all processes owned by the user 
specified by the user ID stored in $userid is returned. 

Line 7 calls setpriority, adding one to the current priority for the user to obtain the 
new priority. As in line 6, the first argument to setpriority is 2 (PRIO_USER), which 
indicates that the current priority for all processes belonging to this user is to be 
changed. 

The getprotoent Function

The getprotoent function enables you to search through the system protocol database, 
which is stored in the file /etc/protocols. 

The syntax of the getprotoent function is 

(name, aliases, number) = getprotoent();

name is the name associated with a particular system protocol. aliases is a scalar value 
consisting of a list of alternative names for this system protocol, with names being 
separated by a space. number is the number associated with this particular system 
protocol. 

The first call to getprotoent returns the first element in /etc/protocols. Further 
calls return subsequent entries; when /etc/protocols is exhausted, getprotoent 
returns the empty list. 

The getprotobyname and getprotobynumber Functions

The getprotobyname and getprotobynumber functions provide ways of searching in the 
/etc/protocols file. 

The getprotobyname function enables you to search for a particular protocol entry in 
the
/etc/protocols file. 

The syntax of the getprotobyname function is 



(name, aliases, number) = getprotobyname (searchname);

Here, searchname is the protocol name you are looking for. name, aliases, and number are 
the same as in getprotoent. 

Similarly, getprotobynumber searches for a protocol entry in /etc/protocols that 
matches a particular protocol number. 

The syntax of the getprotobynumber function is 

(name, aliases, number) = getprotobynumber (searchnum);

searchnum is the protocol number to search for. name, aliases, and number are the same as 
in getprotoent. 

Both functions return the empty list if no matching protocol database entry is found. 

The setprotoent and endprotoent Functions

The setprotoent and endprotoent functions provide other ways of manipulating the 
/etc/protocols file. 

The setprotoent function rewinds the /etc/protocols file. 

The syntax of the setprotoent function is 

setprotoent (keepopen);

If keepopen is a nonzero value, the value indicates that the program should keep 
/etc/protocols open, because it intends to continue accessing the system protocol 
database. After setprotoent has been called, the next call to getprotoent reads (or 
rereads) the first element of the database. 

The endprotoent function closes the /etc/protocols file and indicates that the program 
no longer wants to read any system protocols from the database. 

The endprotoent function requires no arguments and returns no values: 

endprotoent();



NOTE

For more information on system protocols, refer to the 
getprotoent manual page on your system 

The getservent Function 

The getservent function enables you to search through the system services database, 
which is stored in the file /etc/services. 

The syntax of the getservent function is 

(name, aliases, portnum, protoname) = getservent();

name is the name associated with a particular system service. aliases is a scalar value 
consisting of a list of alternative names for this system service; the names are separated 
by a space. 

portnum is the port number associated with this particular system protocol, which 
indicates the location of the port at which the service is residing. This port number is 
returned as a packed array of integers, which can be unpacked using unpack (with a C* 
format specifier). 

protoname is a protocol name (such as tcp). 

The first call to getservent returns the first element in /etc/services. Further calls 
return subsequent entries; when /etc/services is exhausted, getservent returns the 
empty list. 

The getservbyname and getservbyport Functions

The getservbyname and getservbyport functions provide ways of searching in the 
/etc/services file. 

The getservbyname function enables you to search the /etc/services file for a 
particular service name. 

The syntax of the getservbyname function is 



(name, aliases, portnum, protoname) = getservbyname (searchname, 
searchproto);

Here, searchname and searchproto are the service name and service protocol type to be 
matched. If the name and type are matched, getservbyname returns the system service 
database entry corresponding to this name and type. This entry is the same four-element 
list as is returned by getservent. (The empty list is returned if the name and type are not 
matched.) 

Similarly, the getservbyport function searches for a service name that matches a 
particular service port number. 

The syntax of the getservbyname function is 

(name, aliases, portnum, protoname) = getservbyname (searchportnum, 
Âsearchproto);

searchportnum and searchproto are the port number and protocol type to search for. 
name, aliases, portnum, and protoname are the same as in getservbyname and getservent. 

The setservent and endservent Functions 

The setservent and endservent functions provide other ways of manipulating the 
/etc/services file. 

The setservent function rewinds the /etc/services file. 

The syntax of the setservent function is 

setservent (keepopen);

After setservent has been called, the next call to getservent retrieves the first 
element of the /etc/services file. keepopen, if nonzero, specifies that the /etc/services 
file is still in use and is to remain open. 

The function endservent indicates that the /etc/services file can be closed, because it 
is no longer needed. 

The endservent function requires no arguments and returns no values: 



endservent();

The chroot Function 

The chroot function enables you to specify the root directory for your program and any 
subprocesses that it creates. 

The syntax of the chroot function is 

chroot (dirname);

dirname is the name of the directory to serve as the root. After chroot has been called, 
the directory name specified by dirname is appended to every pathname specified by your 
program and its subprocesses. For example, the statement 

chroot ("/pub");

adds /pub to the front of every directory name. For example, when your program or a 
subprocess tries to access the directory /u/jqpublic, the directory it accesses is 
actually /pub/u/jqpublic. 

chroot often is used to restrict access to a particular portion of a file system. It can be 
called only if you have superuser privileges on your machine and execute permission on 
the specified root directory. 

The ioctl Function 

The ioctl function enables you to set system-dependent file attributes (such as the 
special character definitions for your keyboard). 

The syntax of the ioctl function is 

ioctl (filevar, attribute, value);

filevar is a file variable representing a previously opened file. attribute is a value 
representing the operation to be performed. Incorporated as part of the attribute value 
is a number indicating whether the operation is retrieving the value of an attribute or 
setting the value of an attribute. 



value holds the attribute value associated with the operation specified by attribute. If 
the operation is setting an attribute, value contains the new value of the attribute. If 
the operation is retrieving the current value of the attribute, value is assigned this 
current value. 

ioctl returns a nonzero value if the operation is performed successfully, or zero if the 
operation fails.

NOTE

For details on what operations can be performed on your 
machine, refer to the file /usr/include/sys/ioctl.h on 
your machine. This file is a header file written in the C 
programming language that contains information on the 
available ioctl operations 

Different machines (and devices) support different ioctl 
operations. Thus, a program that requests an ioctl 
operation is not portable if you move it from one machine 
to another. You therefore should use ioctl operations 
only when you must 

The alarm Function 

The alarm function sends a special "alarm" signal, SIGALARM, to your program. 

The syntax of the alarm function is 

alarm (value);

value is an expression indicating how many seconds are to pass before the alarm goes off. 

For more information on signals and their relationship to processes, refer to the 
description of the kill function on Day 13. 



Calling the System select Function

Perl enables you to call the UNIX select function from within your Perl program. 

The syntax for a call to the UNIX select function is 

select (rmask, wmask, emask, timeout);

rmask, wmask and emask are bit masks, and timeout is a timeout value in seconds. 

For more information on select, refer to the UNIX manual page.

NOTE

The UNIX select function is different from the Perl 
select function that you've seen in earlier lessons. 

The Perl interpreter determines whether a program is 
calling the Perl select function or the UNIX select 
function by counting the number of arguments: the Perl 
function expects only one, and the UNIX function 
expects four 

The dump Function 

The dump function, which is defined only in Perl 5, enables you to generate a UNIX core 
dump from within your Perl program. 

The syntax for the dump function is 

dump(label);

label is an optional label, specifying where execution is to restart if the UNIX undump 
command is executed. 



If a core dump file created by dump is restarted by the 
UNIX undump command, files that were open when the 
program was executing will no longer be open. This 
means they cannot be read from or written to 

Socket-Manipulation Functions

In Berkeley UNIX environments (version 4.3BSD) and some other environments, processes 
can communicate with one another using a connection device known as a socket. When a 
socket has been created, one process can write data which can then be read by another 
process. 

Perl supports various functions that create sockets and set up connections with them. 
The following sections describe these functions. 

The socket Function 

To create a socket, call the socket function. This function defines a socket and 
associates it with a Perl file variable. 

The syntax of the socket function is 

socket (socket, domain, type, format);

socket is a file variable that is to be associated with the new socket. 

domain is the protocol family to use. The legal values for domain are listed in the system 
header file /usr/include/sys/socket.h; these values are represented by the constants 
PF_UNIX, PF_INET, PF_IMPLINK, and PF_NS. 

type is the type of socket to create. The legal values for type are also listed in the file 
/usr/include/sys/socket.h. These legal values are represented by the five constants 
SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, SOCK_SEQPACKET, and SOCK_RDM. 

format is the number of the protocol to be used with the socket. This protocol is 
normally retrieved by calling getprotobyname. (See the manual page for getprotobyname 
for details on what protocols are supported on your machine.) 

The socket function returns a nonzero value if the socket has been created and zero if 
an error occurs. 



The bind Function 

After you create a socket using socket, the next step is to bind the socket to a 
particular network address. To do this, use the bind function. 

The syntax of the bind function is 

bind (socket, address);

Here, socket is the file variable corresponding to the socket created by socket. 

address is the network address to be associated with the socket. This address consists of 
the following elements: 

●     The address type, which is an unsigned short integer and is always AF_INET 
(defined in /usr/include/netdb.h or /usr/include/bsd/netdb.h). 

●     The number of the port to use when connecting, which is a short integer in 
network order 

●     The packed four-byte representation of the Internet address of the machine to 
which the socket is to be bound 

This function returns a nonzero value if the bind operation succeeds and zero if an 
error occurs. 

To create an address suitable for passing to bind, call pack. 

$address = pack ("Sna4x8", 2, $portnum, $intaddress);

Here, the pack format specifier Sna4x8 indicates an unsigned short integer, followed by 
a short integer in network order (the port number), a four-byte ASCII string (which is 
the packed address), and eight null bytes. This is the format that bind expects when 
binding an address to a socket. 

The listen Function 

After an address has been bound to the socket associated with each of the machines that 
are to communicate, the next step is to define a process that is to be the "listening" 
process. This process waits for connections to be established with it. (In a client-server 
architecture, this process corresponds to the server.) To define this listening process, 
call the listen function. 



The syntax of the listen function is 

listen (socket, number);

socket is the socket created using the socket function. number is the maximum number of 
processes that can be queued up to connect to this process. 

listen returns a nonzero value if it executes successfully, zero if it does not.

The maximum number of processes that can be queued 
using listen is 5. This limitation is imposed by the 
Berkeley UNIX operating system 

The accept Function 

After a process that has been established as the listening process calls listen, the next 
step is to have this process call the accept function. accept waits until a process wants 
to connect with it, and then it returns the address of the connecting process. 

The syntax of the accept function is 

accept (procsocket, socket);

procsocket is a previously undefined file variable that is to represent the newly 
created connection. The listening process can then send to or receive from the other 
process using the file variable specified in procsocket. This file variable can be treated 
like any other file variable: the program can send data through the socket by calling 
write or print, or can read data using the <> operator. 

socket is the socket created by socket and bound to an address by bind. 

Listing 15.11 is an example of a program that uses listen and accept to create a simple 
server. This server just sends the message Hello, world! to any process that connects to 
it. (A client program that receives this message is listed in the next section, "The connect 
Function.") 



 

Listing 15.11. A simple server program.

1:  #!/usr/local/bin/perl

2:  

3:  $line = "Hello, world!\n";

4:  

5:  $port = 2000;

6:  while (getservbyport ($port, "tcp")) {

7:          $port++;

8:  }

9:  ($d1, $d2, $prototype) = getprotobyname ("tcp");

10: ($d1, $d2, $d3, $d4, $rawserver) = gethostbyname ("silver");

11: $serveraddr = pack ("Sna4x8", 2, $port, $rawserver);

12: socket (SSOCKET, 2, 1, $prototype) || die ("No socket");

13: bind (SSOCKET, $serveraddr) || die ("Can't bind");

14: listen (SSOCKET, 1) || die ("Can't listen");

15: ($clientaddr = accept (SOCKET, SSOCKET)) ||

16:         die ("Can't accept");

17: select (SOCKET);

18: $| = 1;

19: print SOCKET ("$line\n");

20: close (SOCKET);

21: close (SSOCKET);

This program requires no input and generates no output. 



 The first task this server program performs is to search for a port to use when 
establishing a socket connection. To be on the safe side, the program first checks that 
the port it is going to use, port 2000, is not reserved for use by another program. If it is 
reserved, the program checks port 2001, then port 2002, and so on until it finds an 
unused port. 

To do this checking, line 6 calls getservbyport. If getservbyport returns a non-empty 
list, the port being checked is listed in the /etc/services file, which means that it is 
being used by some other program. In this case, the port number is increased by one, and 
getservbyport is called again. This process continues until getservbyport returns an 
empty list, which indicates that the port being checked is unused. When lines 5-8 are no 
longer executing, the scalar variable $port contains the number of the port to be used. 

Line 9 calls getprotobyname to retrieve the /etc/protocols entry associated with the 
TCP protocol. The protocol number associated with the TCP protocol is retrieved from 
this /etc/protocols entry and is stored in the scalar variable $prototype. (The other 
elements of the list are ignored; the convention used by this program is to store element 
entries that are not going to be used in variables named $d1, $d2, and so on; the d stands 
for dummy.) 

Line 10 calls gethostbyname to retrieve the network address of the machine on which 
this server is running. This program assumes that the server is running on a local 
machine named silver. To run this program on your own machine, replace silver with 
your machine name.

TIP

You can modify this program to run on any machine. To 
do so, modify line 10 as shown here:

($d1, $d2, $d3, $d4, $rawserver) = gethostbyname 

('hostname'); 

The string in backquotes, 'hostname', tells the Perl 
interpreter to call the hostname program and return its 
output as a scalar value. The hostname program returns 
the name of the machine on which it is running. 
Therefore, the call to gethostbyname retrieves the 
address
of the machine on which you are running regardless of 
what the machine is.

This capability enables you to move this program from 
one machine to another without having to modify it.



Note that enclosing a command in backquotes works for 
any UNIX command that returns output. For example, 
the statement

$userid = 'whoami';

assigns the current login user ID to the scalar variable 
$userid (because the UNIX command whoami displays the 
current login user ID) 

After gethostbyname has been called, the scalar variable $rawserver contains the 
Internet address of your machine. Line 11 calls pack to convert the address type, the 
port number, and this address into the form understood by the operating system. (The 
address type parameter, 2, is the local value of AF_INET, which is the only address type 
supported.) This information is stored in the scalar variable $serveraddr. 

After pack is called to build the server address, the program is ready to create a socket. 
Line 12 does this by calling socket. This call to socket passes it the file variable 
SSOCKET, the socket domain, the socket type, and the protocol number. After socket is 
called, the file variable SSOCKET represents the "master socket" that is to listen for 
connections. (Note that the values 2 and 1 passed to socket are, respectively, the local 
values of the constants PF_INET and SOCK_STREAM. PF_INET indicates Internet-style 
protocol, and SOCK_STREAM indicates that transmission will be in the form of a stream of 
bytes. You likely will not need to use any other values for these arguments.) 

After the socket has been created, the next step is line 13, which associates the socket 
with your machine by calling bind. This call to bind is passed the file variable SSOCKET 
associated with the socket and the server address created by the call to pack in line 11. 

After the socket is bound to your machine address, you are ready to listen for clients 
that want to connect to your server. Line 14 does this by calling listen. This call to 
listen is passed the file variable SSOCKET and the value 1; the latter indicates that 
only one client is listened for at any particular time. 

Line 15 calls accept, which waits until a client process wants to connect to this server. 
When a connection is established, accept creates a new socket associated with this 
connection and uses the file variable SOCKET to represent it. (The address of the client 
connection is returned in $clientaddr; if you want to, you can use unpack to obtain the 
address, and then call gethostbyaddr to retrieve the name of the machine on which the 
client process is running.) 

When the connection has been established and the file variable SOCKET has been 
associated with it, you can treat SOCKET like any other file variable: you can read data 



from it or write data to it. Lines 17 and 18 turn off buffering for SOCKET, which ensures 
that data sent through the socket is sent right away. (If buffering is left on, the 
program won't send data until the special internal buffer is full, which means that the 
client process won't receive the data right away.) After buffering is turned off, line 19 
writes the line of data to SOCKET, which sends it to the client process. (For more 
information on buffering and how it works, refer to "Redirecting One File to Another" 
on Day 12, "Working with the File System.") 

Although you can both send and receive data through 
the same socket, doing so is dangerous, because you run 
the risk of deadlock. Deadlock occurs when the client 
and server processes think that the other is going to 
send data. Neither can proceed until the other does. 

The only way to get out of a deadlock is to send signals 
to the processes (such as KILL). 

To avoid a deadlock, make sure that you understand how 
data flows between the processes you are running

The connect Function 

As you have seen, when two processes communicate using a socket, one process is 
designated as the listening process. This process calls listen to indicate that it is the 
listening process, and then it calls accept to wait for a connection from another 
process. (Listening processes are called servers, because they provide service to the 
processes that connect to them. The processes that connect to servers are called clients.) 

To connect to a process that has called accept and is now waiting for a connection, use 
the connect function. 

The syntax of the connect function is 

connect (socket, address);

socket is a file variable representing a socket created using socket and bound using 
bind. address is the internal representation of the Internet address to which you want 
to connect. In the process to which this process is connecting, this address must have 



been passed to bind to bind it to a socket, and the socket, in turn, must have been 
specified in calls to listen and accept. 

After connect has been called, the program that calls it can send data to or receive 
data from the other process by means of the file variable specified in socket. 

Listing 15.12 is an example of a program that uses connect to obtain data from another 
process. (The process that sends the data is displayed in Listing 15.11.)

 

Listing 15.12. A simple client program.

1:  #!/usr/local/bin/perl

2:  

3:  $port = 2000;

4:  while (getservbyport ($port, "tcp")) {

5:          $port++;

6:  }

7:  ($d1, $d2, $prototype) = getprotobyname ("tcp");

8:  ($d1, $d2, $d3, $d4, $rawclient) = gethostbyname ("mercury");

9:  ($d1, $d2, $d3, $d4, $rawserver) = gethostbyname ("silver");

10: $clientaddr = pack ("Sna4x8", 2, 0, $rawclient);

11: $serveraddr = pack ("Sna4x8", 2, $port, $rawserver);

12: socket (SOCKET, 2, 1, $prototype) || die ("No socket");

13: bind (SOCKET, $clientaddr) || die ("Can't bind");

14: connect (SOCKET, $serveraddr);

15: 

16: $line = <SOCKET>;

17: print ("$line\n");

18: close (SOCKET);



 

$ program15_12

Hello, world!

$

 Lines 3-6 obtain the port to use when receiving data by means of a socket 
connection. As in Listing 15.11, the port number is compared with the list of ports stored 
in /etc/services by calling getservbyport. The first unused port number greater than 
or equal to 2000 becomes the number of the port to use. (This program and Listing 15.11 
assume that the same /etc/services file is being examined in both cases. If the 
/etc/services files are different, you will need to choose a port number yourself and 
specify this port number in both your client program and your server program-in other 
words, assign a prespecified value to the variable $port.) 

Line 7 calls getprotobyname to retrieve the protocol number associated with the TCP 
protocol. This protocol number is eventually passed to socket. 

Lines 8 and 9 retrieve the Internet addresses of the client (this program) and the server 
(the process to connect to). $rawclient is assigned the Internet address of the client, 
and $rawserver is assigned the Internet address of the server; each of these addresses is 
a four-byte scalar value. 

Lines 10 and 11 take the addresses stored in $rawclient and $rawserver and convert 
them to the form used by the socket processing functions. In both cases, the 2 passed to 
pack is the local value for AF_INET (the only type of address supported in the UNIX 
environment). Note that line 10 doesn't bother specifying a port value to pass to pack; 
this is because the connection uses the port specified in the server address in line 11. 

Line 12 now calls socket to create a socket for the current program (the client). As in 
the call to socket in Listing 15.11, the values 2 and 1 passed to socket are the local 
values of the constants PF_INIT and SOCK_STREAM; if these values are different on your 
machine, you need to replace the values shown here with the ones defined for your 
machine. The call to socket in line 12 associates the file variable SOCKET with the newly 
created socket. 

After the socket has been created, line 13 calls bind to associate the socket with the 
client program. bind requires two arguments: the file variable associated with the 
socket that has just been created, and the address of the client machine as packed by 



line 10. 

Line 14 now tries to connect to the server process by calling connect and passing it the 
server address created by line 11. If the connection is successful, you can send and 
receive data through the socket using the SOCKET file variable. 

The SOCKET file variable behaves just like any other file variable. This means that line 
16 reads a line of data from the server process. Because the server process is sending the 
character string Hello, world! (followed by a newline character), this is the string 
that is assigned to $line. Line 17 then prints $line, which means that the following 
appears on your screen: 

Hello, world!

After the client process is finished with the socket, line 18 calls close. This call 
indicates that the program is finished with the socket. (After the socket is closed by 
both the server and the client programs, the server program can accept a connection 
from another client process, if desired.) 

The shutdown Function 

When two processes are communicating using a socket, data can be sent in either 
direction: the client can receive data from the server, or vice versa. The shutdown 
function enables you to indicate that traffic in one or both directions is no longer 
needed. 

The syntax for the shutdown function is 

shutdown (socket, direction);

Here, socket is the file variable associated with the socket whose traffic is to be 
restricted. direction is one of the following values: 

●     0 indicates that the program can send through the socket but can no longer 
receive data. 

●     1 indicates that the program can receive data from the socket but can no longer 
send. 

●     2 indicates that both sending and receiving are disallowed. 

NOTE



To terminate communication through a socket, call 
close and pass it the file variable associated with the 
socket: 

close (SOCKET); 

This line closes the socket represented by SOCKET 

The socketpair Function 

The socketpair function is similar to socket, but it creates a pair of sockets rather than 
just one socket. 

The syntax of the socketpair function is 

socketpair (socket1, socket2, domain, type, format);

socket1 is the file variable to be associated with the first newly created socket, and 
socket2 is the file variable to be associated with the second socket. 

As in socket, domain is the protocol family to use, type is the type of socket to create, 
and format is the number of the protocol to be used with the socket. 

socketpair often is used to create a bidirectional communication channel between a 
parent and a child process.

Some machines that support sockets do not support 
socketpair 

The getsockopt and setsockopt Functions 

The getsockopt and setsockopt functions enable you to obtain and set socket options. 

To obtain the current value of a socket option in your environment, call the 
getsockopt function. 



The syntax of the getsockopt function is 

retval = getsockopt (socket, opttype, optname);

socket is the file variable associated with the socket whose option you want to retrieve. 

opttype is the type of option (or option level). The value of the system constant 
SOL_SOCKET specifies a "socket level" option. To find out the other possible values for 
opttype, refer to the system header file /usr/include/sys/socket.h. 

optname is the name of the option whose value is to be retrieved; retval is the value of 
this option. 

To set a socket option, call setsockopt. 

The syntax of the setsockopt function is 

setsockopt (socket, opttype, optname, value);

Here, socket, opttype, and optname are the same as in getsockopt, and value is the new 
value of the optname option.

NOTE

Socket options are system dependent (and a full 
treatment of them is beyond the scope of this book). For 
more information on socket options, refer to the 
getsockopt and setsockopt manual pages on your 
machine or to the /usr/include/sys/socket.h header 
file 

The getsockname and getpeername Functions

The getsockname and getpeername functions enable you to retrieve the addresses of the 
two ends of a socket connection. 

The getsockname function returns the address of this end of a socket connection (the 
end created by the currently running program). 

The syntax of the getsockname function is 



retval = getsockname (socket);

As in the other socket functions, socket is the file variable associated with a particular 
socket. retval is the returned address. 

The returned address is in packed format as built by the calls to pack in Listing 15.11 
and Listing 15.12. 

The following code retrieves a socket address and converts it into readable form: 

$rawaddr = getsockname (SOCKET);

($d1, $d2, @addrbytes) = unpack ("SnC4x8", $rawaddr);

$readable = join (".", @addrbytes);

NOTE

Normally, you already have the address returned by 
getsockname because you need to pass it to bind to 
associate the socket with your machine 

To retrieve the address of the other end of the socket connection, call getpeername. 

The syntax of the getpeername function is 

retval = getpeername (socket);

As in getsockname, socket is the file variable associated with the socket, and retval is 
the returned address.

NOTE

The address returned by getpeername is normally 
identical to the address returned by accept 

The UNIX System V IPC Functions



The functions you've just seen describe interprocess communication using sockets. 
Sockets are supported on machines running the 4.3BSD (Berkeley UNIX) operating system 
and on some other UNIX operating systems as well. 

Some machines that do not support sockets support a set of UNIX System V interprocess 
communication (IPC) functions. These functions consist of the following: 

●     Functions that send messages from one process to another by means of a message 
queue 

●     Functions that create and manipulate shared memory 
●     Functions that create and manipulate semaphores 

Perl enables you to use these IPC functions by defining Perl functions with the same 
names as the IPC functions. The following sections provide a brief description of these 
functions. 

For more information on any IPC function, refer to the manual page for that function. 

IPC Functions and the require Statement

Before you can use any System V IPC functions, you first must give the program the 
information it needs to use them. 

To do this, add the following statements to your program, immediately following the 
#!/usr/local/bin/perl header line: 

require "ipc.ph";

require "msg.ph";

require "sem.ph";

require "shm.ph";

The require statement is like the #include statement in the C preprocessor: it takes the 
contents of the specified file and includes them as part of your program. 

The syntax for the require statement is 

require "name";

Here, name is the name of the file to be added to your program. 



For example, the following statement includes the file ipc.ph as part of your program: 

require "ipc.ph";

NOTE

If the Perl interpreter complains that it cannot find a 
file that you are trying to include using require, one of 
two things is wrong: 

●     The built-in array variable @INC is not defined 
properly. 

●     The file does not exist. 

See the description of @INC on Day 17, "System 
Variables," for more details 

The msgget Function 

To use the System V message-passing facility, the first step is to create a message queue 
ID to represent a particular message queue. To do this, call the msgget function. 

The syntax of the msgget function is 

msgid = msgget (key, flag);

Here, key is either IPC_PRIVATE or an arbitrary constant. If key is IPC_PRIVATE or flag 
has IPC_CREAT set, the message queue is created, and its queue ID is returned in msgid. 

If msgget is unable to create the message queue, msgid is set to the null string. 

The msgsnd Function 

To send a message to a message queue, call the msgsnd function. 

The syntax of the msgsnd function is 

msgsnd (msgid, message, flags);



msgid is the message queue ID returned by msgget. message is the text of the message, and 
flags specifies options that affect the message. 

msgsnd returns a nonzero value if the send operation succeeds, zero if an error occurs. 

For more information on the format of the message sent by msgsnd, refer to your msgsnd 
manual page. 

The msgrcv Function 

To obtain a message from a message queue, call the msgrcv function. 

The syntax of the msgrcv function is 

msgrcv (msgid, message, size, mesgtype, flags);

Here, msgid is the ID of the message queue, as returned by msgget. message is a scalar 
variable (or array element) in which the message is to be stored. size is the size of the 
message, plus the size of the message type; this message type is specified in mesgtype. flags 
specifies options that affect the message. 

msgrcv returns a nonzero value if the send operation succeeds, zero if an error occurs. 

The msgctl Function 

The msgctl function enables you to set options for message queues and send commands 
that affect them. 

The syntax of the msgctl function is 

msgctl (msgid, msgcmd, msgarg);

msgid is the message queue ID. msgcmd is the command to be sent to the message queue; the 
list of available commands is defined in the file /usr/include/sys/ipc.h. 

Some of the commands that can be specified by msgcmd set the values of message queue 
options. If one of these commands is specified, the new value of the option is specified in 
msgarg. 

If an error occurs, msgctl returns the undefined value. msgctl also can return zero or a 



nonzero value. 

The shmget Function 

To use the System V shared memory capability, you must first create the shared memory. 
To do this, call the shmget function. 

The syntax of the shmget function is 

shmid = shmget (key, size, flag);

Here, key is either IPC_PRIVATE or an arbitrary constant. If key is IPC_PRIVATE or flag 
has IPC_CREAT set, the shared memory segment is created, and its ID is returned in shmid. 
size is the size of the created shared memory (in bytes). If shmget is unable to create the 
message queue, shmid is set to the null string. 

The shmwrite Function 

To send data to a particular segment of shared memory, call the shmwrite function. 

The syntax of the shmwrite function is 

shmwrite (shmid, text, pos, size);

shmid is the shared memory ID returned by shmget. text is the character string to write 
to the shared memory, pos is the number of bytes to skip over in the shared memory 
before writing to it, and size is the number of bytes to write. 

This function returns a nonzero value if the write operation succeeds; it returns zero if 
an error occurs.

NOTE

If the character string specified by text is longer than 
the value specified by size, only the first size bytes of 
text are written to the shared memory. 

If the character string specified by text is shorter than 
the value specified by size, shmwrite fills the leftover 
space with null characters 



The shmread Function 

To obtain data from a segment of shared memory, call the shmread function. 

The syntax of the shmread function is 

shmread (shmid, retval, pos, size);

Here, shmid is the shared memory ID returned by shmget. retval is a scalar variable (or 
array element) in which the returned data is to be stored. pos is the number of bytes to 
skip in the shared memory segment before copying to retval, and size is the number of 
bytes to copy. 

This function returns a nonzero value if the read operation succeeds, and it returns 
zero if an error occurs. 

The shmctl Function 

The shmctl function enables you to set options for shared memory segments and send 
commands that affect them. 

The syntax of the shmctl function is 

shmctl (shmid, shmcmd, shmarg);

shmid is the shared memory ID returned by shmget. shmcmd is the command that affects 
the shared memory; the list of available commands is defined in the header file named 
/usr/include/sys/ipc.h. 

Some of the commands that can be specified by shmcmd set the values of shared memory 
options. If one of these commands is specified, the new value of the option is specified in 
shmarg. 

If an error occurs, shmctl returns the undefined value. shmctl also can return zero or a 
nonzero value. 

The semget Function 

To use the System V semaphore facility, you must first create the semaphore. To do this, 
call the semget function. 



The syntax of the semget function is 

semid = semget (key, num, flag);

Here, key is either IPC_PRIVATE or an arbitrary constant. If key is IPC_PRIVATE or flag 
has IPC_CREAT set, the shared memory segment is created, and its ID is returned in semid. 
num is the number of semaphores created. If semget is unable to create the semaphore, 
semid is set to the null string. 

The semop Function 

To perform a semaphore operation, call the semop function. 

The syntax of the semop function is 

semop (semid, semstructs);

Here, semid is the semaphore ID returned by semget, and semstructs is a character string 
consisting of an array of semaphore structures. Each semaphore structure consists of 
the following components, each of which is a short integer (as created by the s format 
character in pack): 

●     The number of semaphores 
●     The semaphore operation 
●     The semaphore flags, if any 

This function returns a nonzero value if the semaphore operation is successful, zero if 
an error occurs.

NOTE

For more information on semaphore operations and the 
semaphore structure, refer to the semop manual page 

The semctl Function 

The semctl function enables you to set options for semaphores and send commands that 
affect them. 



The syntax of the semctl function is 

semctl (semid, semcmd, semarg);

semid is the semaphore ID returned by semget. semcmd is the command that affects the 
semaphore; the list of available commands is defined in the file /usr/include/sys/ipc.h. 

Some of the commands that can be specified by semcmd set the values of semaphore 
options. If one of these commands is specified, the new value of the option is specified in 
semarg. 

If an error occurs, semctl returns the undefined value. semctl also can return zero or a 
nonzero value. 

Summary

Today you learned about Perl functions that emulate system library functions, perform 
Berkeley UNIX socket operations, and perform System V IPC operations. 

Perl functions that emulate system library functions perform the following tasks, 
among others: 

●     Read the /etc/group file, which lists the user groups for your machine 
●     Read the /etc/networks file, which lists networks to which your machine is 

connected 
●     Read from the /etc/hosts file, which lists the remote machines accessible from 

your local network 
●     Obtain the current login user ID 
●     Retrieve the current process group and parent process ID 
●     Read the /etc/passwd file, which lists information about the users who have 

access to your machine 
●     Obtain the current priority for your program and set it to another value 
●     Read the /etc/protocols file, which lists the types of protocols available for 

interprocess communication 
●     Read the /etc/services file, which lists the port numbers associated with system 

services on your machine 

Today you also learned about the Berkeley UNIX socket mechanism, which provides 
interprocess communication using a client-server model. The System V IPC message 
queue, shared memory, and semaphore capabilities are also briefly covered. 

Q&A



Q: What is the difference between getnetent and gethostent, and which one 
accesses /etc/networks? 

A: On most systems, getnetent accesses the contents of /etc/networks, which lists 
the names and numbers of the networks for your machine. gethostent, on the 
other hand, accesses the contents of /etc/hosts, which lists the names and 
addresses of other machines on local and remote networks. 

Q: What will happen if I establish a socket connection using a port number 
listed in /etc/services? 

A: If the system service is always active, the system likely will not enable you to 
establish a socket connection using this port. If the system service runs 
intermittently, you run the risk of disrupting it. 
In your programs, it is always best to use a port never used by any other system 
service. 

Q: How did sockets get their name? 

A: A server process that is listening for clients is like an electrical socket on your 
wall: any client process with the appropriate protocol can "plug into" it. 

Q: What is the purpose of a semaphore? 

A: A semaphore is a method of ensuring that only one process can run a particular 
segment of code or access a particular chunk of shared memory storage at any 
given time.
A full description of how semaphores work is beyond the scope of this book. Many 
books on operating systems can give you an introduction to the concepts used in 
semaphores. Also, the UNIX System V manual pages for the semaphore functions 
listed in today's lesson provide a brief description of how semaphores work. 

Q: The machine name I retrieved using gethostbyaddr has a lot of funny 
characters in it. Why? 

A: The address you've retrieved is an Internet domain address, which is a list of 
names separated by periods (.). These domain names ensure that each Internet 
user and machine can be distinguished from the millions of other users and 
machines around the world. 
For more details on the Internet and how to use it, refer to a book on the subject 
(many are available). 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered, and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Which functions manipulate the following files?
a.    /etc/passwd



b.    /etc/hosts 
c.    /etc/networks

d.    /etc/services 
2.  Which of the following functions are called by client processes and which by 

server processes when performing socket operations? In what order should these 
functions be called?
a.    Bind
b.    listen
c.    socket
d.    accept

e.    connect 
3.  What do the following functions do?

a.    getpwuid
b.    setprotoent 
c.    gethostbyaddr
d.    getgrent

e.    getservbyport 
4.  How do you send information using a socket? 
5.  Describe how to list all the (numeric) user IDs on your machine. 

Exercises

1.  Write a program that lists (by name) all the groups into which user IDs are sorted 
on your machine. List all the user names in each group. Sort the groups, and the 
user names in each group, in alphabetical order. 

2.  Write a program that lists every user name on your machine and prints the home 
directory for each. 

3.  Write a program that lists the shells used by users on your machine. List the 
number of users of each shell, and sort the list in descending order of use. 

4.  Write a program that splits into two identical processes, and have each process 
print the process ID of the other. 

5.  Write a program that sends a specific file, /u/jqpublic/testfile, to clients who 
request it. The program should send the file by creating a copy of itself using 
fork, and it should be able to send to five clients at once. 

6.  BUG BUSTER: What is wrong with the following program? 
#!/usr/local/bin/perl

print ("Network names and numbers at your site:\n");
while (($name, $d1, $d2, $address) = getnetent()) {
print ("$name, at address $address\n");

} 

    





Chapter 16

Command-Line Options

CONTENTS

●     Specifying Options 
❍     Specifying Options on the Command Line 
❍     Specifying an Option in the Program 

●     The -v Option: Printing the Perl Version Number 
●     The -c Option: Checking Your Syntax 
●     The -w Option: Printing Warnings 

❍     Checking for Possible Typos 
❍     Checking for Redefined Subroutines 
❍     Checking for Incorrect Comparison Operators 

●     The -e Option: Executing a Single-Line Program 
●     The -s Option: Supplying Your Own Command-Line Options 

❍     The -s Option and Other Command-Line Arguments 
●     The -P Option: Using the C Preprocessor 

❍     The C Preprocessor: A Quick Overview 
●     The -I Option: Searching for C Include Files 
●     The -n Option: Operating on Multiple Files 
●     The -p Option: Operating on Files and Printing 
●     The -i Option: Editing Files 

❍     Backing Up Input Files Using the -i Option 
●     The -a Option: Splitting Lines 
●     The -F Option: Specifying the Split Pattern 
●     The -0 Option: Specifying Input End-of-Line 
●     The -l Option: Specifying Output End-of-Line 
●     The -x Option: Extracting a Program from a Message 
●     Miscellaneous Options 

❍     The -u Option 
❍     The -U Option 
❍     The -S Option 
❍     The -D Option 
❍     The -T Option: Writing Secure Programs 

●     The -d Option: Using the Perl Debugger 
●     Summary 



●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson describes the options you can specify to control how your Perl program 
operates. These options provide many features, including those that perform the 
following tasks: 

●     Check syntax 
●     Print warnings 
●     Use preprocessor commands 
●     File editing 
●     Change the "end of input line" marker 

Today's lesson begins with a description of how to supply options to your Perl program. 

Specifying Options

There are two ways to supply options to a Perl program: 

●     On the command line, when you enter the command that starts your Perl program 
●     On the first line of your Perl program 

The following sections describe these methods of supplying options. 

Specifying Options on the Command Line

One way to specify options for a Perl program is to enter them on the command line when 
you enter the command that starts your program. 

The syntax for specifying options on the command line is 

perl options program

Here, program is the name of the Perl program you want to run, and options is the list of 
options you want to supply to the program. 

For example, the following command runs the Perl program named test1 and passes it 
the options -s and -w. (You'll learn about these and other options later today.) 



$ perl -s -w test1

Some options need to be specified along with a value. For example, the -0 option requires 
an integer to be passed with it: 

$ perl -0 26 test1

Here, the integer 26 is associated with the option -0. 

If you want, you can omit the space between the option and its associated value, as in 
the following: 

$ perl -026 test1

As before, this command associates 26 with the -0 option. In either case, the value 
associated with an option must always immediately follow the option.

NOTE

If an option does not require an associated value, you 
can put another option immediately after it without 
specifying an additional - character or space. For 
example, the following commands are equivalent: 

$ perl -s -w test1

$ perl -sw test1 

You can put an option that requires a value as part of a 
group of options, provided that it is last in the group. For 
example, the following commands are equivalent:

$ perl -s -w -0 26 test1

$ perl -sw026 test 

Specifying an Option in the Program

Another way to specify a command option is to include it as part of the header comment 
for the program. For example, suppose that the first line of your Perl program is this: 

#!/usr/local/bin/perl -w



In this case, the -w option is automatically specified when you start the program.

Perl 4 enables you to specify only one option (or group 
of options) on the header comment line. This means that 
the following line generates an "unrecognized switch" 
error message:

#!/usr/local/bin/perl -w -s 

Perl 5 enables as many switches as you like on the 
command line. However, some operating systems chop the 
header line after 32 characters, so be careful if you are 
planning to use a large number of switches

NOTE

Options specified on the command line override options 
specified in the header comment. For example, if your 
header comment is

#!/usr/local/bin/perl -w 

and you start your program with the command

$ perl -s test1 

the program will run with the -s option specified but 
not the -w option 

The -v Option: Printing the Perl Version Number

The -v option enables you to find out what version of Perl is running on your machine. 
When the Perl interpreter sees this option, it prints information on itself and then exits 
without running your program. 

This means that if you supply a command such as the following, the file test1 is not 
executed: 



$ perl -v test1

Here is sample output from the -v command: 

This is perl, version 5.001

        Unofficial patch level 1m

Copyright (c) 1987-1994, Larry Wall

Perl may be copied only under the terms of either the Artistic License 

or the GNU General Public License, which may be found in the Perl 5.0 

source kit.

The only really useful things here, besides the copyright notice, are the version number 
of the Perl you are running-in this case, 4.0-and the patch level, which indicates how 
many repairs, or patches, have been made to this version. Here, the patch level is 36 
(which, at this writing, is the latest release of Perl version 4.0). 

No other options should be specified if you specify the -v option, because none of them 
would do anything in this case anyway. 

The -c Option: Checking Your Syntax

The -c option tells the Perl interpreter to check whether your Perl program is correct 
without actually running it. If it is correct, the Perl interpreter prints the following 
message (in which filename is the name of your program) and then exits without 
executing your program: 

filename syntax OK

If the Perl interpreter detects errors, it displays them just as it normally does. After 
printing the error messages, it prints the following message, in which filename is the 
name of your program: 

filename had compilation errors



Again, there is no point in supplying other options if you specify the -c option because 
the Perl interpreter isn't actually running the program; the only exception is the -w 
option, which prints warnings. This option is described in the following section. 

The -w Option: Printing Warnings

As you have seen on the preceding days, some mistakes are easy to make when you are 
writing a Perl program, such as accidentally typing the wrong variable name, or using 
== when you really mean to use eq. Because certain mistakes crop up frequently, the 
Perl interpreter provides an option that checks for them. 

This option, the -w option, prints a warning every time the Perl interpreter sees 
something that might cause a problem. For example, if the interpreter sees the statement 

$y = $x;

and hasn't seen $x before (which means that $x is undefined), it prints a warning message 
in the following form if you are running Perl 4: 

Possible typo: "x" at filename line linenum.

Here, filename is the name of your Perl program, and linenum is the number of the line 
on which the interpreter has detected a potential problem. 

If you are running Perl 5, the message is similar, but also includes the name of the 
current package: 

Identifier "main::x" used only once: possible typo at filename line 
linenum.

For more information on packages, see Day 19, "Object-Oriented Programming in Perl." 

The following sections provide a partial list of the potential problems detected by the -
w option. (If you are running Perl 5, the -w option provides dozens of useful warnings. 
Consult the Perl manual pages for a complete list.)

NOTE

The -w option can be combined with the -c option to 
provide a means of checking your syntax for errors and 
problems before you actually run the program 



Checking for Possible Typos

As you have seen, a statement such as the following one leads to a warning message if $x 
has not been previously defined: 

$y = $x;

The "possible typo" error message also appears in the following circumstances, among 
others: 

●     If a variable is assigned to but is never used again 
●     If a file variable is referred to without being specified in an open statement 

Of course, the possible-typo message might flag lines that don't actually contain typos. 
Following are two of the most common situations in which a possible typo actually is 
correct code: 

●     The Perl 4 interpreter sometimes confuses a print format specifier with a file 
variable and claims that the name of the print format specifier is a possible typo. 
For example, the statement 

format BLANK =

.

●     (which enables you to print a blank line on a formatted page) might generate the 
warning message 

Possible typo: "BLANK" at file1 line 26.

●     This warning message might appear even if the print format is actually used in the 
program, because it is specified by a statement such as 

$~ = "BLANK";

●     and the Perl interpreter doesn't realize that the string BLANK refers to the BLANK 
print format. 

●     The Perl 5 interpreter does not generate this warning message. 
●     If you call a function that returns a list, and you need only an element of the 

list, one way to extract that single element is to assign the other elements to 
dummy variables. For example, if you want to retrieve just the group ID when you 
call getgrnam, you can do so as shown here: 



($d1, $d2, $groupid) = getgrnam ($groupname);

●     Here, the scalar variables $d1 and $d2 are dummy variables that hold the 
elements of the group file entry that you do not need. If (as is likely) $d1 and $d2 
are not referred to again, the -w option treats $d1 and $d2 as possible typos. 

Checking for Redefined Subroutines

One useful feature of the -w option is that it checks whether two subroutines of the 
same name have been defined in the program. (Normally, if the Perl interpreter sees two 
subroutines of the same name, it quietly replaces the first subroutine with the second 
one and carries on.) 

If, for example, two subroutines named x are defined in a program, the -w option prints a 
message similar to the following one: 

Subroutine x redefined at file1 line 46.

The line number specified is the line that starts the second subroutine. 

When the -w option has detected this problem, you can decide which subroutine to 
rename or throw away. 

Checking for Incorrect Comparison Operators

Another really helpful feature of the -w option is that it checks whether you are 
trying to compare a string using the == operator. 

In a statement such as the following: 

if ($x == "humbug") {

        ...

}

the conditional expression 

$x == "humbug"

is equivalent to the expression 



$x == 0

because all character strings are converted to 0 when used in a numeric context (a 
place where a number is expected). This is correct in Perl, but it is not likely to be what 
you want. 

If the -w option is specified and the Perl interpreter sees a statement such as this one, it 
prints a message similar to the following if you are running Perl 4: 

Possible use of == on string value at file1 line 26.

In Perl 5, the following warning is printed: 

Argument "humbug" isn't numeric for numeric eq at file1 line 26.

In either case, this warning enables you detect these incorrect == operators and replace 
them with eq operators, which compare strings.

The -w operator doesn't detect the opposite problem, 
namely: 

if ($x eq 46) {
...

} 

In this case, the Perl interpreter converts 46 to the 
string 46 and performs a string comparison. 

Because a number and its string equivalent usually 
mean the same thing, this normally doesn't cause a 
problem. Watch out, though, for octal numbers in string 
comparisons, as in the following example:

if ($x eq 046) {
...

} 

Here, the octal value 046 is converted to the number 38 
before being converted to a string. If you really want to 
compare $x to 046, this code will not produce the results 



you expect. 

Another thing to watch out for is this: In Perl 4, the -w 
option does not check for conditional expressions such as 
the following: 

if ($x = 0) {
...

} 

because there are many cases in Perl in which the = 
assignment operator belongs inside a conditional 
expression. You will have to manually check that you 
are not specifying = (assignment) when you really mean 
to use == (equality comparison). 

Perl 5 flags this with the following message:

Found = in conditional, should be == at filename 

line filenum 

The -e Option: Executing a Single-Line Program

The -e option enables you to execute a Perl program from your shell command line. For 
example, the command 

$ perl -e "print ('Hello');"

prints the following string on your screen: 

Hello

You can also specify multiple -e options. In this case, the Perl statements are executed 
left to right. For example, the command 

$ perl -e "print ('Hello');" -e "print (' there');"

prints the following string on your screen: 

Hello there



By itself, the -e option is not all that useful. It becomes useful, however, when you use 
it in conjunction with some of the other options you'll see in today's lesson.

You can leave off the closing semicolon in a Perl 
statement passed via the -e option, if you want to: 

$ perl -e "print ('Hello')" 

If you are supplying two or more -e options, however, the 
Perl interpreter strings them together and treats them 
as though they are a single Perl program. This means 
that the following command generates an error because 
there must be a semicolon after the statement specified 
with the first -e option: 

$ perl -e "print ('Hello')" -e "print (' there') 

The -s Option: Supplying Your Own Command-Line Options

As you can see from this chapter, you can control the behavior of Perl by specifying 
various command-line options. You can control the behavior of your own Perl programs 
by spec-ifying command-line options for them too. To do this, specify the -s option when 
you call the program. 

Here's an example of a command that passes an option to a Perl program: 

$ perl -s testfile -q

This command starts the Perl program testfile and passes it the -q option.



To be able to pass options to your program, you must 
specify the Perl-s option. The following command does 
not pass -q as an option: 

$ perl testfile -q 

In this case, -q is just an ordinary argument that is 
passed to your program and stored in the built-in array 
variable @ARGV. 

The easiest way to remember to include -s is to specify it 
as part of your header comment: 

#!/usr/local/bin/perl -s 

This ensures that your program always will check for 
options. (Unless, of course, you override the option check 
by providing other Perl options on the command line 
when you invoke the program.

If an option is specified when you invoke your Perl program, the scalar variable whose 
name is the same as the option is automatically set to 1 before program execution begins. 
For example, if a Perl program named testfile is called with the -q option, as in the 
following, the scalar variable $q is automatically set to 1: 

$ perl -s testfile -q

You then can use this variable in a conditional expression to test whether the option 
has been set.

NOTE

If -q is treated as an option, it does not appear in the 
system variable @ARGV. A command-line argument either 
sets an option or is added to @ARGV 

Options can be longer than a single character. For example, the following command sets 
the value of the scalar variable $potato to 1: 

$ perl -s testfile -potato



You also can set an option to a value other than 1 by specifying = and the desired value 
on the command line: 

$ perl -s testfile -potato="hot"

This line sets the value of $potato to hot. 

Listing 16.1 is a simple example of a program that uses command-line options to control 
its behavior. This program prints information about the user currently logged in.

 

Listing 16.1. An example of a program that uses command-line options.

1:  #!/usr/local/bin/perl -s

2:  

3:  # This program prints information as specified by

4:  # the following options:

5:  # -u: print numeric user ID

6:  # -U: print user ID (name)

7:  # -g: print group ID

8:  # -G: print group name

9:  # -d: print home directory

10: # -s: print login shell

11: # -all: print everything (overrides other options)

12: 

13: $u = $U = $g = $G = $d = $s = 1 if ($all);

14: $whoami = "whoami";

15: chop ($whoami);

16: ($name, $d1, $userid, $groupid, $d2, $d3, $d4,

17:         $homedir, $shell) = getpwnam ($whoami);

18: print ("user id: $userid\n") if ($u);



19: print ("user name: $name\n") if ($U);

20: print ("group id: $groupid\n") if ($g);

21: if ($G) {

22:         ($groupname) = getgrgid ($groupid);

23:         print ("group name: $groupname\n");

24: }

25: print ("home directory: $homedir\n") if ($d);

26: print ("login shell: $shell\n") if ($s);

 

$ program16_1 -U -d

user name: dave

home directory: /ag1/dave

$

 The header comment in line 1 specifies that the -s option is to be 
automatically specified when this Perl program is invoked. This ensures that options can 
always be passed to this program (unless, of course, you override the -s option on the 
command line, as described earlier). 

The comments in lines 3-11 provide information on what options the program supports. 
This information is useful when someone is reading or modifying the program because 
there is no other way to tell which scalar variables are used to test options. 

The option -all indicates that the program is to print everything; if this option is 
specified, the scalar variable $all is set to 1. To cut down on the number of comparisons 
later, line 13 checks whether $all is 1; if it is, the other scalar variables corresponding 
to command-line options are set to 1. This technique ensures that the following 
commands are equivalent (assuming that your program is named program16_1): 

$ program16_1 -all

$ program16_1 -u -U -g -G -d -s



The scalar variables listed in line 13 can be assigned to, even though they correspond to 
possible command-line options, because they behave just like other Perl scalar variables. 

Lines 14-17 provide the raw material for the various print operations in this program. To 
start, when the Perl interpreter sees the string 'whoami', it calls the system command 
whoami, which returns the name of the user running the program. This name is then 
passed to getpwnam, which searches the password file /etc/passwd and retrieves the 
entry for this particular user. 

Line 18 checks whether the -u option has been specified. To do this, it checks whether $u 
has a nonzero value. If it does, the user ID is printed. (The user ID is also printed if -all 
has been specified because line 13 sets $u to a nonzero value in this case.) 

Similarly, line 19 prints the user name if -U has been specified, line 20 prints the group ID 
if -g has been specified, line 25 prints the home directory if -d has been specified, and line 
26 prints the filename of the login shell if -s has been specified. 

Lines 21-24 check whether to print the group name. If -g has been specified, $g is nonzero, 
and line 22 calls getgrid to retrieve the group name.

NOTE

Because command-line options can change the initial 
values of scalar variables, it is a good idea to always 
assign a value to a scalar variable before you use it. 
Consider the following example:

#!/usr/local/bin/perl
while ($count < 10) {
print ("$count\n");
$count++;

} 

This program normally prints the numbers from 0 to 9 
because $count is assumed to have an initial value of 0. 
However, if this program is called with the -count 
option, the initial value of $count becomes something 
other than 0, and the program behaves differently. 

If you add the following statement before the while 
loop, the program always prints the numbers 0 to 9 
regardless of what options are specified on the command 
line: 

$count = 0 



The -s Option and Other Command-Line Arguments

You can supply both options and command-line arguments to your program (provided 
that you supply the -s option to Perl). These are the rules that the Perl interpreter 
follows: 

●     Any arguments immediately following the program name that start with a - are 
assumed to be options. 

●     Any argument that does not start with a - is assumed to be an ordinary argument 
and not an option. 

●     When the Perl interpreter sees an argument that is not an option, all subsequent 
arguments are also treated as ordinary arguments, not options, even if they start 
with a -. 

This means, for example, that the following command treats -w as an option to testfile, 
and foo and -e as ordinary arguments: 

$ perl -s testfile -w foo -e

The special argument -- also indicates "end of options." For example, the following 
command treats -w as an option and -e as an ordinary argument. The -- is thrown away. 

$ perl -s testfile -w - -e

The -P Option: Using the C Preprocessor

The C preprocessor is a program that takes code written in the C programming language 
and searches for special preprocessor statements. In Perl, the -P option enables you to 
use this preprocessor with your Perl program: 

$ perl -P myprog

Here, the Perl program myprog is first run through the C preprocessor. The resulting 
output is then passed to the Perl interpreter for execution.

NOTE



Perl provides no way to just run the C preprocessor on a 
Perl program. To do this, you'll need a C compiler that 
provides an option which specifies "preprocessor only."

Refer to the documentation for your C compiler for 
details about how to do this

The following sections describe some of the most commonly used C preprocessor 
commands. 

The C Preprocessor: A Quick Overview

C preprocessor statements always employ the following syntax: 

#command value

Each C preprocessor statement starts with a # character. command is the preprocessor 
operation to perform, and value is the (optional) value associated with this operation. 

Macro Substitution: The #define Operator

The most common preprocessor statement is #define. This statement tells the 
preprocessor to replace every occurrence of a particular character string with a 
specified value. 

The syntax for #define is 

#define macro     value

This statement replaces all occurrences of the character string macro with the value 
specified by value. This operation is known as macro substitution. macro can contain letters, 
digits, or underscores. 

The value specified in a #define statement can be any character string or number. For 
example, the following statement replaces all occurrences of USERNAME with the string 
"dave" (including the quotation marks): 

#define USERNAME   "dave"

This statement replaces EXPRESSION with the string (14+6), including the parentheses: 



#define EXPRESSION  (14+6)

NOTE

When you are using #define with a value that is an 
expression, it is usually a good idea to enclose the value 
in parentheses. For example, consider the following Perl 
statement: 

$result = EXPRESSION * 5; 

If your preprocessor command is

#define EXPRESSION 14+6 

the resulting Perl statement becomes

$result = 14 + 6 * 5; 

which assigns 44 to $result (because the multiplication is 
performed first). If you enclose the preprocessor 
expression in parentheses, as in 

#define EXPRESSION (14+6) 

the statement becomes

$result = (14 + 6) * 5; 

which yields the result 100, which is likely what you 
want.

Also, you always should enclose any parameters 
(described in the following section) in parentheses, for 
the same reason

Passing Arguments Using #define

You can specify one or more parameters with your #define statement. This capability 
enables you to treat the preprocessor command like a simple function that accepts 
arguments. For example, the following preprocessor statement takes a specified value 
and uses it as an exponent: 



#define POWEROFTWO(val)  (2 ** (val))

In the Perl statement 

$result = POWEROFTWO(1.3 + 2.6) + 4;

the preprocessor substitutes the expression 1.3 + 2.6 for val and produces this: 

$result = (2 ** (1.3 + 2.6)) + 4;

You can supply more than one parameter with a #define statement. For example, 
consider the following statement: 

#define EXPONENT (base, exp) ((base) ** (exp))

Now, the statement 

$result = EXPONENT(4, 11);

yields the following result after preprocessing: 

$result = ((4) ** (11));

The Perl interpreter ignores the extra parentheses.

TIP

By convention, macros defined using #define normally 
use all uppercase letters (plus occasional digits and 
underscores). This makes it easier to distinguish macros 
from other variable names or character strings 

Listing 16.2 is an example of a Perl program that uses a #define statement to perform 
macro substitution. This listing is just Listing 15.4 with the preprocessor statement 
added.

 



Listing 16.2. A program that uses a #define statement.

1:  #!/usr/local/bin/perl -P

2:  

3:  #define AF_INET   2

4:  print ("Enter an Internet address:\n");

5:  $machine = <STDIN>;

6:  $machine =~ s/^\s+|\s+$//g;

7:  @addrbytes = split (/\./, $machine);

8:  $packaddr = pack ("C4", @addrbytes);

9:  if (!(($name, $altnames, $addrtype, $len, @addrlist) =

10:         gethostbyaddr ($packaddr, AF_INET))) {

11:         die ("Address $machine not found.\n");

12: }

13: print ("Principal name: $name\n");

14: if ($altnames ne "") {

15:         print ("Alternative names:\n");

16:         @altlist = split (/\s+/, $altnames);

17:         for ($i = 0; $i < @altlist; $i++) {

18:                 print ("\t$altlist[$i]\n");

19:         }

20: }

 

$ program16_2

Enter an Internet address:

128.174.5.59



Principal name: ux1.cso.uiuc.edu

$

 Line 3 defines the macro AF_INET and assigns it the value 2. When the C 
preprocessor sees AF_INET in line 10, it replaces it with 2, which is the value of AF_INET 
on the current machine (as specified in the header file /usr/include/netdb.h or 
/usr/include/bsd/netdb.h). 

If this program is moved to a machine that defines a different value for AF_INET, all you 
need to do to get this program to work is change line 3 to use the value on that 
machine. 

Using Macros in #define Statements

You can use a previously defined macro as the value in another #define statement. The 
following is an example: 

#define FIRST     1

#define SECOND    FIRST

$result = 43 + SECOND;

Here, the macro FIRST is defined to be equivalent to the value 1, and SECOND is defined to 
be equivalent to FIRST. This means that the statement following the macro definitions is 
equivalent to the following statement: 

$result = 43 + 1;

Conditional Execution Using #ifdef and #endif 

The #ifdef and #endif statements control whether a given group of statements is to be 
included as part of your program. 

The syntax for the #ifdef and #endif statements is 

#ifdef macro

code

#endif

Here, macro is any character string that can appear in a #define statement. code is one 



or more lines of your Perl program. 

When the C preprocessor sees an #ifdef statement, it checks whether the macro has been 
defined using the #define statement. If it has, the code specified by code is included as 
part of the program. If it has not, the code specified by code is skipped.

NOTE

The code enclosed by #ifdef and #endif does not have to 
be a complete Perl statement. For example, the 
following code is legal: 

$result = 14 * 2
#ifdef PLUSONE
+ 1
#endif

; 

Here, $result is assigned 17 if PLUSONE is defined, 16 if it's 
not. 

Be careful, though: If you abuse #ifdef, the resulting 
program might become difficult to read 

The #ifndef and #else Statements

The #ifndef and #else statements provide additional control over when parts of your 
program are to be executed. 

The #ifndef statement enables you to define code that is to be executed when a 
particular macro is not defined. 

The syntax for #ifndef is the same as for #ifdef: 

#ifndef macro

code

#endif

For example: 

#ifndef MYMACRO

$result = 26;



#endif

The assignment is performed only if MYMACRO has not appeared in a #define statement. 

The #else statement enables you to specify code to be executed if a macro is defined and 
an alternative to choose if the macro is not defined. For example: 

#ifdef MYMACRO

$result = 47;

#else

print ("Hello, world!\n");

#endif

Here, if MYMACRO has been defined by a #define statement, the following statement is exe-
cuted: 

$result = 47;

If MYMACRO has not been defined, the following statement is executed: 

print ("Hello, world!\n");

You can use #else with #ifndef, as in the following: 

#ifndef MYMACRO

print ("Hello, world!\n");

#else

$result = 47;

#endif

This code is identical to the #ifdef-#else-#endif sequence shown earlier in this section. 

The #if Statement

The #if statement enables you to specify that certain lines of your program are to be 
included only if the expression included with the statement is nonzero. 



The syntax for the #if statement is 

#if expr

code

#endif

Here, expr is the expression to be evaluated, and code is the code to be executed if expr is 
nonzero. 

For example, the following statement is executed only if the expression 14 + 3 is 
nonzero (which it always is, of course): 

#if 14 + 3

$result = 26;

#endif

You can use a macro definition as part of an #if statement. If the macro is defined, it has 
a nonzero value in an #if expression; if it is not defined, it has the value zero. Consider 
the following example: 

#if MACRO1 || MACRO2

$result = 47;

#endif

When the preprocessor sees the #if statement, it evaluates the expression MACRO1 || 
MACRO2. This expression has a nonzero value if either MACRO1 or MACRO2 is nonzero. 
Therefore, the following statement is executed if either MACRO1 or MACRO2 is defined: 

$result = 47;

The #if statement provides a quick way to remove lines of code from your program 
temporarily: 

#if 0

$result = 46;

print ("This line is not printed right now.\n");

#endif



Here, the expression included with the #if statement is always zero, which means that 
the statements between #if and #endif are always skipped. 

You can use #else with #if, as in the following example: 

#if MACRO1 || MACRO2

print ("MACRO1 or MACRO2 is defined.\n");

#else

print ("MACRO1 and MACRO2 are not defined.\n");

#endif

This code includes the first print statement if MACRO1 or MACRO2 has been defined using 
#define, and it includes the second print statement if neither has been defined. 

You cannot use the ** (exponentiation) operator in an 
#if statement because ** is not supported in the C 
programming language 

Nesting Conditional Execution Statements

You can put one #ifdef-#else-#endif construct inside another. For example: 

#ifdef MACRO1

#ifdef MACRO2

print ("MACRO1 yes, MACRO2 yes\n");

#else

print ("MACRO1 yes, MACRO2 no\n");

#endif

#else

#ifdef MACRO2

print ("MACRO1 no, MACRO2 yes\n");



#else

print ("MACRO1 no, MACRO2 no\n");

#endif

#endif

You also can put an #if-#else-#endif construct or an #ifndef-#else-#endif construct 
inside an #ifdef-#else-#endif construct, or vice versa. The only restriction is that the 
inner construct must be completely contained in one part of the outer construct. 

Including Other Files Using #include

Another preprocessor command that is quite useful is the #include command. This 
command tells the C preprocessor to include the contents of the specified file as part of 
the program. 

The syntax for the #include command is 

#include filename

filename is the name of the file to be included. 

For example, the following command includes the contents of myincfile.h as part of 
the program: 

#include <myincfile.h>

When an #include statement is found in a Perl program, the C preprocessor searches for 
the file in the current directory and the /usr/local/lib/perl directory. (The -I option, 
described in the following section, enables you to search in other directories.) To 
instruct the C preprocessor to search only the current directory, enclose the filename 
in double quotation marks rather than angle brackets. 

#include "myincfile.h"

This command limits the search for myincfile.h to the current directory. 

You can specify an entire pathname in an #include statement, as in the following 
example: 

#include "/u/dave/myincfile.h"



This command retrieves the contents of /u/dave/myincfile.h and adds them to the 
program.

NOTE

Perl also enables you to include other files as part of a 
program using the require statement. For more 
information on require, refer to 
Day 19, "Object-Oriented Programming in Perl.

The -I Option: Searching for C Include Files

You use the -I option with the -P option. It enables you to specify where to look for 
include files to be processed by the C preprocessor. For example: 

perl -P -I /u/dave/myincdir testfile

This command tells the Perl interpreter to search the directory /u/dave/myincdir for 
include files (as well as the default directories). 

To specify multiple directories to search, repeat the -I option: 

perl -P -I /u/dave/dir1 -I /u/dave/dir2 testfile

This command searches in both /u/dave/dir1 and /u/dave/dir2. 

NOTE

The directories specified in the -I option also are added 
to the system variable @INC. This technique ensures that 
the require function can search in the same directories 
as the C preprocessor. 

For more information on @INC, refer to Day 17, "System 
Variables." For more information on require, refer to 
Day 19 

The -n Option: Operating on Multiple Files



One of the most common tasks in Perl programs and in UNIX commands is to read the 
contents of several input files one line at a time and process each input line as it is read. 
In these programs and commands, the names of the input files are supplied on the 
command line. A simple example is the UNIX command cat: 

$ cat file1 file2 file3 ...

This command reads one line of input at a time and writes it to the standard output file. 

In Perl, one way to read the contents of several input files, one line at a time, is to 
enclose the <> operator in a while loop: 

while ($line = <>) {

        # process $line in here

}

Another method is to specify the -n option. This option takes your program and executes 
it once for each line of input in each of the files specified on the command line. 

Listing 16.3 is a simple example of a program that uses the -n option. It puts asterisks 
around each input line and then prints it.

 

Listing 16.3. A simple program that uses the -n option.

1:  #!/usr/local/bin/perl -n

2:  

3:  # input line is stored in the system variable $_

4:  $line = $_;

5:  chop ($line);

6:  printf ("* %-52s *\n", $line);



 

$ program16_3

* This test file has only one line in it.              *

$

 The -n option encloses the program shown here in an invisible while loop. 
Each time the program is executed, the next line of input from one of the input files is 
read and is stored in the system variable $_. Line 4 takes this line and copies it into 
another scalar variable, $line; line 5 then removes the last character-the trailing 
newline character-from this line. 

Line 6 uses printf to write the input line to the standard output file. Because printf is 
formatting the input, the asterisks all appear in the same columns (column 1 and column 
56) on your screen.

NOTE

The previous program is equivalent to the following 
Perl program (which does not use the -n option): 

#!/usr/local/bin/perl
while (< >) {
# input line is stored in the system variable $_
$line = $_;
chop ($line);
printf ("* %-72s *\n", $line);

} 

The -n and -e options work well together. For example, the following command is 
equivalent to the cat command: 

$ perl -n -e "print $_;" file1 file2 file3

The print $_; argument supplied with the -e option is a one-line Perl program. Because 
the -n option executes the program once for each input line and reads each input line 
into the system variable $_, the statement 

print $_;



prints each input line in turn, which is exactly what the cat command does. (Note that 
the parentheses that normally enclose the argument passed to print have been omitted 
in this case.) 

The previous command can be made even simpler: 

$ perl -n -e "print" file1 file2 file3

By default, if no argument is supplied, print assumes that it is to print the contents of 
$_. And, if the program consists of a single statement, there is no need to include the 
closing semicolon. 

The pattern matching and substitution operators also operate on $_ by default. For 
example, the following statement examines the contents of $_ and searches for a digit: 

$found = /[0-9]/;

This default behavior makes it easy to include a search or a substitution in a single-line 
command. For example: 

$ perl -n -e "print if /[0-9]/" file1 file2 file3

This command reads each line of the files file1, file2, and file3. If an input line 
contains a digit, it is printed. 

NOTE

Several other functions use $_ as the default scalar 
variable to operate on, which makes those functions 
ideal for use with the -n and -e options. A full list of 
these functions is provided in the description of the $_ 
system variable, which is contained in Day 17 

The -p Option: Operating on Files and Printing

The -p option is similar to the -n option: it reads each line of its input files in turn. 
However, the -p option also prints each line it reads. 

This means, for example, that you can simulate the behavior of the UNIX cat command 
with the following command: 



$ perl -p -e ";" file1 file2 file3

Here, the ; is a Perl program consisting of one statement that does nothing. 

The -p option is designed for use with the -i option, described in the following section.

NOTE

If both the -p and the -n options are specified, the -n 
option is ignored 

The -i Option: Editing Files

As you have seen, the -n and -p options read lines from the files specified on the 
command line. The -i option, when used with the -p option, takes the input lines being 
read and writes them back out to the files from which they came. This process enables 
you to edit files using commands similar to those used in the UNIX sed command. 

For example, consider the following command: 

$ perl -p -i -e "s/abc/def/g;" file1 file2 file3

This command contains a one-line Perl program that examines the scalar variable $_ and 
changes all occurrences of abc into def. (Recall that the substitution operator 
operates on $_ if the =~ operator is not specified.) The -p option ensures that $_ is 
assigned each line of each input file in turn and that the program is executed once for 
each input line. Thus, this command changes all occurrences of abc in the files file1, 
file2, and file3 to def.



Do not use the -i option with the -n option unless you 
know what you're doing. The following command also 
changes all occurrences of abc to def, but it doesn't 
write out the input lines after it changes them: 

$ perl -n -i -e "s/abc/def/g;" file1 file2 file3 

Because the -i option specifies that the input files are to 
be edited, the result is that the contents of file1, file2, 
and file3 are completely destroyed 

The -i option also works on programs that do not use the -p option but do contain the 
<> operator inside a loop. For example, consider the following command: 

$ perl -i file1 file2 file3

In this case, the Perl interpreter copies the first file, file1, to a temporary file and 
opens the temporary file for reading. Then, it opens file1 for writing and sets the 
default output file (the file used by calls to print, write, and printf) to be file1. 

After the program finishes reading the temporary file to which file1 was copied, it then 
copies file2 to a temporary file, opens it for reading, opens file2 for writing, and sets 
the default output file to be file2. This process continues until the program runs out of 
input files. 

Listing 16.4 is a simple example of a program that edits using the -i option and the < > 
operator. This program evaluates any arithmetic expressions (containing integers) it sees 
on a single line and replaces them with their results. 

 

Listing 16.4. A program that edits files using the -i option.

1:  #!/usr/local/bin/perl -i

2:  

3:  while ($line = <>) {

4:          while ($line =~

5:                  s#\d+\s*[*+-/]\s*\d+(\s*[*+-/]\s*\d+)*#<x>#) {



6:                  eval ("\$result = $&;");

7:                  $line =~ s/<x>/$result/;

8:          }

9:          print ($line);

10: }

 

This program produces no output because output is written to the files specified on the 
command line. 

 The <> operator at the beginning of the while loop (line 3) reads a line at a 
time from the input file or files. Each line is searched using the pattern shown in line 5. 
This pattern matches any substring containing the following elements (in the order 
given): 

1.  One or more digits 
2.  Zero or more spaces 
3.  An *, +, -, or / character 
4.  Zero or more spaces 
5.  One or more digits 
6.  Zero or more of the preceding four subpatterns (which matches the last part of 

expressions such as 4 + 7 - 3) 

This pattern is replaced by a placeholder substring, <x>. 

Lines 6 and 7 are executed once for each pattern matched in the input line. The matched 
pattern, an arithmetic expression, is automatically stored in the system variable $&; line 
6 substitutes this expression into a character string and passes this character string to 
the function eval. The call to eval creates a subprogram that evaluates the expression 
and returns the result in the scalar variable $result. Line 7 replaces the placeholder, 
<x>, with the result returned in $result. 

When all the arithmetic expressions have been evaluated and substituted for, the inner 
while loop terminates, and line 9 calls print. Because the -i option has been set, the 
line is written back to the original input file from which it came.



NOTE

Even though you do not know the name of the file 
variable that represents the file being edited, you can 
still set the default output 
file variable to some other file and change it back later.

To perform this task, recall that the select function 
returns the file variable associated with the current 
default file: 

$editfile = select (MYFILE); # change default file
# do your write operations here

select ($editfile); # change default file back 

After the second select call has been performed, the 
default output file is, once again, the file being edited 

Backing Up Input Files Using the -i Option

By default, the -i option overwrites the existing input files. If you wish, you can save a 
copy of the original input file or files before overwriting them. To do this, specify a file 
extension with the -i option: 

$ perl -i .old file1 file2 file3

Here, the .old file extension specified with the -i option tells the Perl interpreter to 
copy file1 to file1.old before overwriting it. Similarly, the interpreter copies file2 to 
file2.old, and file3 to file3.old. 

The file extension specified with the -i option can be any character string. By 
convention, file extensions usually begin with a period; this convention makes it easier 
for you to spot them when you list the files in your directory.

TIP

If you are using the -i option with a program you are not 
familiar with, it is a good idea to specify a file extension. 
Doing so ensures that your files are not damaged if the 
program does not work the way you expect 

The -a Option: Splitting Lines



The -a option is used with the -n or -p option. If the -a option is set, each input line that 
is read is automatically split into a list of "words" (sequences of characters that are 
not white space); this list of words is stored in a special system array variable named @F. 

For example, if your input file contains the line 

This    is    a   test.

and if a program that is called with the -a option reads this line, the array @F contains 
the list 

("This", "is", "a", "test.")

The -a option is useful for extracting information from files. Suppose that your input 
files contain records of the form 

company_name      quantity_ordered     total_cost

such as, for example, 

JOHN H. SMITH    10      47.32

Listing 16.5 shows how you can use the -a option to easily produce a program that 
extracts the quantity and total cost fields from these files.

 

Listing 16.5. An example of the -a option.

1:  #!/usr/local/bin/perl

2:  

3:  # This program is called with the -a and -n options.

4:  while ($F[0] =~ /[^\d.]/) {

5:          shift (@F);

6:          next if (!defined($F[0]));



7:  }

8:  print ("$F[0] $F[1]\n");

 

$ perl -a -n program16_5

10 47.32

106 11.54

$

 Because the program is called with the -a option, the array variable @F 
contains a list, each element of which is a word from the current input line. 

Because the company name in the input file might consist of more than one word (such as 
JOHN H. SMITH), the while loop in lines 4-7 is needed to get rid of everything that isn't a 
quantity field or a total cost field. After these fields have been eliminated, line 8 can 
print the useful fields. 

Note that this program just skips over any nonstandard input lines. 

The -F Option: Specifying the Split Pattern

The -F option, defined only in Perl 5, is designed to be used in conjunction with the -a 
option, and specifies the pattern to use when you split input lines into words. For 
example, suppose Listing 16.5 is called as follows: 

$ perl -a -n -F:: program16_5

In this case, the words in the input file are assumed to be separated by a pair of colons, 
which means that the program is expecting to read lines such as the following: 

JOHN H. SMITH::10::47.32

NOTE



The -F option ignores opening and closing slashes if they 
are present because it interprets them as pattern 
delimiters. This means that the following program 
invocations are identical: 

$ perl -a -n -F:: program16_5

$ perl -a -n -F/::/ program16_ 

The -0 Option: Specifying Input End-of-Line

In all the programs you have seen so far, when the Perl interpreter reads a line from an 
input file or from the keyboard, it reads until it sees a newline character. You can tell 
Perl that you want the "end-of-line" input character to be something other than the 
newline character by specifying the -0 option. (The 0 here is the digit zero, not the 
letter O.) 

With the -0 option, you specify which character is to be the end-of-line character for 
your input file by providing its ASCII representation in base 8 (octal). For example, the 
command 

$ perl -0 040 prog1 infile

calls the Perl program named prog1 and specifies that it is to use the space character 
(ASCII 32, or 40 octal) as the end-of-line character when it reads the input file infile 
(or any other input file). 

This means, for example, that if this program reads an input file containing the 
following: 

Test input.

Here's another line.

it will read a total of four input lines: 

●     The first input line consists of the word Test. 
●     The second input line consists of input., followed by a newline character, 

followed by Here's. 
●     The third input line consists of the word another. 
●     The fourth input line consists of the word line., followed by a newline 

character. 



The -0 option provides a quick way to read an input file one word at a time, assuming 
that each line ends with at least one blank character. (If it doesn't, you can quickly 
write a Perl program that uses the -i and -p options to add a space to the end of each 
line in each file.) Listing 16.6 is an example of a program that uses -0 to read an input 
file one word at a time.

 

Listing 16.6. A program that uses the -0 option.

1:  #!/usr/local/bin/perl -0040

2:  

3:  while ($line = <>) {

4:          $line =~ s/\n//g;

5:          next if ($line eq "");

6:          print ("$line\n");

7:  }

 

$ program16_6 file1

This

line

contains

five

words.

$

 The header comment (line 1) specifies that the -0 option is to be used and that 
the space character is to become the end-of-line character. (Recall that you do not 
need a space between an option and the value associated with an option.) This means 



that line 3 reads from the input file until it sees a blank space. 

Not everything read by line 3 is a word, of course. There are two types of lines that are 
not particularly useful that the program must check for: 

●     Empty lines, which are generated when the input file contains two consecutive 
spaces 

●     Lines containing the newline character (remember, the newline character is no 
longer an end-of-line character, so now it actually appears in input lines) 

Line 4 checks whether any newline characters are contained in the current input line. 
The substitution in this line is a global substitution, because an input line can contain 
two or more newline characters. (This occurs when an input file contains a blank line.) 

After all the newline characters have been eliminated, line 5 checks whether the 
resulting input line is empty. If it is, the program continues with the next input line. If 
the resulting input line is not empty, the input line must be a useful word, and line 6 
prints it.

NOTE

If you specify the value 00 (octal zero) with the -0 
option, the Perl interpreter reads until it sees two 
newline characters. This enables you to read an entire 
paragraph at a time. 

If you specify no value with the -0 option, the null 
character (ASCII 0) is assumed 

The -l Option: Specifying Output End-of-Line

The -l option enables you to specify an output end-of-line character for use in print 
statements. 

Like the -0 option, the -l option accepts a base-8 (octal) integer that indicates the ASCII 
representation of the character you want to use. 

When the -l option is specified, the Perl interpreter does two things: 

●     If the -n or -p option is specified, each input line read in from the standard input 
file has its last character (the line terminator) removed. (The Perl interpreter 
takes this action because it assumes that you want to replace the old end-of-line 
character with the one specified by the -l option.) 



●     When you call the print function, the output written by print will be 
immediately followed by the character specified by the -l option. 

If you do not specify a value with the -l option, the Perl interpreter uses the character 
specified by the -0 option, if it is defined. If -0 has not been specified, the end-of-line 
character is defined to be the newline character. 

If you are using both the -l and the -0 option and you do 
not provide a value with the -l option, the order of the 
options becomes significant because the options are 
processed from left to right. 

If the -l option appears first, the output end-of-line 
character is set to the newline character. If the -0 
option appears first, the output end-of-line character 
(set by -l) becomes the same as the input end-of-line 
character (set by -0) 

Listing 16.7 is a simple example of a program that uses -l. 

 

Listing 16.7. A program that uses the -l option.

1:  #!/usr/local/bin/perl -l014

2:  

3:  print ("Hello!");

4:  print ("This is a very simple test program!");

 

$ program16_7



Hello!

      This is a very simple test program!

$

 The -l014 option in the header comment in line 1 sets the output line 
character to the newline character. This means that every print statement in the 
program will have a newline character added to it. As a consequence, the output from 
lines 3 and 4 appear on separate lines.

NOTE

You can control the input and output end-of-line 
characters also by using the system variables $/ and $\. 
For a description of these system variables, refer to Day 
17 

The -x Option: Extracting a Program from a Message

The -x option enables you to process a Perl program that appears in the middle of a file 
(such as a file containing an electronic mail message, which usually contains some mail 
routing information). When the -x option is specified, the Perl interpreter ignores every 
line in the program until it sees a header comment (a comment beginning with the #! 
characters). 

If you are using Perl 5, the header comment must also 
contain the word "perl.

After the Perl interpreter sees the header comment, it then processes the program as 
usual until one of the following three conditions occurs: 

●     The bottom of the program file is reached. 
●     The program file contains a line consisting of just the Ctrl+D or Ctrl+Z 

character. 
●     The program file contains a line consisting of the following statement (by itself): 

_ _END_ _



If the Perl interpreter reads one of the end-of-program lines (the second and third 
conditions listed previously), it ignores everything appearing after that line in the file. 

Listing 16.8 is a simple example of a program that works if run with the -x option.

 

Listing 16.8. A Perl program contained in a file.

1:  Here is a Perl program that appears in the middle

2:  of a file.

3:  The stuff up here is junk, and the Perl interpreter

4:  will ignore it.

5:  The next line is the start of the actual program.

6:  #!/usr/local/bin/perl

7:  

8:  print ("Hello, world!\n");

9:  _ _END_ _

10: This line is also ignored, because it is not part

11: of the program.

 

$ program16_8

Hello, world!

$

 If this program is started with the -x option, the Perl interpreter skips over 
everything until it sees line 6. (Needless to say, if you try to run this program without 



specifying the -x option, the Perl interpreter will complain.) Line 8 then prints the 
message Hello, world. 

Line 9 is the special end-of-program line. When the Perl interpreter sees this line, it skips 
the rest of the program.

NOTE

Of course, you can't specify the -x option in the header 
comment itself because the Perl interpreter has to know 
in advance that the program contains lines that must be 
skipped 

Miscellaneous Options

The following sections describe some of the more exotic options you can pass to the Perl 
interpreter. You are not likely to need any of these options unless you are doing 
something unusual (and you really know what you are doing). 

The -u Option 

The -u option tells the Perl interpreter to generate a core dump file. This file can then 
be examined and manipulated. 

The -U Option 

The -U option tells the Perl interpreter to enable you to perform "unsafe" operations in 
your program. (Basically, you'll know that an operation is considered unsafe when the 
Perl interpreter doesn't let you perform it without specifying the -U option!) 

The -S Option 

The -S option tells the Perl interpreter that your program might be contained in any of 
the directories specified by your PATH environment variable. The Perl interpreter checks 
each of these directories in turn, in the order in which they are specified, to see whether 
your program is located there. (This is the normal behavior of the shell for commands in 
the UNIX environment.) 

NOTE



You need to use -S only if you are running your Perl 
program using the perl command, as in 

$ perl myprog 

If you are running the program using a command such as

$ myprog 

your shell (normally) treats it like any other command 
and searches the directories specified in your PATH 
environment variable even if you don't specify the -S 
option 

The -D Option 

The -D option sets the Perl interpreter's internal debugging flags. This option is specified 
with an integer value (for example, -D 256). 

For details on this option, refer to the online manual page for Perl.

NOTE

The internal debugging flags specified by -D have 
nothing to do with the Perl debugger, which is specified 
by the -d option. 

The debugging flags specified by -D provide information 
on how Perl itself works, not on how your program 
works 

The -T Option: Writing Secure Programs

The -T option specifies that data obtained from the outside world cannot be used in any 
command that modifies your file system. This feature enables you to write secure 
programs for system administration tasks. 

This option is only available in Perl 5. If you are running Perl 4, use a special version of 
Perl named taintperl. For details on taintperl, see the online documentation supplied 
with your Perl distribution. 



The -d Option: Using the Perl Debugger

One final option that is quite useful is -d. This option tells the Perl interpreter to run 
your program using the Perl debugger. For a complete description of the Perl debugger 
and how to use it, refer to Day 21, "The Perl Debugger." 

NOTE

If you are specifying the -d option, you still can use 
other options 

Summary

Today you learned how to specify options when you run your Perl programs. An option is 
a dash followed by a single letter, and optionally followed by a value to be associated 
with the option. Options lacking associated values can be grouped together. 

You can specify options in two ways: on the command line and in the header comment. 
Only one option or group of options can be supplied in the header comment. 

Available options include those that list the Perl version number, check your syntax, 
display warnings, allow single-line programs on the command line, invoke the C 
preprocessor, automatically read from the input files, and edit files in place. 

Q&A

Q: Why can you specify only one option in the header comment? 

A: This is a restriction imposed by the UNIX operating system. 

Q: Why does v display the Perl version number without running the program? 

A: This option enables you to check whether the version of Perl you are running is 
capable of running your program. If an old copy of Perl is running on your 
machine, your program might not work properly. 

Q: What options enable me to write a program that edits every line of a file? 

A: Use the -i (edit in place) and -p (print each line) options. (These options are often 
used with the -e option to perform an editing command similar to those used by 
the UNIX sed command.) 

Q: I have a program that needs to run on two or more different machines. Is 
there a way of writing the program that ensures that I don't have to 
change the program each time I change machines? 



A: Here's how to carry out this task: 

1.  On each machine, define a file that is to be used to store system-dependent 
constants. Give the file the same name on each machine. For example, you 
could call the file perldef.h. The location of the file doesn't matter as 
long as it's a different directory name on each type of machine. 

2.  In each perldef.h, use #define to define one constant for each type of 
machine you run. For example, if you are running this program on UNIX 
4.3BSD and System V machines, you could define constants named M_BSD 
and M_SYSV. 

3.  After you have defined the constants, set the value of each constant to 0, 
except for the one corresponding to the machine on which you are 
running. For example, on your 4.3BSD machines, set M_BSD to 1, and set all 
the other constants to 0. 

4.  Add the following statement to your program:
#include <perldef.h> 

5.  In your program, use #if and #endif to enclose any system-dependent 
information. For example, if a group of statements is to be executed only 
on 4.3BSD machines, enclose the statements with the statements
#if BSD

#endif 
6.  When you run your program, use the -P option to specify C preprocessing, 

and use the -I option to tell the Perl interpreter to search for the 
directory corresponding to the perldef.h file for this machine. For 
example, if you are running your program on a 4.3BSD machine and the 
perldef.h file for 4.3BSD machines is in the /usr/local/include/bsdperl 
directory, include the following option when you start your program:
-I /usr/local/include/bsdperl 

Q: Why does the -p option override the -n option? 

A: The -p option tells the Perl interpreter that you want to print each input line 
that you read, and the -n option tells it that you don't want to do so. These 
options basically contradict one another. -p overrides -n because -p is safer; if 
you really want -n, you can throw away the output from -p. If you really want -
p and get -n, you won't get the output you want. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz



1.  What do the following options do?
a.    -0
b.    -s
c.    -w
d.    -x

e.    -n 
2.  What happens when -l and -0 are both specified, and

a.    -l appears first?
b.    -0 appears first? 

3.  Why do the -i and -n options destroy input files when included together? 
4.  How does the C preprocessor distinguish between preprocessor commands and Perl 

comments? 
5.  How does the Perl interpreter distinguish options for the interpreter from options 

for the program itself? 

Exercises

1.  Write a program that replaces all the newline characters in the file testfile 
with colons. Use only command-line options to do this. 

2.  Write a one-line program that prints only the lines containing the word the. 
3.  Write a one-line program that prints the second word of each input line. 
4.  Write a program that prints Hello! if you pass the -H switch to it and that prints 

Goodbye! if you pass the -G switch. 
5.  Write a one-line program that converts all lowercase letters to uppercase. 
6.  BUG BUSTER: What is wrong with this command line?

$ perl -i -n -e "s/abc/def/g"; 
7.  BUG BUSTER: What is wrong with this command line?

$ perl -ipe "s/abc/def/g"; 

    



Chapter 17

System Variables

CONTENTS

●     Global Scalar Variables 
❍     The Default Scalar Variable: $_ 
❍     The Program Name: $0 
❍     The User ID: $< and $> 
❍     The Group ID: $( and $) 
❍     The Version Number: $] 
❍     The Input Line Separator: $/ 
❍     The Output Line Separator: $ 
❍     The Output Field Separator: $, 
❍     The Array Element Separator: $" 
❍     The Number Output Format: $# 
❍     The eval Error Message: $@ 
❍     The System Error Code: $? 
❍     The System Error Message: $! 
❍     The Current Line Number: $. 
❍     Multiline Matching: $* 
❍     The First Array Subscript: $[ 
❍     Multidimensional Associative Arrays and the $; Variable 
❍     The Word-Break Specifier: $: 
❍     The Perl Process ID: $$ 
❍     The Current Filename: $ARGV 
❍     The Write Accumulator: $^A 
❍     The Internal Debugging Value: $^D 
❍     The System File Flag: $^F 
❍     Controlling File Editing Using $^I 
❍     The Format Form-Feed Character: $^L 
❍     Controlling Debugging: $^P 
❍     The Program Start Time: $^T 
❍     Suppressing Warning Messages: $^W 
❍     The $^X Variable 

●     Pattern System Variables 
❍     Retrieving Matched Subpatterns 



❍     Retrieving the Entire Pattern: $& 
❍     Retrieving the Unmatched Text: the $` and $' Variables 
❍     The $+ Variable 

●     File System Variables 
❍     The Default Print Format: $~ 
❍     Specifying Page Length: $= 
❍     Lines Remaining on the Page: $- 
❍     The Page Header Print Format: $^ 
❍     Buffering Output: $| 
❍     The Current Page Number: $% 

●     Array System Variables 
❍     The @_ Variable 
❍     The @ARGV Variable 
❍     The @F Variable 
❍     The @INC Variable 
❍     The %INC Variable 
❍     The %ENV Variable 
❍     The %SIG Variable 

●     Built-In File Variables 
❍     STDIN, STDOUT, and STDERR 
❍     ARGV 
❍     DATA 
❍     The Underscore File Variable 

●     Specifying System Variable Names as Words 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson describes the built-in system variables that can be referenced from every 
Perl program. These system variables are divided into five groups: 

●     Global scalar variables 
●     Pattern system variables 
●     File system variables 
●     Array system variables 
●     Built-in file variables 

The following sections describe these groups of system variables, and also describe how 



to provide English-language equivalents of their variable names. 

Global Scalar Variables

The global scalar variables are built-in system variables that behave just like the scalar 
variables you create in the main body of your program. This means that these variables 
have the following properties: 

●     Each built-in global scalar variable stores only one scalar value. 
●     Only one copy of a global scalar variable is defined in a program. 

Other kinds of built-in scalar variables, which you will see later in this lesson, do not 
behave in this way. 

The following sections describe the global scalar variables your Perl programs can use. 

The Default Scalar Variable: $_ 

The most commonly used global scalar variable is the $_ variable. Many Perl functions 
and operators modify the contents of $_ if you do not explicitly specify the scalar 
variable on which they are to operate. 

The following functions and operators work with the $_ variable by default: 

●     The pattern-matching operator 
●     The substitution operator 
●     The translation operator 
●     The <> operator, if it appears in a while or for conditional expression 
●     The chop function 
●     The print function 
●     The study function 

The Pattern-Matching Operator and $_

Normally, the pattern-matching operator examines the value stored in the variable 
specified by a corresponding =~ or !~ operator. For example, the following statement 
prints hi if the string abc is contained in the value stored in $val: 

print ("hi") if ($val =~ /abc/);

By default, the pattern-matching operator examines the value stored in $_. This means 
that you can leave out the =~ operator if you are searching $_: 



print ("hi") if ($_ =~ /abc/);

print ("hi") if (/abc/);         # these two are the same

NOTE

If you want to use the !~ (true-if-pattern-not-matched) 
operator, you will always need to specify it explicitly, 
even if you are examining $_: 

print ("hi") if ($_ !~ /abc/); 

If the Perl interpreter sees just a pattern enclosed in / 
characters, it assumes the existence of a =~ operator 

$_ enables you to use pattern-sequence memory to extract subpatterns from a string and 
assign them to an array variable: 

$_ = "This string contains the number 25.11.";

@array = /-?(\d+)\.?(\d+)/;

In the second statement shown, each subpattern enclosed in parentheses becomes an 
element of the list assigned to @array. As a consequence, @array is assigned (25,11). 

In Perl 5, a statement such as 

@array = /-?(\d+)\.?(\d+)/;

also assigns the extracted subpatterns to the pattern-sequence scalar variables $1, $2, 
and so on. This means that the statement assigns 25 to $1 and 11 to $2. Perl 4 supports 
assignment of subpatterns to arrays, but does not assign the subpatterns to the pattern-
sequence variables. 

The Substitution Operator and $_

The substitution operator, like the pattern-matching operator, normally modifies the 
contents of the variable specified by the =~ or !~ operator. For example, the following 
statement searches for abc in the value stored in $val and replaces it with def: 



$val =~ s/abc/def/;

The substitution operator uses the $_ variable if you do not specify a variable using =~. 
For example, the following statement replaces the first occurrence of abc in $_ with 
def: 

s/abc/def/;

Similarly, the following statement replaces all white space (spaces, tabs, and newline 
characters) in $_ with a single space: 

/\s+/ /g;

When you substitute inside $_, the substitution operator returns the number of 
substitutions performed: 

$subcount = s/abc/def/g;

Here, $subcount contains the number of occurrences of abc that have been replaced by 
def. If abc is not contained in the value stored in $_, $subcount is assigned 0. 

The Translation Operator and $_

The behavior of the translation operator is similar to that of the pattern-matching and 
substitution operators: it normally operates on the variable specified by =~, and it 
operates on $_ if no =~ operator is included. For example, the following statement 
translates all lowercase letters in the value stored in $_ to their uppercase 
equivalents: 

tr/a-z/A-Z/;

Like the substitution operator, if the translation operator is working with $_, it returns 
the number of operations performed. For example: 

$conversions = tr/a-z/A-Z/;



Here, $conversions contains the number of lowercase letters converted to uppercase. 

You can use this feature of tr to count the number of occurrences of particular 
characters in a file. Listing 17.1 is an example of a program that performs this operation.

 

Listing 17.1. A program that counts using tr. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Specify the nonblank characters you want to count:\n");

4:  $countstring = <STDIN>;

5:  chop ($countstring);

6:  @chars = split (/\s*/, $countstring);

7:  while ($input = <>) {

8:          $_ = $input;

9:          foreach $char (@chars) {

10:                 eval ("\$count = tr/$char/$char/;");

11:                 $count{$char} += $count;

12:         }

13: }

14: foreach $char (sort (@chars)) {

15:         print ("$char appears $count{$char} times\n");

16: }

 

$ program17_1 file1



Specify the nonblank characters you want to count:

abc

a appears 8 times

c appears 3 times

b appears 2 times

$

 This program first asks the user for a line of input containing the characters 
to be counted. These characters can be separated by spaces or jammed into a single word. 

Line 5 takes the line of input containing the characters to be counted and removes the 
trailing newline character. Line 6 then splits the line of input into separate characters, 
each of which is stored in an element of the array @chars. The pattern /\s*/ splits on 
zero or more occurrences of a whitespace character; this splits on every nonblank 
character and skips over the blank characters. 

Line 7 reads a line of input from a file whose name is specified on the command line. Line 
8 takes this line and stores it in the system variable $_. (In most cases, system variables 
can be assigned to, just like other variables.) 

Lines 9-12 count the number of occurrences of each character in the input string read in 
line 4. Each character, in turn, is stored in $char, and the value of $char is substituted 
into the string in line 10. This string is then passed to eval, which executes the 
translate operation contained in the string. 

The translate operation doesn't actually do anything because it is "translating" a 
character to itself. However, it returns the number of translations performed, which 
means that it returns the number of occurrences of the character. This count is assigned 
to $count. 

For example, suppose that the variable $char contains the character e and that $_ 
contains Hi there!. In this case, the string in line 10 becomes the following because e is 
substituted for $char in the string: 

$count = tr/e/e/;

The call to eval executes this statement, which counts the number of e's in Hi there!. 
Because there are two e's in Hi there!, $count is assigned 2. 



An associative array, %count, keeps track of the number of occurrences of each of the 
characters being counted. Line 11 adds the count returned by line 10 to the associative 
array element whose subscript is the character currently being counted. For example, if 
the program is currently counting the number of e's, this number is added to the element 
$count{"e"}. 

After all input lines have been read and their characters counted, lines 14-16 print the 
total number of occurrences of each character by examining the elements of %count. 

The <> Operator and $_

In Listing 17.1, which you've just seen, the program reads a line of input into a scalar 
variable named $input and then assigns it to $_. There is a quicker way to carry out this 
task, however. You can replace 

while ($input = <>) {

        $_ = $input;

        # more stuff here

}

with the following code: 

while (<>) {

        # more stuff here

}

If the <> operator appears in a conditional expression that is part of a loop (an expression 
that is part of a conditional statement such as while or for) and it is not to the right of 
an assignment operator, the Perl interpreter automatically assigns the resulting input 
line to the scalar variable $_. 

For example, Listing 17.2 shows a simple way to print the first character of every input 
line read from the standard input file. 

 

Listing 17.2. A simple program that assigns to $_ using <STDIN>. 



1:  #!/usr/local/bin/perl

2:  

3:  while (<STDIN>) {

4:          ($first) = split (//, $_);

5:          print ("$first\n");

6:  }

 

$ program17_2

This is a test.

T

Here is another line.

H

^D

$

 Because <STDIN> is inside a conditional expression and is not assigned to a 
scalar variable, the Perl interpreter assigns the input line to $_. The program then 
retrieves the first character by passing $_ to split.

NOTE



The <> operator assigns to $_ only if it is contained in a 
conditional expression in a loop. The statement 

<STDIN>; 

reads a line of input from the standard input file and 
throws it away without changing the contents of $_. 
Similarly, the following statement does not change the 
value of $_: 

if (<>) {
print ("The input files are not all empty.\n");

} 

The chop Function and $_

By default, the chop function operates on the value stored in the $_ variable. For 
example: 

while (<>) {

        chop;

        # you can do things with $_ here

}

Here, the call to chop removes the last character from the value stored in $_. Because 
the conditional expression in the while statement has just assigned a line of input to $_, 
chop gets rid of the newline character that terminates each input line. 

The print Function and $_

The print function also operates on $_ by default. The following statement writes the 
contents of $_ to the standard output file: 

print;

Listing 17.3 is an example of a program that simply writes out its input, which it assumes 
is stored in $_. This program is an implementation of the UNIX cat command, which reads 
input files and displays their contents.



 

Listing 17.3. A simple version of the cat command using $_. 

1:  #!/usr/local/bin/perl

2:  

3:  print while (<>);

 

$ program17_3 file1

This is the only line in file "file1".

$

 This program uses the <> operator to read a line of input at a time and store it 
in $_. If the line is nonempty, the print function is called; because no variable is 
specified with print, it writes out the contents of $_.

NOTE

You can use this default version of print only if you are 
writing to the default output file (which is usually 
STDOUT but can be changed using the select function). If 
you are specifying a file variable when you call print, 
you also must specify the value you are printing. 

For example, to send the contents of $_ to the output 
file MYFILE, use the following command: 

print MYFILE ($_) 

The study Function and $_



If you do not specify a variable when you call study, this function uses $_ by default: 

study;

The study function increases the efficiency of programs that repeatedly search the same 
variable. It is described on Day 13, "Process, String, and Mathematical Functions." 

Benefits of the $_ Variable

The default behavior of the functions listed previously is useful to remember when you 
are writing one-line Perl programs for use with the -e option. For example, the 
following command is a quick way to display the contents of the files file1, file2, and 
file3: 

$ perl -e "print while <>;" file1 file2 file3

Similarly, the following command changes all occurrences of abc in file1, file2, and 
file3 to def: 

$ perl -ipe "s/abc/def/g" file1 file2 file3

TIP

Although $_ is useful in cases such as the preceding one, 
don't overuse it. Many Perl programmers write programs 
that have references to $_ running like an invisible 
thread through their programs. 

Programs that overuse $_ are hard to read and are easier 
to break than programs that explicitly reference scalar 
variables you have named yourself 

The Program Name: $0

The $0 variable contains the name of the program you are running. For example, if your 
program is named perl1, the statement 



print ("Now executing $0...\n");

displays the following on your screen: 

Now executing perl1...

The $0 variable is useful if you are writing programs that call other programs. If an 
error occurs, you can determine which program detected the error: 

die ("$0: can't open input file\n");

Here, including $0 in the string passed to die enables you to specify the filename in your 
error message. (Of course, you can always leave off the trailing newline, which tells 
Perl to print the filename and the line number when printing the error message. 
However, $0 enables you to print the filename without the line number, if that's what 
you want.)

NOTE

You can change your program name while it is running 
by modifying the value stored in $0 

The User ID: $< and $>

The $< and $> variables contain, respectively, the real user ID and effective user ID for 
the program. The real user ID is the ID under which the user of the program logged in. 
The effective user ID is the ID associated with this particular program (which is not 
always the same as the real user ID).

NOTE

If you are not running your Perl program on the UNIX 
operating system, the $< and $> variables might have no 
meaning. Consult your local documentation for more 
details 

Listing 17.4 uses the real user ID to determine the user name of the person running the 
program.



 

Listing 17.4. A program that uses the $< variable.

1:  #!/usr/local/bin/perl

2:  

3:  ($username) = getpwuid($<);

4:  print ("Hello, $username!\n");

 

$ program17_4

Hello, dave!

$

 The $< variable contains the real user ID, which is the login ID of the person 
running this program. Line 3 passes this user ID to getpwuid, which retrieves the 
password file entry corresponding to this user ID. The user name is the first element in 
this password file, and it is stored in the scalar variable $username. Line 4 then prints 
this user name.

NOTE

On certain UNIX machines, you can assign $< to $> (set 
the effective user ID to be the real user ID) or vice 
versa. If you have superuser privileges, you can set $< or 
$> to any defined user ID 

The Group ID: $( and $)

The $( and $) variables define the real group ID and the effective group ID for this 
program. The real group ID is the group to which the real user ID (stored in the variable 



$<) belongs; the effective group ID is the group to which the effective user ID (stored in 
the variable $>) belongs. 

If your system enables users to be in more than one group at a time, $( and $) contain a 
list of group IDs, with each pair of group IDs being separated by spaces. You can convert 
this into an array by calling split. 

Normally, you can only assign $( to $), and vice versa. If you are the superuser, you can 
set $( or $) to any defined group ID.

NOTE

$( and $) might not have any useful meaning if you are 
running Perl on a machine running an operating system 
other than UNIX 

The Version Number: $]

The $] system variable contains the current version number. You can use this variable 
to ensure that the Perl on which you are running this program is the right version of 
Perl (or is a version that can run your program). 

Normally, $] contains a character string similar to this: 

$RCSfile: perl.c,v $$Revision: 4.0.1.8 $$Date: 1993/02/05 19:39:30 $

Patch level: 36

The useful parts of this string are the revision number and the patch level. The first 
part of the revision number indicates that this is version 4 of Perl. The version number 
and the patch level are often combined; in this notation, this is version 4.036 of Perl. 

You can use the pattern-matching operator to extract the useful information from $]. 
Listing 17.5 shows one way to do it.

 

Listing 17.5. A program that extracts information from the $] variable.



1:  #!/usr/local/bin/perl

2:  

3:  $] =~ /Revision: ([0-9.]+)/;

4:  $revision = $1;

5:  $] =~ /Patch level: ([0-9]+)/;

6:  $patchlevel = $1;

7:  print ("revision $revision, patch level $patchlevel\n");

 

$ program17_5

revision 4.0.1.8, patch level 36

$

 This program just extracts the revision and patch level from $] using the 
pattern-matching operator. The built-in system variable $1, described later today, is 
defined when a pattern is matched. It contains the substring that appears in the first 
subpattern enclosed in parentheses. In line 3, the first subpattern enclosed in 
parentheses is [0-9.]+. This subpattern matches one or more digits mixed with decimal 
points, and so it matches 4.0.1.8. This means that 4.0.1.8 is assigned to $1 by line 3 and 
is assigned to $revision by line 4. 

Similarly, line 5 assigns 36 to $1 (because the subpattern [0-9]+, which matches one or 
more digits, is the first subpattern enclosed in parentheses). Line 6 then assigns 36 to 
$patchlevel.



On some machines, the value contained in $] might be 
completely different from the value used in this 
example. If you are not sure whether $] has a useful 
value, write a little program that just prints $]. If this 
program prints something useful, you'll know that you 
can run programs that compare $] with an expected 
value 

The Input Line Separator: $/ 

When the Perl interpreter is told to read a line of input from a file, it usually reads 
characters until it reads a newline character. The newline character can be thought 
of as an input line separator; it indicates the end of a particular line. 

The system variable $/ contains the current input line separator. To change the input 
line separator, change the value of $/. The $/ variable can be more than one character 
long to handle the case in which lines are separated by more than one character. If you 
set $/ to the null character, the Perl interpreter assumes that the input line separator 
is two newline characters. 

Listing 17.6 shows how changing $/ can affect your program. 

 

Listing 17.6. A program that changes the value of $/. 

1:  #!/usr/local/bin/perl

2:  

3:  $/ = ":";

4:  $line = <STDIN>;

5:  print ("$line\n");

 



$ program17_6

Here is some test input: here is the end.

Here is some test input:

$

 Line 3 sets the value of $/ to a colon. This means that when line 4 reads from 
the standard input file, it reads until it sees a colon. As a consequence, $line contains 
the following character string: 

Here is some test input:

Note that the colon is included as part of the input line (just as, in the normal case, the 
trailing newline character is included as part of the line).

The -0 (zero, not the letter O) switch sets the value of 
$/. If you change the value of $/ in your program, the 
value specified by -0 will be thrown away. 

To temporarily change the value of $/ and then restore 
it to the value specified by -0, save the current value of 
$/ in another variable before changing it. 

For more information on -0, refer to Day 16, "Command-
Line Options. 

The Output Line Separator: $ 

The system variable $\ contains the current output line separator. This is a character 
or sequence of characters that is automatically printed after every call to print. 

By default, $\ is the null character, which indicates that no output line separator is to 
be printed. Listing 17.7 shows how you can set an output line separator.



 

Listing 17.7. A program that uses the $\ variable.

1:  #!/usr/local/bin/perl

2:  

3:  $\ = "\n";

4:  print ("Here is one line.");

5:  print ("Here is another line.");

 

$ program17_7

Here is one line.

Here is another line.

$

 Line 3 sets the output line separator to the newline character. This means 
that a list passed to a subsequent print statement always appears on its own output 
line. Lines 4 and 5 now no longer need to include a newline character as the last 
character in the line.

The -l option sets the value of $\. If you change $\ in 
your program without saving it first, the value supplied 
with -l will be lost. See Day 16 for more information on 
the -l option 



The Output Field Separator: $, 

The $, variable contains the character or sequence of characters to be printed between 
elements when print is called. For example, in the following statement the Perl 
interpreter first writes the contents of $a: 

print ($a, $b);

It then writes the contents of $, and then finally, the contents of $b. 

Normally, the $, variable is initialized to the null character, which means that the 
elements of a print statement are printed next to one another. Listing 17.8 is a program 
that sets $, before calling print.

 

Listing 17.8. A program that uses the $, variable.

1:  #!/usr/local/bin/perl

2:  

3:  $a = "hello";

4:  $b = "there";

5:  $, = " ";

6:  $\ = "\n";

7:  print ($a, $b);

 

$ program17_8

hello there

$



 Line 5 sets the value of $, to a space. Consequently, line 7 prints a space after 
printing $a and before printing $b. 

Note that $\, the default output separator, is set to the newline character. This setting 
ensures that the terminating newline character immediately follows $b. By contrast, 
the following statement prints a space before printing the trailing newline character: 

print ($a, $b, "\n");

NOTE

Here's another way to print the newline immediately 
after the final element that doesn't involve setting $\: 

print ($a, $b . "\n"); 

Here, the trailing newline character is part of the 
second element being printed. Because $b and \n are part 
of the same element, no space is printed between them 

The Array Element Separator: $" 

Normally, if an array is printed inside a string, the elements of the array are separated 
by a single space. For example: 

@array = ("This", "is", "a", "list");

print ("@array\n");

Here, the print statement prints 

This is a list

A space is printed between each pair of array elements. 

The built-in system variable that controls this situation is the $" variable. By default, 



$" contains a space. Listing 17.9 shows how you can control your array output by 
changing the value of $".

 

Listing 17.9. A program that uses the $" variable.

1:  #!/usr/local/bin/perl

2:  

3:  $" = "::";

4:  @array = ("This", "is", "a", "list");

5:  print ("@array\n");

 

$ program17_9

This::is::a::list

$

 Line 3 sets the array element separator to :: (two colons). Array element 
separators, like other separators you can define, can be more than one character long. 

Line 5 prints the contents of @array. Each pair of elements is separated by the value 
stored in $", which is two colons.

NOTE



The $" variable affects only entire arrays printed inside 
strings. If you print two variables together in a string, 
as in 

print ("$a$b\n"); 

the contents of the two variables are printed with 
nothing separating them regardless of the value of $". 

To change how arrays are printed outside strings, use $\, 
described earlier today 

The Number Output Format: $# 

By default, when the print function prints a number, it prints it as a 20-digit floating 
point number in compact format. This means that the following statements are identical 
if the value stored in $x is a number: 

print ($x);

printf ("%.20g", $x);

To change the default format that print uses to print numbers, change the value of the 
$# variable. For example, to specify only 15 digits of precision, use this statement: 

$# = "%.15g";

This value must be a floating-point field specifier, as used in printf and sprintf.

NOTE

The $# variable does not affect values that are not 
numbers and has no effect on the printf, write, and 
sprintf functions 

For more information on the field specifiers you can use as the default value in $#, see 
"Formatting Output Using printf" on Day 11, "Formatting Your Output." 

NOTE



The $# variable is deprecated in Perl 5. This means that 
although $# is supported, it is not recommended for use 
and might be removed from future versions of Perl 

The eval Error Message: $@

If a statement executed by the eval function contains an error, or an error occurs 
during the execution of the statement, the error message is stored in the system 
variable $@. The program that called eval can decide either to print the error message 
or to perform some other action. 

For example, the statement 

eval ("This is not a perl statement");

assigns the following string to $@: 

syntax error in file (eval) at line 1, next 2 tokens "This is"

The $@ variable also returns the error generated by a call to die inside an eval. The 
following statement assigns this string to $@: 

eval ("die (\"nothing happened\")");

nothing happened at (eval) line 1.

NOTE

The $@ variable also returns error messages generated 
by the require function. See Day 19, "Object-Oriented 
Programming in Perl," for more information on require 

The System Error Code: $?

The $? variable returns the error status generated by calls to the system function or 
by calls to functions enclosed in back quotes, as in the following: 



$username = 'hostname';

The error status stored in $? consists of two parts: 

●     The exit value (return code) of the process called by system or specified in back 
quotes 

●     A status field that indicates how the process was terminated, if it terminated 
abnormally 

The value stored in $? is a 16-bit integer. The upper eight bits are the exit value, and the 
lower eight bits are the status field. To retrieve the exit value, use the >> operator to 
shift the eight bits to the right: 

$retcode = $? >> 8;

For more information on the status field, refer to the online manual page for the wait 
function or to the file /usr/include/sys/wait.h. For more information on commands in 
back quotes, refer to Day 20, "Miscellaneous Features of Perl." 

The System Error Message: $! 

Some Perl library functions call system library functions. If a system library function 
generates an error, the error code generated by the function is assigned to the $! 
variable. The Perl library functions that call system library functions vary from 
machine to machine.

NOTE

The $! variable in Perl is equivalent to the errno 
variable in the C programming language 

The Current Line Number: $.

The $. variable contains the line number of the last line read from an input file. If more 
than one input file is being read, $. contains the line number of the last input file read. 
Listing 17.10 shows how $. works.

 



Listing 17.10. A program that uses the $. variable.

1:  #!/usr/local/bin/perl

2:  

3:  open (FILE1, "file1") ||

4:          die ("Can't open file1\n");

5:  open (FILE2, "file2") ||

6:          die ("Can't open file2\n");

7:  $input = <FILE1>;

8:  $input = <FILE1>;

9:  print ("line number is $.\n");

10: $input = <FILE2>;

11: print ("line number is $.\n");

12: $input = <FILE1>;

13: print ("line number is $.\n");

 

$ program17_10

line number is 2

line number is 1

line number is 3

$

 When line 9 is executed, the input file FILE1 has had two lines read from it. 
This means that $. contains the value 2. Line 10 then reads from FILE2. Because it reads 
the first line from this file, $. now has the value 1. When line 12 reads a third line from 
FILE1, $. is set to the value 3. The Perl interpreter remembers that two lines have 



already been read from FILE1.

NOTE

If the program is reading using <>, which reads from the 
files listed on the command line, $. treats the input files 
as if they are one continuous file. The line number is not 
reset when a new input file is opened 

You can use eof to test whether a particular file has 
ended, and then reset $. yourself (by assigning zero to 
it) before reading from the next file. 

Multiline Matching: $*

Normally, the operators that match patterns (the pattern-matching operator and the 
substitution operator) assume that the character string being searched is a single line 
of text. If the character string being searched consists of more than one line of text (in 
other words, it contains newline characters), set the system variable $* to 1.

NOTE

By default, $* is set to 0, which indicates that multiline 
pattern matches are not required 

The $* variable is deprecated in Perl 5. If you are 
running Perl 5, use the m pattern-matching option when 
matching in a multiple-line string. See Day 7, "Pattern 
Matching," for more details on this option 

The First Array Subscript: $[ 

Normally, when a program references the first element of an array, it does so by 
specifying the subscript 0. For example: 



@myarray = ("Here", "is", "a", "list");

$here = $myarray[0];

The array element $myarray[0] contains the string Here, which is assigned to $here. 

If you are not comfortable with using 0 as the subscript for the first element of an 
array, you can change this setting by changing the value of the $[ variable. This 
variable indicates which value is to be used as the subscript for the first array element. 

Here is the preceding example, modified to use 1 as the first array element subscript: 

$[ = 1;

@myarray = ("Here", "is", "a", "list");

$here = $myarray[1];

In this case, the subscript 1 now references the first array element. This means that 
$here is assigned Here, as before. 

TIP

Don't change the value of $[. It is too easy for a casual 
reader of your program to forget that the subscript 0 no 
longer references the first element of the array. 
Besides, using 0 as the subscript for the first element is 
standard practice in many programming languages, 
including C and C++ 

NOTE

$[ is deprecated in Perl 5 

Multidimensional Associative Arrays and the $; Variable

So far, all the arrays you've seen have been one-dimensional arrays, which are arrays in 
which each array element is referenced by only one subscript. For example, the 
following statement uses the subscript foo to access an element of the associative array 
named %array: 



$myvar = $array{"foo"};

Perl does not support multidimensional arrays directly. The following statement is not 
a legal Perl statement: 

$myvar = $array{"foo"}{"bar"};

However, Perl enables you to simulate a multidimensional associative array using the 
built-in system variable $;. 

Here is an example of a statement that accesses a (simulated) multidimensional array: 

$myvar = $array{"foo","bar"};

When the Perl interpreter sees this statement, it converts it to this: 

$myvar = $array{"foo" . $; . "bar"};

The system variable $; serves as a subscript separator. It automatically replaces any 
comma that is separating two array subscripts. 

Here is another example of two equivalent statements: 

$myvar = $array{"s1", 4, "hi there"};

$myvar = $array{"s1".$;.4.$;."hi there"};

The second statement shows how the value of the $; variable is inserted into the array 
subscript. 

By default, the value of $; is \034 (the Ctrl+\ character). You can define $; to be any 
value you want. Listing 17.11 is an example of a program that sets $;. 

 

Listing 17.11. A program that uses the $; variable.



1:  #!/usr/local/bin/perl

2:  

3:  $; = "::";

4:  $array{"hello","there"} = 46;

5:  $test1 = $array{"hello","there"};

6:  $test2 = $array{"hello::there"};

7:  print ("$test1 $test2\n");

 

$ program17_11

46 46

$

 Line 3 sets $; to the string ::. As a consequence, the subscript 
"hello","there" in lines 4 and 5 is really hello::there because the Perl interpreter 
replaces the comma with the value of $;. 

Line 7 shows that both "hello","there" and hello::there refer to the same element of 
the associative array.



If you set $;, be careful not to set it to a character that 
you are actually using in a subscript. For example, if you 
set $; to ::, the following statements reference the 
same element of the array: 

$array{"a::b", "c"} = 1;

$array{"a", "b::c"} = 2; 

In each case, the Perl interpreter replaces the comma 
with ::, producing the subscript a::b::c 

The Word-Break Specifier: $: 

On Day 11 you learned how to format your output using print formats and the write 
statement. Each print format contains one or more value fields that specify how output 
is to appear on the page. 

If a value field in a print format begins with the ^ character, the Perl interpreter puts a 
word in the value field only if there is room enough for the entire word. For example, in 
the following program (a duplicate of Listing 11.9), 

1:  #!/usr/local/bin/perl

2:  

3:  $string = "Here\nis an unbalanced line of\ntext.\n";

4:  $~ = "OUTLINE";

5:  write;

6:  

7:  format OUTLINE =

8:  ^<<<<<<<<<<<<<<<<<<<<<<<<<<<

9:  $string

10: .

the call to write uses the OUTLINE print format to write the following to the screen: 

Here is an unbalanced line



Note that the word of is not printed because it cannot fit into the OUTLINE value field. 

To determine whether a word can fit in a value field, the Perl interpreter counts the 
number of characters between the next character to be formatted and the next word-
break character. A word-break character is one that denotes either the end of a word or a 
place where a word can be split into two parts. 

By default, the legal word-break characters in Perl are the space character, the 
newline character, and the - (hyphen) character. The acceptable word break characters 
are stored in the system variable $:. 

To change the list of acceptable word-break characters, change the value of $:. For 
example, to ensure that all hyphenated words are in the same line of formatted output, 
define $: as shown here: 

$: = " \n";

Now only the space and newline characters are legal word-break characters.

NOTE

Normally, the tab character is not a word-break 
character. To allow lines to be broken on tabs, add the 
tab character to the list specified by the $: variable: 

$: = " \t\n-" 

The Perl Process ID: $$

The $$ system variable contains the process ID for the Perl interpreter itself. This is 
also the process ID for your program. 

The Current Filename: $ARGV

When you use the <> operator, the Perl interpreter reads input from each file named on 
the command line. For example, suppose that you are executing the program myprog as 
shown here: 

$ myprog test1 test2 test3



In myprog, the first occurrence of the <> operator reads from test1. Subsequent 
occurrences of <> continue reading from test1 until it is exhausted; at this point, <> 
reads from test2. This process continues until all the input files have been read. 

On Day 6, "Reading from and Writing to Files," you learned that the @ARGV array lists 
the elements of the command line and that the first element of @ARGV is removed when 
the <> operator reads a line. (@ARGV also is discussed later today.) 

When the <> operator reads from a file for the first time, it assigns the name of the file 
to the $ARGV system variable. This enables you to keep track of what file is currently 
being read. Listing 17.12 shows how you can use $ARGV. 

 

Listing 17.12. A simple file-searching program using $ARGV. 

1:  #!/usr/local/bin/perl

2:  

3:  print ("Enter the search pattern:\n");

4:  $string = <STDIN>;

5:  chop ($string);

6:  while ($line = <>) {

7:          if ($line =~ /$string/) {

8:                  print ("$ARGV:$line");

9:          }

10: }

 

$ program17_12 file1 file2 file3

Enter the string to search:



the

file1:This line contains the word "the".

$

 This program reads each line of the input files supplied on the command line. 
If a line contains the pattern specified by $string, line 8 prints the name of the file and 
then the line itself. Note that the pattern in $string can contain special pattern 
characters.

NOTE

If <> is reading from the standard input file (which 
occurs when you have not specified any input files on 
the command line), $ARGV contains the string - (a single 
hyphen) 

The Write Accumulator: $^A

The $^A variable is used by write to store formatted lines to be printed. The contents of 
$^A are erased after the line is printed. 

This variable is defined only in Perl 5. 

The Internal Debugging Value: $^D 

The $^D variable displays the current internal debugging value. This variable is defined 
only when the -D switch has been specified and when your Perl interpreter has been 
compiled with debugging included. 

See your online Perl documentation for more details on debugging Perl. (Unless you are 
using an experimental version of Perl, you are not likely to need to debug it.) 

The System File Flag: $^F

The $^F variable controls whether files are to be treated as system files. Its value is the 
largest UNIX file descriptor that is treated as a system file. 

Normally, only STDIN, STDOUT, and STDERR are treated as system files, and the value 
assigned to $^F is 2. Unless you are on a UNIX machine, are familiar with file descriptors, 



and want to do something exotic with them, you are not likely to need to use the $^F 
system variable. 

Controlling File Editing Using $^I 

The $^I variable is set to a nonzero value by the Perl interpreter when you specify the -
i option (which edits files as they are read by the <> operator). 

The following statement turns off the editing of files being read by <>: 

undef ($^I);

When $^I is undefined, the next input file is opened for reading, and the standard 
output file is no longer changed. 

DO open the files for input and output yourself if your 
program wants to edit some of its input files and not 
others; this process is easier to follow. 

DON'T use $^I if you are reading files using the -n or -p 
option unless you really know what you are doing, 
because you are not likely to get the behavior you 
expect. If -i has modified the default output file, 
undefining $^I does not automatically set the default 
output file to STDOUT 

The Format Form-Feed Character: $^L 

The $^L variable contains the character or characters written out whenever a print 
format wants to start a new page. The default value is \f, the form-feed character. 

Controlling Debugging: $^P

The $^P variable is used by the Perl debugger. When this variable is set to zero, 
debugging is turned off. 

You normally won't need to use $^P yourself, unless you want to specify that a certain 
chunk of code does not need to be debugged. 



The Program Start Time: $^T

The $^T variable contains the time at which your program began running. This time is in 
the same format as is returned by the time function: the number of seconds since January 
1, 1970. 

The following statement sets the file-access and -modification times of the file test1 to 
the time stored in $^T: 

utime ($^T, $^T, "test1");

For more information on the time and utime functions, refer to Day 12, "Working with 
the File System."

NOTE

The time format used by $^T is also the same as that used 
by the file test operators -A, -C, and -M 

Suppressing Warning Messages: $^W 

The $^W system variable controls whether warning messages are to be displayed. 
Normally, $^W is set to a nonzero value only when the -w option is specified. 

You can set $^W to zero to turn off warnings inside your program. This capability is 
useful if your program contains statements that generate warnings you want to ignore 
(because you know that your statements are correct). For example: 

$^W = 0;    # turn off warning messages

# code that generates warnings goes here

$^W = 1;    # turn warning messages back on



Some warnings are printed before program execution 
starts (for example, warnings of possible typos). You 
cannot turn off these warnings by setting $^W to zero 

The $^X Variable 

The $^X variable displays the first word of the command line you used to start this 
program. If you started this program by entering its name, the name of the program 
appears in $^X. If you used the perl command to start this program, $^X contains perl. 

The following statement checks to see whether you started this program with the 
command perl: 

if ($^X ne "perl") {

        print ("You did not use the 'perl' command ");

        print ("to start this program.\n");

}

Pattern System Variables

The system variables you have seen so far are all defined throughout your program. The 
following system variables are defined only in the current block of statements you are 
running. (A block of statements is any group of statements enclosed in the brace 
characters { and }.) These pattern system variables are set by the pattern-matching 
operator and the other operators that use patterns (such as, for example, the 
substitution operator). Many of these pattern system variables were first introduced on 
Day 7.

TIP

Even though the pattern system variables are defined 
only inside a particular block of statements, your 
programs should not take advantage of that fact. The 
safest way to use the pattern-matching variables is to 
assign any variable that you might need to a scalar 
variable of your own

Retrieving Matched Subpatterns



When you specify a pattern for the pattern-matching or substitution operator, you can 
enclose parts of the pattern in parentheses. For example, the following pattern 
encloses the subpattern \d+ in parentheses. (The parentheses themselves are not part of 
the pattern.) 

/(\d+)\./

This subpattern matches one or more digits. 

After a pattern has been matched, the system variables $1, $2, and so on match the 
subpatterns enclosed in parentheses. For example, suppose that the following pattern is 
successfully matched: 

/(\d+)([a-z]+)/

In this case, the match found must consist of one or more digits followed by one or more 
lowercase letters. After the match has been found, $1 contains the sequence of one or 
more digits, and $2 contains the sequence of one or more lowercase letters. 

Listing 17.13 is an example of a program that uses $1, $2, and $3 to match subpatterns.

 

Listing 17.13. A program that uses variables containing matched 
subpatterns.

1:  #!/usr/local/bin/perl

2:  

3:  while (<>) {

4:          while (/(-?\d+)\.(\d+)([eE][+-]?\d+)?/g) {

5:                  print ("integer part $1, decimal part $2");

6:                  if ($3 ne "") {

7:                          print (", exponent $3");

8:                  }



9:                  print ("\n");

10:         }

11: }

 

$ program17_13 file1

integer part 26, decimal part 147, exponent e-02

integer part -8, decimal part 997

$

 This program reads each input line and searches for floating-point numbers. 
Line 4 matches if a floating-point number is found. (Line 4 is a while statement, not an 
if, to enable the program to detect lines containing more than one floating-point 
number. The loop starting in line 4 iterates until no more matches are found on the 
line.) 

When a match is found, the first set of parentheses matches the digits before the decimal 
point; these digits are copied into $1. The second set of parentheses matches the digits 
after the decimal point; these matched digits are stored in $2. The third set of 
parentheses matches an optional exponent; if the exponent exists, it is stored in $3. 

Line 5 prints the values of $1 and $2 for each match. If $3 is defined, its value is printed 
by line 7.

DO use $1, not $0, to retrieve the first matched 
subpattern. $0 contains the name of the program you are 
running. 

DON'T confuse $1 with \1. \1, \2, and so on are defined 
only inside a pattern. See Day 7 for more information on 
\1 



In patterns, parentheses are counted starting from the left. This rule tells the Perl 
interpreter how to handle nested parentheses: 

/(\d+(\.)?\d+)/

This pattern matches one or more digits optionally containing a decimal point. When 
this pattern is matched, the outer set of parentheses is considered to be the first set of 
parentheses; these parentheses contain the entire matched number, which is stored in $1. 

The inner set of parentheses is treated as the second set of parentheses because it 
includes the second left parenthesis seen by the pattern matcher. The variable $2, which 
contains the subpattern matched by the second set of parentheses, contains . (a period) 
if a decimal point is matched and the empty string if it is not. 

Retrieving the Entire Pattern: $& 

When a pattern is matched successfully, the matched text string is stored in the system 
variable $&. This is the only way to retrieve the matched pattern because the pattern 
matcher returns a true or false value indicating whether the pattern match is 
successful. (This is not strictly true, because you could enclose the entire pattern in 
parentheses and then check the value of $1; however, $& is easier to use in this case.) 
Listing 17.14 is a program that uses $& to count all the digits in a set of input files.

 

Listing 17.14. A program that uses $&. 

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <>) {

4:          while ($line =~ /\d/g) {

5:                $digitcount[$&]++;

6:          }

7:  }

8:  print ("Totals for each digit:\n");



9:  for ($i = 0; $i <= 9; $i++) {

10:         print ("$i: $digitcount[$i]\n");

11: }

 

$ program17_14 file1

Totals for each digit:

0: 11

1: 6

2: 3

3: 1

4: 2

5:

6: 1

7:

8:

9: 1

$

 This program reads one line at a time from the files specified on the command 
line. Line 4 matches each digit in the input line in turn; the matched digit is stored in $&. 

Line 5 takes the value of $& and uses it as the subscript for the array @digitcount. This 
array keeps a count of the number of occurrences of each digit. 

When the input files have all been read, lines 9-11 print the totals for each digit.

NOTE



If you need the value of $&, be sure to get it before 
exiting the while loop or other statement block in which 
the pattern is matched. (A statement block is exited 
when the Perl interpreter sees a } character.) 

For example, the pattern matched in line 4 cannot be 
accessed outside of lines 4-6 because this copy of $& is 
defined only in these lines. (This rule also holds true 
for all the other pattern system variables defined in 
today's lesson.) 

The best rule to follow is to either use or assign a 
pattern system variable immediately following the 
statement that matches the pattern

Retrieving the Unmatched Text: the $` and $' Variables 

When a pattern is matched, the text of the match is stored in the system variable $&. The 
rest of the string is stored in two other system variables: 

●     The unmatched text preceding the match is stored in the $` variable. 
●     The unmatched text following the match is stored in the $' variable. 

For example, if the Perl interpreter searches for the /\d+/ pattern in the string 
qwerty1234uiop, it matches 1234, which is stored in $&. The substring qwerty, which 
precedes the match, is stored in $`. The rest of the string, uiop, is stored in $'. 

If the beginning of a text string is matched, $` is set to the empty string. Similarly, if the 
last character in the string is part of the match, $' is set to the empty string. 

The $+ Variable 

The $+ variable matches the last subpattern enclosed in parentheses. For example, when 
the following pattern is matched, $+ matches the digits after the decimal point: 

/(\d+)\.(\d+)/

This variable is useful when the last part of a pattern is the only part you really need 
to look at. 

File System Variables



Several system variables are associated with file variables. One copy of each file system 
variable is defined for each file that is referenced in your Perl program. Many of these 
system variables were first introduced on Day 11. The variables mentioned there are 
redefined here for your convenience. 

The Default Print Format: $~ 

When the write statement sends formatted output to a file, it uses the value of the $~ 
system variable for that file to determine the print format to use. 

When a program starts running, the default value of $~ for each file is the same as the 
name of the file variable that represents the file. For example, when you write to the 
file represented by the file variable MYFILE, the default value of $~ is MYFILE. This 
means that write normally uses the MYFILE print format. (For the standard output file, 
this default print format is named STDOUT.) 

If you want to specify a different print format, change the value of $~ before calling 
the write function. For example, to use the print format MYFORMAT when writing to the 
standard output file, use the following code: 

select (STDOUT);  # making sure you are writing to STDOUT

$~ = "MYFORMAT";

write;

This call to write uses MYFORMAT to format its output.

Remember that one copy of $~ is defined for each file 
variable. Therefore, the following code is incorrect: 

$~ = "MYFORMAT";
select (MYFILE);

write; 

In this example, the assignment to $~ changes the 
default print format for whatever the current output 
file happens to be. This assignment does not affect the 
default print format for MYFILE because MYFILE is 
selected after $~ is assigned. To change the default 



print format for MYFILE, select it first: 

select (MYFILE);
$~ = "MYFORMAT";

write; 

This call to write now uses MYFORMAT to write to MYFILE 

Specifying Page Length: $=

The $= variable defines the page length (number of lines per page) for a particular 
output file. $= is normally initialized to 60, which is the value that the Perl interpreter 
assumes is the page length for every output file. This page length includes the lines left 
for page headers, and it is the length that works for most printers. 

If you are directing a particular output file to a printer with a nonstandard page 
length, change the value of $= for this file before writing to it: 

select ("WEIRDLENGTH");

$= = 72;

This code sets the page length for the WEIRDLENGTH file to 72.

$= is set to 60 by default only if a page header format is 
defined for the page. If no page header is defined, $= is set 
to 9999999 because Perl assumes that you want your 
output to be a continuous stream. 

If you want paged output without a page header, define 
an empty page header for the output file

Lines Remaining on the Page: $- 

The $- variable associated with a particular file variable lists the number of lines left 
on the current page of that file. Each call to write subtracts the number of lines 
printed from $-. If write is called when $- is zero, a new page is started. (If $- is greater 



than zero, but write is printing more lines than the value of $-, write starts a new page 
in the middle of its printing operation.) 

When a new page is started, the initial value of $- is the value stored in $=, which is the 
number of lines on the page. 

The program in Listing 17.15 displays the value of $-. 

 

Listing 17.15. A program that displays $-. 

1:  #!/usr/local/bin/perl

2:  

3:  open (OUTFILE, ">outfile");

4:  select ("OUTFILE");

5:  write;

6:  print STDOUT ("lines to go before write: $-\n");

7:  write;

8:  print STDOUT ("lines to go after write: $-\n");

9:  format OUTFILE =

10:  This is a test.

11: .

12: format OUTFILE_TOP =

13: This is a test.

14: .

 

$ program17_15



lines to go before write: 58

lines to go after write: 57

$

 Line 3 opens the output file outfile and associates the file variable OUTFILE 
with this file. Line 4 then calls select, which sets the default output file to OUTFILE. 

Line 5 calls write, which starts a new page. Line 6 then sends the value of $- to the 
standard output file, STDOUT, by specifying STDOUT in the call to print. Note that the 
copy of $- printed is the copy associated with OUTFILE, not STDOUT, because OUTFILE is 
currently the default output file. 

Line 7 calls write, which sends a line of output to OUTFILE and decreases the value of $- 
by one. Line 8 prints this new value of $-.

NOTE

If you want to force your next output to appear at the 
beginning of a new page, you can set $- to zero yourself 
before calling write. 

When a file is opened, the copy of $- for this file is given 
the initial value of zero. This technique ensures that 
the first call to write always starts a page (and 
generates the header for the page) 

The Page Header Print Format: $^ 

When write starts a new page, you can specify the page header that is to appear on the 
page. To do this, define a page header print format for the output file to which the page 
is to be sent. 

The system variable $^ contains the name of the print format to be used for printing page 
headers. If this format is defined, page headers are printed; if it does not exist, no page 
headers are printed. 

By default, the copy of $^ for a particular file is set equal to the name of the file 
variable plus the string _TOP. For example, for the file represented by the file variable 
MYFILE, $^ is given an initial value of MYFILE_TOP. 

To change the page header print format for a particular file, set the default output 



file by calling select, and then set $^ to the print format you want to use. For example: 

select (MYFILE);

$^ = "MYHEADER";

This code changes the default output file to MYFILE and then changes the page header 
print format for MYFILE to MYHEADER. As always, you must remember to select the file 
before changing $^ because each file has its own copy of $^. 

Buffering Output: $|

When you send output to a file using print or write, the operating system might not 
write it right away. Some systems first send the output to a special array known as a 
buffer; when the buffer becomes full, it is written all at once. This process of output 
buffering is usually a more efficient way to write data. 

In some circumstances, you might want to send output straight to your output file 
without using an intervening buffer. (For example, two processes might be sending 
output to the standard output file at the same time.) 

The $| system variable indicates whether a particular file is buffered. By default, the 
Perl interpreter defines a buffer for each output file, and $| is set to 0. To eliminate 
buffering for a particular file, select the file and then set the $| variable to a nonzero 
value. For example, the following code eliminates buffering for the MYFILE output file: 

select ("MYFILE");

$| = 1;

These statements set MYFILE as the default output file and then turn off buffering for 
it.

If you want to eliminate buffering for a particular file, 
you must set $| before writing to the file for the first 
time because the operating system creates the buffer 
when it performs the first write operation 



The Current Page Number: $%

Each output file opened by a Perl program has a copy of the $% variable associated with 
it. This variable stores the current page number. When write starts a new page, it adds 
one to the value of $%. Each copy of $% is initialized to 0, which ensures that $% is set to 
1 when the first page is printed. $% often is displayed by page header print formats. 

Array System Variables

The system variables you've seen so far have all been scalar variables. The following 
sections describe the array variables that are automatically defined for use in Perl 
programs. All of these variables, except for the @_ variable, are global variables: their 
value is the same throughout a program. 

The @_ Variable 

The @_ variable, which is defined inside each subroutine, is a list of all the arguments 
passed to the subroutine. 

For example, suppose that the subroutine my_sub is called as shown here: 

&my_sub("hello", 46, $var);

The values hello and 46, plus the value stored in $var, are combined into a three-
element list. Inside my_sub, this list is stored in @_. 

In a subroutine, the @_ array can be referenced or modified, just as with any other array 
variable. Most subroutines, however, assign @_ to locally defined scalar variables using 
the local function: 

sub my_sub {

        local ($arg1, $arg2, $arg3) = @_;

        # more stuff goes here

}

Here, the local statement defines three local variables, $arg1, $arg2, and $arg3. $arg1 is 
assigned the first element of the list stored in @_, $arg2 is assigned the second, and $arg3 
is assigned the third. 



For more information on subroutines, refer to Day 9, "Using Subroutines."

NOTE

If the shift function is called inside a subroutine with 
no argument specified, the @_ variable is assumed, and its 
first element is removed 

The @ARGV Variable 

When you run a Perl program, you can specify values that are to be passed to the 
program by including them on the command line. For example, the following command 
calls the Perl program myprog and passes it the values hello and 46: 

$ myprog "hello" 46

Inside the Perl program, these values are stored in a special built-in array named @ARGV. 
In this example, @ARGV contains the list ("hello", 46). 

Here is a simple statement that prints the values passed on the command line: 

print ("@ARGV\n");

The @ARGV array also is associated with the <> operator. This operator treats the 
elements in @ARGV as filenames; each file named in @ARGV is opened and read in turn. Refer 
to Day 6 for a description of the <> operator.

NOTE

If the shift function is called in the main body of a 
program (outside a subroutine) and no arguments are 
passed with it, the Perl interpreter assumes that the 
@ARGV array is to have its first element removed. 

The following loop assigns each element of @ARGV, in 
turn, to the variable $var: 

while ($var = shift) {
# stuff

} 



The @F Variable 

In Perl, if you specify the -n or -p option, you can also supply the -a option. This option 
tells the Perl interpreter to break each input line into individual words (throwing 
away all tabs and spaces). These words are stored in the built-in array variable @F. 
After an input line has been (automatically) read, the @F array variable behaves like 
any other array variable. 

For more information on the -a, -n, or -p options, refer to Day 16, "Command-Line 
Options."

NOTE

When the -a option is specified and an input line is 
broken into words, the original input line can still be 
accessed because it is stored in the $_ system variable 

The @INC Variable 

The @INC array variable contains a list of directories to be searched for files requested 
by the require function. This list consists of the following items, in order from first to 
last: 

●     The directories specified by the -I option 
●     The Perl library directory, which is normally /usr/local/bin/perl 
●     The current working directory (represented by the . character) 

Like any array variable, @INC can be added to or modified. 

For more information on the require function, refer to Day 19. 

The %INC Variable 

The built-in associative array %INC lists the files requested by the require function 
that have already been found. 

When require finds a file, the associative array element $INC{file} is defined, in which 
file is the name of the file. The value of this associative array element is the location 
of the actual file. 

When require requests a file, the Perl interpreter first looks to see whether an 



associative array element has already been created for this file. This action ensures 
that the interpreter does not try to include the same code twice. 

The %ENV Variable 

The %ENV associative array lists the environment variables defined for this program and 
their values. The environment variables are the array subscripts, and the values of the 
variables are the values of the array elements. 

For example, the following statement assigns the value of the environment variable 
TERM to the scalar variable $term: 

$term = $ENV{"TERM"};

The %SIG Variable 

In the UNIX environment, processes can send signals to other processes. These signals 
can, for example, interrupt a running program, trigger an alarm in the program, or kill 
off the program. 

You can control how your program responds to signals it receives. To do this, modify the 
%SIG associative array. This array contains one element for each available signal, with 
the signal name serving as the subscript for the element. For example, the INT 
(interrupt) signal is represented by the $SIG{"INT"} element. 

The value of a particular element of %SIG is the action that is to be performed when the 
signal is received. By default, the value of an array element is DEFAULT, which tells the 
program to do what it normally does when it receives this signal. 

You can override the default action for some of the signals in two ways: you can tell 
the program to ignore the signal, or you can define your own signal handler. (Some 
signals, such as KILL, cannot be overridden.) 

To tell the program to ignore a particular type of signal, set the value of the 
associative array element for this signal to IGNORE. For example, the following 
statement indicates that the program is to ignore any INT signals it receives: 

$SIG{"INT"} = "IGNORE";

If you assign any value other than DEFAULT or IGNORE to a signal array element, this 
value is assumed to be the name of a function that is to be executed when this signal is 



received. For example, the following statement tells the program to jump to the 
subroutine named interrupt when it receives an INT signal: 

$SIG{"INT"} = "interrupt";

Subroutines that can be jumped to when a signal is received are called interrupt handlers, 
because signals interrupt normal program execution. Listing 17.16 is an example of a 
program that defines an interrupt handler.

 

Listing 17.16. A program containing an interrupt handler.

1:  #!/usr/local/bin/perl

2:  

3:  $SIG{"INT"} = "wakeup";

4:  sleep();

5:  

6:  sub wakeup {

7:          print ("I have woken up!\n");

8:          exit();

9:  }

 

$ program17_16

I have woken up!

$



 Line 3 tells the Perl interpreter that the program is to jump to the wakeup 
subroutine when it receives the INT signal. Line 4 tells the program to go to sleep. 
Because no argument is passed to sleep, the program will sleep until a signal wakes it 
up. 

To wake up the process, get the process ID using the ps command, and then send an INT 
signal to the process using the kill command. (See the manual page for kill, and the 
related documentation for signal handling, to see how to perform this task in your 
environment.) 

When the program receives the INT signal, it executes the wakeup subroutine. This 
subroutine prints the following message and then exits: 

I have woken up!

If desired, you can use the same subroutine to handle more than one signal. The signal 
actually sent is passed as an argument to the called subroutine, which ensures that 
your subroutine can determine which signal triggered it: 

sub interrupt {

        local ($signal) = @_;

        print ("Interrupted by the $signal signal.\n");

}

If a subroutine exits normally, the program returns to where it was executing when it 
was interrupted. If a subroutine calls exit or die, the program execution is terminated.

NOTE

When a program continues executing after being 
interrupted, the element of %SIG corresponding to the 
received signal is reset to DEFAULT. To ensure that 
repeated signals are trapped by your interrupt handler, 
redefine the appropriate element of %SIG 

Built-In File Variables



Perl provides several built-in file variables, most of which you have previously seen. The 
only file variables that have not yet been discussed are DATA and _ (underscore). The 
others are briefly described here for the sake of completeness. 

STDIN, STDOUT, and STDERR

The file variable STDIN is, by default, associated with the standard input file. Using 
STDIN with the <> operator, as in <STDIN>, normally reads data from your keyboard. If 
your shell has used < or some equivalent redirection operator to specify input from a 
file, <STDIN> reads from that file. 

The file variable STDOUT normally writes to the standard output file, which is usually 
directed to your screen. If your shell has used > or the equivalent to redirect standard 
output to a file, writing to STDOUT sends output to that file. 

STDERR represents the standard error file, which is almost always directed to your 
screen. Writing to STDERR ensures that you see error messages even when you have 
redirected the standard output file. 

You can associate STDIN, STDOUT, or STDERR with some other file using open: 

open (STDIN, "myinputfile");

open (STDOUT, "myoutputfile");

open (STDERR, "myerrorfile");

Opening a file and associating it with STDIN overrides the default value of STDIN, which 
means that you can no longer read from the standard input file. Similarly, opening a 
file and associating it with STDOUT or STDERR means that writing to that particular file 
variable no longer sends output to the screen. 

To associate a file variable with the standard input file after you have redirected 
STDIN, specify a filename of -: 

open (MYSTDIN, "-");

To associate a file variable with the standard output file, specify a filename of >-: 

open (MYSTDOUT, ">-");



You can, of course, specify STDIN with - or STDOUT with >- to restore the original values 
of these file variables. 

ARGV

ARGV is a special file variable that is associated with the current input file being read by 
the <> operator. For example, consider the following statement: 

$line = <>;

This statement reads from the current input file. Because ARGV represents the current 
input file, the preceding statement is equivalent to this: 

$line = <ARGV>;

You normally will not need to access ARGV yourself except via the <> operator. 

DATA

The DATA file variable is used with the __END__ special value, which can be used to 
indicate the end of a program. Reading from DATA reads the line after __END__, which 
enables you to include a program and its data in the same file. 

Listing 17.17 is an example of a program that reads from DATA. 

 

Listing 17.17. An example of the DATA file variable.

1:  #!/usr/local/bin/perl

2:  

3:  $line = <DATA>;

4:  print ("$line");

5:  __END__

6:  This is my line of data.



 

$ program17_17

This is my line of data.

$

 The __END__ value in line 5 indicates the end of the program. When line 3 
reads from the DATA file variable, the first line after __END__ is read in and is assigned to 
$line. (Subsequent requests for input from DATA read successive lines, if any exist.) Line 6 
then prints this input line.

NOTE

For more information on __END__ and methods of 
indicating the end of the program, refer to Day 20, 
"Miscellaneous Features of Perl. 

The Underscore File Variable

The _ (underscore) file variable represents the file specified by the last call to either 
the stat function or a file test operator. For example: 

$readable = -r "/u/jqpublic/myfile";

$writeable = -w _;

Here, the _ file variable used in the second statement refers to /u/jqpublic/myfile 
because this is the filename that was passed to -r. 

You can use _ anywhere that a file variable can be used, provided that the file has been 
opened appropriately: 

if (-T $myoutfile) {



        print _ ("here is my output\n");

}

Here, the file whose name is stored in $myoutfile is associated with _ because this name 
was passed to -T (which tests whether the file is a text file). The call to print writes 
output to this file. 

The main benefit of _ is that it saves time when you are using several file-test operators 
at once: 

if (-r "myfile" || -w _ || -x _) {

        print ("I can read, write, or execute myfile.\n");

}

Using _ rather than myfile saves time because file test operators normally call the 
UNIX system function stat. If you specify _, the Perl interpreter is told to use the 
results of the preceding call to the UNIX stat function and to not bother calling it 
again. 

Specifying System Variable Names as Words

As you have seen, the system variables defined by Perl normally consist of a $, @ or % 
followed by a single non-alphanumeric character. This ensures that you cannot define 
a variable whose name is identical to that of a Perl system variable. 

If you find Perl system variable names difficult to remember or type, Perl 5 provides an 
alternative for most of them. If you add the statement 

use English;

at the top of your program, Perl defines alternative variable names that more closely 
resemble English words. This makes it easier to understand what your program is doing. 
Table 17.1 lists these alternative variable names.

Table 17.1. Alternative names for Perl system variables.

Variable Alternative name(s) 

$_ $ARG 



$0 $PROGRAM_NAME 

$< $REAL_USER_ID or $UID 

$> $EFFECTIVE_USER_ID or $EUID 

$( $REAL_GROUP_ID or $GID 

$) $EFFECTIVE_GROUP_ID or $EGID 

$] $PERL_VERSION 

$/ $INPUT_RECORD_SEPARATOR or $RS 

$\ $OUTPUT_RECORD_SEPARATOR or 
$ORS 

$, $OUTPUT_FIELD_SEPARATOR or 
$OFS 

$" $LIST_SEPARATOR 

$# $OFMT 

$@ $EVAL_ERROR 

$? $CHILD_ERROR 

$! $OS_ERROR or $ERRNO 

$. $INPUT_LINE_NUMBER or $NR 

$* $MULTILINE_MATCHING 

$[ none (deprecated in Perl 5) 

$; $SUBSCRIPT_SEPARATOR or 
$SUBSEP 

$: $FORMAT_LINE_BREAK_CHARACTERS 

$$ $PROCESS_ID or $PID 

$^A $ACCUMULATOR 

$^D $DEBUGGING 

$^F $SYSTEM_FD_MAX 

$^I $INPLACE_EDIT 

$^L $FORMAT_FORMFEED 

$^P $PERLDB 

$^T $BASETIME 

$^W $WARNING 

$^X $EXECUTABLE_NAME 

$& $MATCH 

$' $PREMATCH 

$' $POSTMATCH 



$+ $LAST_PAREN_MATCH 

$~ $FORMAT_NAME 

$= $FORMAT_LINES_PER_PAGE 

$- $FORMAT_LINES_LEFT 

$^ $FORMAT_TOP_NAME 

$| $OUTPUT_AUTOFLUSH 

$% $FORMAT_PAGE_NUMBER 

Summary

Today you learned about the built-in system variables available within every Perl 
program. These system variables are divided into five groups: 

●     Global scalar variables, which are defined everywhere in the program and 
contain a single scalar value 

●     Pattern system variables, which are defined immediately after a pattern-matching 
or substitution operation has been performed 

●     File system variables, which are defined for each input or output file accessible 
from the program 

●     Array system variables, each of which contains a list 
●     Built-in file variables, which are associated with files that are automatically 

open or automatically available 

You also learned how to specify English-language equivalents for Perl system 
variables. 

Q&A

Q: Why do some system variables use special characters rather than letters in 
their names? 

A: To distinguish them from variables that you define and to ensure that the reset 
function (described in the next chapter) cannot affect them. 

Q: Why do some functions use $_ as the default, whereas others do not? 

A: The functions that use $_ as the default are those that are likely to appear in 
Perl programs specified on the command line using the -e option. 

Q: What is the current line number when $. is used with the <> operator? 

A: Effectively, the <> operator treats its input files as if they are a single file. This 
means that $. contains the total number of lines seen, not the line number of 
the current input file. (If you want $. to contain the line number of the current 
file, set $. to zero each time eof returns true.) 



Q: Are pattern system variables local or global? 

A: Each pattern system variable is defined only in the current subroutine or block 
of statements. 

Q: Why does Perl define both the $" and the $, system variables? 

A: Some programs like to treat the following statements differently: 
print ("@array");
print (@array);

(In fact, by default, the first statement puts a space between each pair of 
elements in the array, and the second does not.) The $" and $, variables handle 
these two separate cases. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered, and exercises to provide you with experience in using what you've 
learned. 

Quiz

1.  List the functions and operators that use $_ by default. 
2.  What do the following variables contain?

a.    $=
b.    $/
c.$    ?
d.    $!

d.    @_ 
3.  Explain the differences between ARGV, $ARGV, and @ARGV. 
4.  Explain the difference between @INC and %INC. 
5.  Explain the difference between $0 and $1. 

Exercises

1.  Write a program that reads lines of input, replaces multiple blanks and tabs with 
a single space, converts all uppercase letters to lowercase, and prints the 
resulting lines. Use no explicit variable names in this program. 

2.  Write a program that uses $' and $_ to remove all extra spaces from input lines. 
3.  Write a program that prints the directories in your PATH environment variable, 

one per line. 
4.  Write a program that prints numbers, starting with 1 and continuing until 

interrupted by an INT signal. 
5.  Write a program whose data consists of one or more numbers per input line. Put 

the input lines in the program file itself. Add the numbers and print their total. 
6.  BUG BUSTER: What is wrong with the following statement? 

if ($line =~ /abc/) {



$' =~ s/ +/ /;

} 

    



Chapter 18

References in Perl 5
by Kamran Husain 

CONTENTS

●     Introduction to References 
●     Using References 
●     Using the Backslash Operator 
●     References and Arrays 
●     Multidimensional Arrays 
●     References to Subroutines 

❍     Using Subroutine Templates 
●     Using Subroutines to Work with Multiple Arrays 

❍     Pass By Value or By Reference? 
●     References to File Handles 

❍     What Does the *variable Operator Do? 
●     Using Symbolic References… Again 

❍     Declaring Variables with Curly Braces 
●     More on Hard Versus Symbolic References 
●     For More Information 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
●     Exercises 

Today's lesson describes the use of Perl references and the concept of pointers. Today's 
lesson also shows you how to use references to create complex data structures, pass 
pointers around, and work with subroutines. You learn the following topics: 

●     Hard and symbolic references 
●     Using references to arrays and scalars 
●     Passing arrays to subroutines by reference 
●     References to subroutines 



Introduction to References

A reference is simply a pointer to something, such as a Perl variable, array, hash (also 
known as an associative array), or even a subroutine. The concept of a reference is 
probably familiar to Pascal or C programmers. A reference is simply an address to a 
value. How you use that value is up to you as the programmer and what the language 
lets you get away with. In Perl, you can refer to a pointer as a reference; in fact, you 
can use the terms pointer and reference interchangeably without any loss of meaning. 

References are useful in creating complex data structures in Perl. In fact, you cannot 
really define any complicated structures in Perl without using references. 

The two types of references in Perl 5 are hard and symbolic. A symbolic reference 
contains the name of a variable. Symbolic references are useful for creating variable 
names and addressing them at runtime. Basically, a symbolic link is like the name of a 
file or a soft link on a UNIX system. Hard references are more like hard links in the file 
system (that is, merely another path to the same underlying item). 

Perl 4 permits only symbolic references, which are difficult to use. For example, in Perl 
4, you have to use names to index to an associative array called _main{} of symbol names 
for a package. Perl 5 now lets you have hard references to data. 

Hard references keep track of reference counts. When the reference count becomes 
zero, Perl automatically frees the item referred to. If that item happens to be a Perl 
object, the object is destructed-freed to the memory pool. Perl is object-oriented in itself 
because everything in Perl is an object. Packages and modules make it much easier to use 
objects in Perl. 

Hard references are easy to use in Perl as long as you use them as scalars. To use hard 
references as anything but scalars, you have to explicitly de-reference the variable 
and tell it how you want it to behave. If this sounds confusing, don't worry; references 
are covered on Day 19, "Object-Oriented Programming in Perl," to help make this concept 
clearer. 

Using References

In today's lesson, a scalar value refers to a variable such as $pointer. The variable 
$pointer contains one data item; whether the item is a number, string, or an address is 
determined by how you use it. 

Any scalar can hold a hard reference, and because arrays and hashes do contain 
scalars, it follows that you can now easily build complex data structures of different 
combinations of arrays of arrays, arrays of hashes, hashes of functions, and so on. As 



long as you understand that you are working only with scalars, you should be able to 
navigate through the most complex structures with proper dereferencing. 

Let's cover some of the basics first before we get too deep into the chapter. 

To use the value of $pointer as the pointer to an array, you reference the items in the 
array as @$pointer. This notation of "@$pointer" roughly translates to "take the 
address in $pointer and then use it as an array." Similarly for hashes, you would use 
%$pointer as the reference to the first element in the hash. 

Because there are several ways to construct references, you can have references to 
just about anything, such as arrays, scalar variables, subroutines, file handles, and, yes-
to the delight of C programmers-even other references. Perl gives you the power to 
write enough complicated code to hang yourself. 

Now look at some of the ways that you can create and use references in Perl. 

Using the Backslash Operator

Using the backslash operator is analogous to using the ampersand (&) operator in C to 
pass the address of an operator. Usually, you use the backslash operator to create a 
second, new reference to a variable. The following code shows how to create a 
reference to a scalar variable: 

$variable = 22;

$pointer = \$variable;

$ice = "jello"

$iceptr = \$ice;

$pointer points to the location that contains the value of $variable. The pointer 
$iceptr points to "jello". Even if the original reference $variable gets destroyed, you 
can still access the value from the $pointer reference. There is a hard reference at 
work here, so you will have to get rid of both $pointer and $variable for the space in 
which 22 is allocated to be freed back to the memory pool. 

In the preceding code, the variable $pointer contains the address of $variable, not the 
value itself. To get the value, you have to de-reference $pointer with two $$. The 
following sample script shows how this works: 

#!/usr/bin/perl



$value = 10;

$pointer = \$value;

printf "\n Pointer Address $pointer of  $value \n";

printf "\n What Pointer *($pointer) points to $$pointer\n";

The $value in the script is set to 10. The $pointer is set to point to the address of $value. 
The two printf statements show how the value of the variable is referenced. If you run 
the script shown, you see something very close to the following output: 

Pointer Address SCALAR(0x806c520) of  10

What Pointer *(SCALAR(0x806c520)) points to 10

The address in the output from your script will probably be different from what's 
shown. However, you can see that $pointer gave the address and $$pointer gave the 
value of the scalar that $variable points to. 

Pay attention to how the address is shown in the pointer variable. The word SCALAR is 
followed by a long hexadecimal number. The word SCALAR tells you that the address 
points to a scalar variable. The number following SCALAR is the address where the 
actual value of the scalar variable is kept. 

NOTE

A pointer is an address. The data at that address is 
referred to by a pointer. If the pointer happens to point 
to an invalid address, you can get bad data. Generally, 
Perl will simply return a NULL value, but you should not 
rely on this, and should program to initialize all your 
pointers to refer to valid data items 

References and Arrays



Perhaps the most important point you must remember about Perl is that all Perl @ARRAYs 
and %HASHes are always one-dimensional. As such, the arrays and hashes hold scalar 
values only and do not directly contain other arrays or complex data structures. A 
member of an array is either a number or a reference (including strings). 

You can use the backslash operator on arrays and hashes just as you would for scalar 
variables. You would use something like Listing 18.1 for arrays. 

 

Listing 18.1. Using the backslash operator on arrays.

1  #!/usr/bin/perl

2  #

3  # Using Array references

4  #

5  $pointer = \@ARGV;

6  printf "\n Pointer Address of ARGV = $pointer\n";

7  $i = scalar(@$pointer);

8  printf "\n Number of arguments : $i \n";

9  $i = 0;

10  foreach (@$pointer) {

11      printf "$i : $$pointer[$i++]; \n";

12      }

 

$ test 1 2 3 4

 Pointer Address of ARGV = ARRAY(0x806c378)



 Number of arguments : 4

0 : 1;

1 : 2;

2 : 3;

3 : 4;

Examine the lines that pertain to references in the shell script shown, which prints the 
contents of the input argument array @ARGV. Line 5 is where the reference $pointer is 
set to point to the array @ARGV. Line 6 simply prints the address of ARGV. You probably 
will never have to use the address of ARGV, but had you been using another array, this is 
a quick way to get to the address of the first element of the array.

NOTE

Pointers are referred to as references, and vice versa

The $pointer returns the address of the first element of an array. In Listing 18.1, the 
array happened to be @ARGV. A pointer to an array should sound familiar to C 
programmers because a reference to a one-dimensional array is simply a pointer to the 
first element of the array. 

Line 7 calls the function scalar() (not to be confused with the type of variable scalar) 
to get the count of the number of elements in an array. The parameter passed in could 
be @ARGV, but with the pointer $pointer, you must specify the type of parameter that is 
expected by the scalar() function. Therefore, you specify the type of parameter as an 
array by using @$pointer. 

The type of $pointer in this case is a pointer to the array whose number of elements you 
must return from the scalar() function. The call to the function has @$pointer as the 
passed parameter. The $pointer gives the address of the first element, and the @ sign 
forces the passing of the address of the first element as an array reference. 

Line 10 contains the same reference to the array that line 7 contains. Line 11 lists all 
the elements of the array using the $$pointer[$i] item. How do you interpret this? The 
$pointer points to the first element in the array. The program then gets the ($i - 1)-th 
item in the array ($pointer[$i++]) and increments $i. Finally, the value at 
$$pointer[$i] is returned as a scalar. Because the autoincrement operator is low on 
the operator precedence priority list, $i is incremented last of all. 



You can also use the backslash operator with associative arrays. The idea is the same-
you are substituting the $pointer for all references to the name of the associative 
array. The number following the word ARRAY in the pointer address of ARGV in the 
previous example is the address of ARGV. The address itself won't do you any good, 
because most programs do not need this information, but just realize that references to 
arrays and scalars are displayed with the type that they happen to be pointing to. 

For pointers to functions, the address is printed with the word CODE, and for a hash, it is 
printed as HASH. See Listing 18.2 for an example of how to print out an address to a hash. 

 

Listing 18.2. Using references to a hash.

#!/usr/bin/perl

1#

2 # Using Associative Array references

3 #

4 %month = (

5     '01', 'Jan',

6    '02', 'Feb',

7  '03', 'Mar',

8    '04', 'Apr',

9    '05', 'May',

10    '06', 'Jun',

11    '07', 'Jul',

12    '08', 'Aug',

13   '09', 'Sep',

14    '10', 'Oct',

15    '11', 'Nov',

16    '12', 'Dec',

17    );



18

19 $pointer = \%month;

20

21 printf "\n Address of hash = $pointer\n ";

22 

23 #

24 # The following lines would be used to print out the

25 # contents of the associative array if %month was used.

26 #

27 # foreach $i (sort keys %month) {

28 # printf "\n $i $$pointer{$i} ";

29 # }

30

31 #

32 # The reference to the associative array via $pointer

33 #

34 foreach $i (sort keys %$pointer) {

35     printf "$i is $$pointer{$i} \n";

36 }

 

$ mth

 Address of hash = HASH(0x806c52c)

 01 is Jan

 02 is Feb



 03 is Mar

 04 is Apr

 05 is May

 06 is Jun

 07 is Jul

 08 is Aug

 09 is Sep

 10 is Oct

 11 is Nov

 12 is Dec

 The reference to the associative array is made with the code in line 19, 
$pointer = \%month;. As with ordinary arrays, the references to the elements of the 
array are made with the $$pointer{$index} construct. Of course, because the array is 
really a hash, the $index is the key into the hash and not a number. See lines 34 and 35 
to see how elements in the array are being referenced. 

You don't have to construct associative arrays using the comma operator. You can use 
the => operator instead. In the later Perl module and sample code in this chapter, you 
will see the => operator, which is the same as the comma operator. Using => makes the 
code a bit easier to read. See Listing 18.3 for a sample usage of the => operator. 

 

Listing 18.3. Using the => operator.

1 #!/usr/bin/perl

2 #

3 # Using Array references

4 #

5 %weekday = (

6    '01' => 'Mon',



7     '02' => 'Tue',

8     '03' => 'Wed',

9     '04' => 'Thu',

10     '05' => 'Fri',

11    '06' => 'Sat',

12    '07' => 'Sun',

13    );

14 $pointer = \%weekday;

15 $i = '05';

16 printf "\n ================== start test ================= \n";

17 #

18 # These next two lines should show an output

19 #

20     printf '$$pointer{$i} is ';

21    printf "$$pointer{$i} \n";

22    printf '${$pointer}{$i} is ';

23    printf "${$pointer}{$i} \n";

24    printf '$pointer->{$i} is ';

25

26    printf "$pointer->{$i}\n";

27 #

28 # These next two lines should not show anything

29 #

30    printf '${$pointer{$i}} is ';

31    printf "${$pointer{$i}} \n";

32    printf '${$pointer->{$i}} is ';

33    printf "${$pointer->{$i}}";

34 printf "\n ================== end of test ================= \n";

35



================== start test =================

 

$$pointer{$i} is Fri

${$pointer}{$i} is Fri

$pointer->{$i} is Fri

${$pointer{$i}} is

${$pointer->{$i}} is

 ================== end of test =================

 As you can see, the first two lines provided the expected output. The first 
reference is used in the same way as references to regular arrays. The second line uses 
the ${pointer} and then indexes using {$i}, and the leftmost $ de-references (gets) the 
value at the location reached after the indexing. See Lines 20 through 23. 

NOTE

When in doubt, print it out. Always use the print 
statements in Perl to print out values of suspect code. 
This way you can be sure of how Perl is interpreting 
your code. Print statements are a cheap tool to use for 
learning how the Perl interpreter works

Then, two lines of the output didn't work as expected. In the third line, $pointer{$i} 
tries to reference an array where there is no first element. Because the first element 
does not point to a valid string, nothing is printed. Nothing is printed in the fourth line 
of the output for the same reason. See lines 30 through 33. 

Multidimensional Arrays

You create a reference to an array through the statement @array = list. You use 
square brackets to create a reference to a complex anonymous array. Consider the 



following statement, which sets the parameters for a three-dimensional drawing 
program: 

$line = ['solid', 'black', ['1','2','3'] , ['4', '5', '6']];

The preceding statement constructs an array of four elements. The array is referred to 
by the scalar $line. The first two elements are scalars, indicating the type and color of 
the line to draw. The next two elements are references to anonymous arrays and 
contain the starting and ending points of the line. 

To get to the elements of the inner array elements, you can use the following 
multidimensional syntax:

$arrayReference->[$index] single-dimensional array 

$arrayReference->[$index1][$index2] two-dimensional array

$arrayReference->[$index1][$index2][$index3] three-dimensional array

You can create as complex a structure as your sanity, design practices, and computer 
memory allow. Be kind to the person who might have to manage your code-please keep it 
as simple as possible. On the other hand, if you are just trying to impress someone with 
your coding ability, Perl gives you a lot of opportunity to mystify yourself and improve 
your social life.

TIP

When you have more than three dimensions for any 
array, consider using a different data structure to 
simplify the code.

Let's see how creating arrays within arrays works in practice. See Listing 18.4 to see how 
to print out the information pointed at by the $list reference.

 

Listing 18.4. Using multi-dimensional array references.

1   #!/usr/bin/perl

2   #



3   # Using Multi-dimensional Array references

4   #

5   $line = ['solid', 'black', ['1','2','3'] , ['4', '5', '6']];

6   print "\$line->[0] = $line->[0] \n";

7   print "\$line->[1] = $line->[1] \n";

8   print "\$line->[2][0] = $line->[2][0] \n";

9   print "\$line->[2][1] = $line->[2][1] \n";

10  print "\$line->[2][2] = $line->[2][2] \n";

11  print "\$line->[3][0] = $line->[3][0] \n";

12  print "\$line->[3][1] = $line->[3][1] \n";

13  print "\$line->[3][2] = $line->[3][2] \n";

14  print "\n"; # The obligatory output beautifier.

 

$line->[0] = solid

$line->[1] = black

$line->[2][0] = 1

$line->[2][1] = 2

$line->[2][2] = 3

$line->[3][0] = 4

$line->[3][1] = 5

$line->[3][2] = 6

What about the third dimension for an array? Look at a modified version of the same 
program but add a new twist to the list just created. See Listing 18.5. 

 



Listing 18.5. Using multi-dimensional array references again. 

1   #!/usr/bin/perl

2   #

3   # Using Multi-dimensional Array references again

4   #

5   $line = ['solid', 'black', ['1','2','3', ['4', '5', '6']]];

6   print "\$line->[0] = $line->[0] \n";

7   print "\$line->[1] = $line->[1] \n";

8   print "\$line->[2][0] = $line->[2][0] \n";

9   print "\$line->[2][1] = $line->[2][1] \n";

10  print "\$line->[2][2] = $line->[2][2] \n";

11  print "\$line->[2][3][0] = $line->[2][3][0] \n";

12  print "\$line->[2][3][1] = $line->[2][3][1] \n";

13  print "\$line->[2][3][2] = $line->[2][3][2] \n";

14  print "\n";

 

There is no output for this listing.

 In this example of an array that's three deep, you must use a reference such as 
$line ->[2][3][0]. For a C programmer, this is akin to the statement 
Array_pointer[2][3][0], where the pointer is pointing to what's declared as an array 
with three indices. 

Can you see how easy it is to set up complex structures of arrays within arrays? The 
examples shown thus far have used only hard-coded numbers as the indices. There is 
nothing preventing you from using variables instead. 

As with array constructors, you can mix and match hashes and arrays to create as 



complex a structure as you want. 

Let's see how these two hashes and arrays can be combined. Listing 18.6 uses the point 
numbers and coordinates to define a cube. 

 

Listing 18.6. Defining a cube.

1  #!/usr/bin/perl

2  #

3  # Using Multi-dimensional Array and Hash references

4  #

5  %cube = (

6     '0', ['0', '0', '0'],

7     '1', ['0', '0', '1'],

8     '2', ['0', '1', '0'],

9     '3', ['0', '1', '1'],

10    '4', ['1', '0', '0'],

11    '5', ['1', '0', '1'],

12    '6', ['1', '1', '0'],

13    '7', ['1', '1', '1']

14    );

15 $pointer = \%cube;

16 print "\n Da Cube \n";

17 foreach $i (sort keys %$pointer) {

18    $list = $$pointer{$i};

19    $x = $list->[0];

20    $y = $list->[1];

21    $z = $list->[2];



22    printf " Point $i =  $x,$y,$z \n";

23 }

 

There is no output for this listing.

 In Listing 18.6, %cube contains point numbers and coordinates in a hash. Each 
coordinate itself is an array of three numbers. The $list variable is used to get a 
reference to each coordinate definition with the following statement: 

$list = $$pointer{$i};

After you get the list, you can reference off of it to get to each element in the list 
with the following statement: 

$x = $list->[0];

$y = $list->[1];

The same result-assigning values to $x, $y, and $z-could be achieved with the following 
two lines of code: 

($x,$y,$z) = @$list;

$x = $list->[0];

This works because you are de-referencing what $list points to and using it as an array, 
which in turn is assigned to the list ($x,$y,$z). The $x is still assigned with the -> 
operator. 

When you're working with hashes or arrays, de-referencing by -> is similar to de-
referencing by $. When you are accessing individual array elements, you are often faced 
with writing statements such as the following: 

$$names[0] = "Kamran";



$names->[0] = "Kamran";

Both lines are equivalent. The $names in the first line has been replaced with the -> 
operator in the second line. In the case of hashes, the two statements that do the same 
type of referencing are listed as shown in the following code: 

$$lastnames{"Kamran"} = "Husain";

$lastnames->{"Kamran"} = "Husain";

Array references are created automatically when they are first referenced in the left 
side of an equation. Using a reference such as $array[$i] creates an array into which 
you can index with $I. Scalars and even multidimensional arrays are created the same 
way. The following statement creates the contours array if it did not already exist: 

$contours[$x][$y][$z] = &xlate($mouseX,$mouseY);

Arrays in Perl can be created and grown on demand. Referencing them for the first time 
creates the array. Referencing them again at different indices creates the referenced 
elements for you. 

References to Subroutines

In the same way you reference individual items such as arrays and scalar variables, you 
can also point to subroutines. This is similar to pointing to a function in C. To construct 
such a reference, you use the following type of statement: 

$pointer_to_sub = sub { ... declaration of sub ... } ;

Notice the use of the semicolon at the end of the sub declaration. The subroutine 
pointed to by $pointer_to_sub points to the same function reference even if this 
statement is placed in a loop. This feature of Perl enables you to declare anonymous 
sub() functions in a loop without worrying about whether you are chewing up memory 
by declaring the same function over and over. 

To call a subroutine by reference, you must use the following type of reference: 

&$pointer_to_sub( parameters );



This code works because you are de-referencing the $pointer_to_sub and using it with 
the ampersand (&) as a pointer to a function. The parameters portion might or might not 
be empty depending on how your function is defined. 

The code within a sub is simply a declaration created through a previous statement. The 
code within the sub is not executed immediately, however. It is compiled and set for each 
use. Consider Listing 18.7.

 

Listing 18.7. References to subroutines. 

1 #!/usr/bin/perl

2 sub print_coor{

3     my ($x,$y,$z) = @_;

4     print "$x $y $z \n";

5     return $x;};

6  $k = 1;

7  $j = 2;

8  $m = 4;

9  $this  = print_coor($k,$j,$m);

10 $that  = print_coor(4,5,6);

 

$ test

1 2 3

4 5 6



 This output reflects that the assignment of $x, $y, and $z was done when the 
first declaration of print_coor was encountered as a call. In Listing 18.7, each 
reference $this and $that points to a different subroutine, the arguments to which 
were passed at run- time. 

Using Subroutine Templates

Subroutines are not limited to returning data types only; they can also return 
references to other subroutines. The returned subroutines run in the context of the 
calling routine but are set up in the original call that created them. This behavior is 
due to the way closure is handled in Perl. Closure means that if you define a function in 
one context, it runs in that particular context where it was first defined. (See a book 
on object-oriented programming to get more information on closure.) 

For an example of how closure works, Listing 18.8 shows code that you could use to set 
up different types of error messages. Such subroutines are useful in creating templates 
of all error messages. 

 

Listing 18.8. Using closures.

#!/usr/bin/perl

sub errorMsg {

         my $lvl = shift;

        #

        # define the subroutine to run when called.

        #

         return sub {

        my $msg = shift;  # Define the error type now.

        print "Err Level $lvl:$msg\n"; }; # print later.

         }



$severe  = errorMsg("Severe");

$fatal = errorMsg("Fatal");

$annoy = errorMsg("Annoying");

&$severe("Divide by zero");

&$fatal("Did you forget to use a semi-colon?");

&$annoy("Uninitialized variable in use");

 

$severe  = errorMsg("Severe");

$fatal   = errorMsg("Fatal");

$annoy   = errorMsg("Annoying");

 The subroutine errorMsg declared here uses a local variable called lvl. 
After this declaration, errorMsg uses $lvl in the subroutine it returns to the caller. 
The value of $lvl is therefore set in the context when the subroutine errorMsg is first 
called, even though the keyword my is used. The three calls that follow set up three 
different $lvl variable values, each in their own context: 

$severe  = errorMsg("Severe");

$fatal   = errorMsg("Fatal");

$annoy   = errorMsg("Annoying");

When the subroutine, errorMsg, returns, the value of $lvl is retained for each context 
in which $lvl was declared. The $msg value from the referenced call is used, but the 
value of $lvl remains what was first set in the actual creation of the function. 

Sounds confusing? It is. This is primarily the reason you do not see such code in most Perl 
programs. 



Using Subroutines to Work with Multiple Arrays

Using arrays is great for collecting relevant information in one place. Now let's see 
how we can work with multiple arrays through subroutines. You pass one or more 
arrays into Perl subroutines by reference. However, you have to keep in mind a few 
subtle things about using the @_ symbol when you process these arrays in the 
subroutine. Look at Listing 18.9, which is an example of a subroutine that expects a list 
of names and a list of phone numbers.

 

Listing 18.9. Passing multiple arrays.

1  #!/usr/bin/perl

2  @names = (mickey, goofy, daffy );

3  @phones = (5551234, 5554321, 666 );

4  $i = 0;

5  sub listem {

6      my (@a,@b) = @_;

7      foreach (@a) {

8         print "a[$i] = ". $a[$i] . " " . "\tb[$i] = " . $b[$i] 
."\n";

9          $i++;

10         }

11     }

12 &listem(@names, @phones);

 

a[0] = mickey     b[0] =



a[1] = goofy      b[1] =

a[2] = daffy      b[2] =

a[3] = 5551234    b[3] =

a[4] = 5554321    b[4] =

a[5] = 666        b[5] =

 Whoa! What happened to the @b array, and why is the rest of @a just like the 
array @b? This result occurs because the array @_ of parameters in a subroutine is one-I 
repeat, only one-long list of parameters. If you pass in fifty arrays, the @_ is one array 
of all the elements of the fifty arrays concatenated together. 

In the subroutine in Listing 18.9, the assignment my (@a, @b) = @_ gets loosely 
interpreted by your Perl interpreter as, "Let's see, @a is an array, so assign one array 
from @_ to @a and then assign everything else to @b." Never mind that the @_ is itself an 
array and will therefore get assigned to @a, leaving nothing to assign to @b. 

To illustrate this point, let's change the script to how it appears in Listing 18.10.

 

Listing 18.10. Passing a scalar and an array.

#!/usr/bin/perl

@names = (mickey, goofy, daffy );

@phones = (5551234, 5554321, 666 );

$i = 0;

sub listem {

    my ($a,@b) = @_;

    print " \$a is " . $a . "\n";

    foreach (@b) {

        print "b[$i] = $b[$i] \n";

        $i++;



        }

    # --------------------------------------------------

    # Actually, you could write the for loop as

    # foreach (@b) {

    #   print $_ . "\n" ;

    #   }

    # This your secret answer to Quiz question 18.4.

    # ----------------------------------------------------

    }

&listem(@names, @phones);

 

$ testArray

 $a is mickey

b[0] = goofy

b[1] = daffy

b[2] = 5551234

b[3] = 5554321

b[4] = 666

 Do you see how $a was assigned the first value and then @b was assigned the 
rest of the values? In order get around this @_ interpretation feature and pass arrays 
into subroutines, you have to pass arrays in by reference, which you do by modifying the 
script to look like the following: 

#!/usr/bin/perl



@names = (mickey, goofy, daffy );

@phones = (5551234, 5554321, 666 );

$i = 0;

sub listem {

    my ($a,$b) = @_;

    foreach (@$a) {

       print "a[$i] = " . @$a[$i] . " " . "\tb[$i] = " . @$b[$i] 
."\n";

        $i++;

        }

    }

&listem(\@names, \@phones);

The following major changes were necessary to bring the original script to this point: 

●     The local variables for the sub listem are now scalars, not array references. As a 
result, $a is the first item on the @_ list, and $b is the second item. 

●     The local parameters ($a and $b) are used as array references with the statements 
@$a and @$b, respectively. 

●     The call to the subroutine passes the references to the arrays with the backslash, 
\@names and \@phones, thus passing only two items to the subroutine. 

The following output matches what we expected: 

$ testArray2

a[0] = mickey     b[0] = 5551234

a[1] = goofy      b[1] = 5554321

a[2] = daffy      b[2] = 666



DO pass by reference whenever possible. 

DO pass arrays by reference when you are passing more 
than one array to a subroutine. 

DON'T use (@variable)=@_ in a subroutine unless you 
want to concatenate all the passed parameters into one 
long array 

Pass By Value or By Reference?

When used in a subroutine argument list, scalar variables are always passed by 
reference. You do not have a choice here. You can, however, modify the values of these 
variables if you really want to. To access these variables, you can use the @_ array and 
index each individual element in it using $_[$index], where $index counts from zero up. 

Arrays and hashes are different beasts altogether. You can either pass them as 
references once or pass references to each element in the array. For long arrays, the 
choice should be fairly obvious-pass the reference to the array only. In either case, you 
can use the references to modify what you want in the original array. 

The @_ mechanism concatenates all the input arrays in a subroutine into one long 
array. This feature is nice if you do want to process the incoming arrays as one long 
array. Usually, you want to keep the arrays separate when you process them in a 
subroutine, and passing by reference is the best way to do that. Hold that thought: 
Don't use globals. 

In short, pass by reference and respect the value of any global variable unless there is a 
strong compelling reason not to. 

References to File Handles

Sometimes, you have to write the same output to different output files. For example, an 
application programmer might want the output to go to the screen in one instance, the 
printer in another, and a file in another-or even all three at the same time. Rather 
than make separate statements for each handle, it would be nice to write something like 
the following: 

spitOut(\*STDIN);

spitOut(\*LPHANDLE);

spitOut(\*LOGHANDLE);



Notice that the file handle reference is sent with the \*FILEHANDLE syntax because you 
refer to the symbol table in the current package. In the subroutine that handles the 
output to the file handle, you would have code that looks something like the 
following: 

sub spitOut {

    my $fh = shift;

    print $fh "Gee Wilbur, I like this lettuce\n";

}

What Does the *variable Operator Do?

In UNIX (and other operating systems), the asterisk is a sort of wildcard operator. In 
Perl, you can refer to other variables and so on by using the asterisk operator: 

*iceCream;

When used in this manner, the asterisk is also known as a typeglob. The asterisk at the 
beginning of a term can be thought of as a wildcard match for all the mangled names 
generated internally by Perl. 

You can use a typeglob in the same way you use a reference because the de-reference 
syntax always indicates the kind of reference you want. ${*iceCream} and 
${\$iceCream} both indicate the same scalar variable. Basically, *iceCream refers to the 
entry in the internal _main associative array of all symbol names for the _main package. 
*kamran really translates to $_main{'kamran'} if you are in the _main package context. 
If you are in another package, the _packageName{} hash is used. 

When evaluated, a typeglob produces a scalar value that represents the first objects of 
that name. This includes file handles, format specifiers, and subroutines. 

Using Symbolic References… Again

Using brackets around references makes constructing strings easier: 

    $road = ($w)  ? "free":"high";

print "${road}way";



The preceding line prints highway or freeway depending on the value of $w. This syntax 
will be familiar to you if you write make files or shell scripts. In fact, you can use this 
${variable} construct outside of double quotes, as in the following example: 

print ${road};

print ${road} . "way";

print ${ road } . "way";

You can also use reserved words in the ${ } brackets. Check out the following lines: 

$if = "road";

print "\n ${if} way \n";

Using reserved words for anything other than their intended purpose, however, is 
playing with fire. Be imaginative and make up your own variables. You can use reserved 
words but will have to remember to force interpretation as a reserved word by adding 
anything that makes it more than a reference. It's generally not a good idea to use a 
variable called ${while}, because it is confusing to read. 

When you work with hashes, you have to create an extra reference to the index. In 
other words, you cannot use something like this: 

$clients { \$credit } = "despicable" ;

The \$credit variable will be converted to a string and won't be used correctly as an 
index in the hash. You have to use a two-step procedure such as this: 

$chist = \@credit;

$x{ $chist } = "despicable";

Declaring Variables with Curly Braces

The preceding section brings up an interesting point about curly braces for a use other 
than indexing into hashes. In Perl, curly braces are usually reserved for delimiting 
blocks of code. Assume you were returning the passed list by sorting it in reverse order. 



The passed list is in @_ of the called subroutine, so the following two statements are 
equivalent: 

sub backward {

    { reverse sort @_ ; }

    };

sub backward {

    reverse sort @_ ;

    };

When preceded by the @ operator, curly braces enable you to set up small blocks of 
evaluated code. 

#!/usr/bin/perl

sub average {

    ($a,$b,$c) = @_;

        $x = $a + $b + $c;

        $x2 = $a*$a + $b*$b + $c*$c;

    return ($x/3, $x2/3 ); }

$x = 1;

$y = 34;

$x = 47;

print "The midpt is @{[&average($x,$y,$z)]} \n";

This script prints 27 and 1121.6666. In the last line of code with the @{} in the double-
quoted string, the contents of the @{} are evaluated as a block of code. The block 



creates a reference to an anonymous array that contains the results of the call to the 
subroutine average($x,$y,$z). The array is constructed because of the brackets around 
the call. As a result, the [] construct returns a reference to an array, which in turn is 
converted by @{} into a string and inserted into the double-quoted string. 

More on Hard Versus Symbolic References

By now, you should be able to see the difference between hard and symbolic links. Let's 
look at some of the minor details of the two types of links and how these links are 
handled in Perl. 

When you use a symbolic reference that does not exist, Perl creates the variable for 
you and uses it. For variables that already exist, the value of the variable is 
substituted for the $variable string. This substitution is a powerful feature of Perl 
because you can construct variable names from variable names. 

Consider the following example: 

1 $lang = "java";

2 $java = "coffee";

3 print "${lang}\n";

4 print "hot${lang}\n";

5 print "$$lang \n"

Look at line 5. The $$lang is first reduced to $java. Then recognizing that $java can 
also be re-parsed, the value of $java ("coffee") is used. 

The value of the scalar produced by $$lang is taken to be the name of a new variable, 
and the variable at $name is used. The following is the output from this example: 

java

hotjava

coffee

The difference between a hard reference ($lang) and a symbolic reference ($$lang) is 
how the variable name is derived. With a hard reference, you are referring to a 
variable's value directly. Either the variable exists in the symbol table for the package 
you are in (that is, which lexical context you are in), or the variable does not exist. 
With a symbolic reference, you are using another level of indirection by constructing 



or deriving a symbol name from an existing variable. 

To force only hard references in a program and protect yourself from accidentally 
creating symbolic references, you can use the module called strict, which forces Perl 
to do strict type checking. To use this module, place the following statement at the top 
of your Perl script: 

use strict 'refs';

From this point on, only hard references are allowed for the rest of the script. You 
place this use strict ... statement within curly braces to limit the type checking to 
the code block within the braces. For example, in the following code, the type checking 
would be limited to the code in the subroutine java(): 

sub java {

   use strict "refs"; 

   #

   # type  checking here. 

}

...

# no type checking here.

To turn off the strict type checking at any time within a code block, use this statement: 

no strict 'refs';

One last point: Symbolic references cannot be used on variables declared with the my 
construct because these variables are not kept in any symbol table. Variables declared 
with the my construct are valid only for the block in which they are created. Variables 
declared with the local word are visible to all ensuing lower code blocks because they 
are in a symbol table. 

For More Information

In addition to consulting the obvious documents such as the Perl man pages, look at the 
Perl source code for more information. The 't/op' directory in the Perl source tree has 
some regression test routines that should definitely get you thinking. A lot of 



documents and references are available at the Web sites www.perl.com and 
www.metronet.com. 

Summary

The two types of references in Perl 5 are hard and symbolic. Hard links work like hard 
links in UNIX file systems. You can have more than one hard link to the same item; Perl 
keeps a reference count for you. This reference count is incremented or decremented as 
references to the item are created or destroyed. When the count goes to zero, the link 
and the object it is pointing to are both destroyed. Symbolic links, which are created 
through the ${} construct, are useful in providing multiple stages of references to 
objects. 

You can have references to scalars, arrays, hashes, subroutines, and even other 
references. References themselves are scalars and have to be de-referenced to the 
context before being used. Use @$pointer for an array, %$pointer for a hash, &$pointer 
for a subroutine, and so on for dereferencing. 

Multidimensional arrays are possible using references in arrays and hashes. 

Parameters are passed into a subroutine through references. The @_ array is really all 
the passed parameters concatenated in one long array. To send separate arrays, use the 
references to the individual items. 

Tomorrow's lesson covers Perl objects and references to objects. We have deliberately 
not covered Perl objects in this chapter because it requires some knowledge of 
references. References are used to create and refer to objects, constructors, and 
packages. 

Q&A

Q: How do I know what type of address a pointer is pointing to? 

A: The address printed out with the print statement on a reference has a qualifier 
word in front of it. For example, a reference to a hash has the word HASH 
followed by an address value, an array has the word ARRAY, and so on. 

Q: How are multidimensional arrays possible using Perl? 

A: References in Perl point to scalars only. References to arrays point to the 
beginning of the array. Arrays can contain references to other arrays, hashes, 
and so on. The way to create multidimensional arrays in Perl is by using 
references to references. 

Q: What's the best way to pass more than one array into a subroutine? 



A: Pass references to the arrays, using the \@arrayname for each array passed-as in 
the following call: 
mysub(\@one, \@two);

Within the subroutine, take each reference off one at a time.
my ($a, $b) = @_;

Now use @$a and @$b to get to the arrays passed into the subroutines. 

Q: Why is *moo more efficient to use than $_main{'moo'}? Is there a difference 
in usage? 

A: Both *moo and $_main{'moo'} mean the same variable (as long as you aren't using 
a package). *moo is more efficient because the reference is looked up once at 
compile time, whereas $_main{'moo'} is evaluated at runtime and evaluated each 
time it is run. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered and exercises to give you experience in using what you've learned. Try 
and understand the quiz and exercise answers before you go on to tomorrow's lesson. 

Quiz

1.  Given that $pointer is a pointer to a hash, what's wrong with the following line 
of code?
$x= ${$pointer->{$i}}; 

2.  Why is $b not being set in the following line of code? What do you have to do to 
make it okay?
sub xxx {
my ($a, $b) = @_;

} 
3.  What's the difference between these two lines of code?

printf "$i : $$pointer[$i++]; ";

printf " and $i : $pointer->[$i++]; \n"; 
4.  What do the following lines of code print out?

$HelpHelpHelp = \\\"Help";

print $$$$HelpHelpHelp; 
5.  What's the use of the ${variable} construct? How could the following three 

lines of code be rewritten?
$name = ${$scalarref};
draw(@{$coordinates}, $display); 

${$months}[0] = "March"; 

Exercises

1.  Write a Perl script to print out address types of different variables and complex 
structures. 



2.  Write a Perl code fragment that constructs an array of pointers to functions. 
How would you use it?
Strong Hint:
$foo = sub foo { print "foo\n"; }
$bar = sub bar { print "bar\n"; }
$yuk = sub yuk { print "yuk\n"; }
$huh = sub huh { print "huh\n"; }

@list = ($foo, $bar, $yuk, $huh); 
3.  Explain the difference between hard and symbolic references. 
4.  Write a Perl subroutine that takes two arrays as arguments and returns the 

reverse-sorted copy of each array. 
5.  Modify the following script to print the value of $this and $that. Are they the 

same? If not, why not?
#!/usr/bin/perl
sub print_coor{
my ($x,$y,$z) = @_;
print "$x $y $z \n";
return $x;};
$k = 1;
$j = 2;
$m = 4;
$this = print_coor($k,$j,$m);

$that = print_coor(4,5,6); 

    



Chapter 19

Object-Oriented Programming in Perl
by Kamran Husain 

CONTENTS

●     An Introduction to Modules 
❍     The Three Important Rules 

●     Classes in Perl 
●     Creating a Class 
●     Blessing a Constructor 

❍     Instance Variables 
●     Methods 
●     Exporting Methods 
●     Invoking Methods 
●     Overrides 
●     Destructors 
●     Inheritance 
●     Overriding Methods 
●     A Few Comments About Classes and Objects in Perl 
●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson teaches you how to use the object-oriented programming (OOP) features 
of Perl as well as how to construct objects in Perl. The discussion also includes 
inheritance, overriding methods, and data encapsulation. 

An Introduction to Modules

A module is a Perl package. Objects in Perl are based on references to data items within a 
package. An object in Perl is simply a reference to something that knows which class it 
belongs to. (References are covered on Day 18, "References in Perl 5.") For more 



information, you can consult the perlmod and perlobj text files at 
http://www.metronet.com. These files are the primary source of information on the 
Internet about Perl modules. 

In object-oriented programming with other languages, you declare a class and then 
create objects of that class. All objects of a particular class behave in a certain way, 
which is governed by the methods of that class. You can create new classes by defining 
new ones or by inheriting properties from an existing class. 

Programmers already familiar with object-oriented principles will recognize the 
terminology used here. Perl is, and pretty much always has been, an object-oriented 
language. In Perl 4, the use of packages provides different symbol tables from which to 
choose symbol names. Perl 5 changes the syntax a bit and somewhat formalizes the use 
of objects. 

The Three Important Rules

The next three declarations are extremely important to understanding how objects, 
classes, and methods work in Perl. 

●     A class is a Perl package. This package for a class provides the methods for objects. 
●     A method is simply a Perl subroutine. The only catch with writing such methods is 

that the name of the class is the first argument. 
●     An object in Perl is simply a reference to some data item within the class. 

The rest of today's lesson covers each of the preceding items in more detail. 

Classes in Perl

One rule is important enough to repeat: A Perl class is simply a package. When you see a 
Perl document that refers to a "class," think "package." Existing Perl 5 syntax enables 
you to create a class. If you are already a C programmer, you do not have to know a lot 
of new syntax. What might be a new concept to Perl 4 programmers is the use of the 
double colon (::) to signify the base and inherited classes. 

One of the key features of OOP is inheritance. The inheritance feature offered by Perl, 
however, is not the same as you might expect from other object-oriented languages. Perl 
classes inherit methods only; you must use your own mechanisms to implement data 
inheritance. 

Because each class is a package, it has its own name space with its own associative array 
of symbol names. Each class can therefore use its own independent set of symbol names. 
As with package references, you can address the variables in a class with the back quote 
(') operator. Members of a class are addressed as $class'$member. In Perl 5, you can use 

http://www.metronet.com/


the double colon instead of the ' to get the reference. For example, $class'member is 
the same as $class::$member. 

Creating a Class

This section covers the requisite steps to take when you create a new class. The example 
illustrates the semantics in the creation of a simple class called Cocoa, which is used for 
printing the required parts of a source code file for a simple Java application. You will 
not become a Java expert, nor will this package require you to have any experience in 
Java; the focus is the concept of creating a class. The example could have just as easily 
used a phone book application, but how many similar examples have you already seen in 
books?

NOTE

I am currently still developing the package Java.pm. It's 
named Cocoa.pm in development because it does not have 
the high caffeine content of a full-featured, or even 
mildly useful, Java.pm package. Perhaps after reading 
today's lesson you will be able to contribute to the 
Java.pm Perl package; if so, send e-mail to 
khusain@ikra.com. 

Time now for a shameless plug for Perl Unleashed, which is 
also by Sams Publishing, due the summer of 1996. It will 
contain gobs of information about writing and using 
classes and packages-and track the initial development 
stages of the Java.pm package. (Hmmm. Maybe the 
package should be called Bean.pm in its early stages.) 

First of all, create a package file called Cocoa.pm. (The .pm extension, which is the 
default extension for packages, stands for Perl module.) A module is a package, and a 
package is a class for all practical purposes. Before you do anything else, place a 1; in 
the file. As you add more lines to the package file, make sure you keep the 1; as the last 
line. The following code shows the basic structure of the file: 

package Cocoa;

#

# Put "require" statements in for all required,imported packages

#



#

# Just add code here

#

1;   # terminate the package with the required 1;

This requirement is important: Don't forget to always keep the 1; line as the last of the 
package file. This statement is required for all packages in Perl. If you forget this 
statement, your package will not be processed by Perl. 

Congratulations; you have just created your first package file. Now you are ready to 
add your methods to this package and make it a class. The first method you should add is 
the new() method, which must be called whenever you create a new object. The new() 
method is the constructor for the object. 

Blessing a Constructor

A constructor is a Perl subroutine in a class that returns a reference to something that 
has the class name attached to it. Connecting a class name with a reference is referred 
to as "blessing" an object because the function to establish the connection is called 
bless. 

The following code segment shows the syntax for the bless function: 

bless YeReference [,classname]

YeReference is the reference to the object being blessed. The classname is optional and 
specifies the name of the package from which the object will get methods. If the 
classname is not specified, the name of the current package is used instead. 

The way to create a constructor in Perl is to return a reference to an internal 
structure that has been blessed into this Cocoa class. Listing 19.1 shows the initial 
Cocoa.pm package. 

 

Listing 19.1. The initial Cocoa.pm package. package Cocoa;



sub new {

    my $this = {};  # Create an anonymous hash, and #self points to 
it.

    bless $this;       # Connect the hash to the package Cocoa.

    return $this;     # Return the reference to the hash.

    }

1;

 

There is no output for Listing 19.1. 

 The {} constructs a reference to a hash that contains no key/value pairs. 
The returned value to this hash is assigned to the local variable $this. The 
bless() function takes that reference to $this, tells the object it references 
that it's now a Cocoa, and returns the reference. 

The returned value to the calling function now refers to this anonymous hash. On 
return from the new() function, the $this reference is destroyed, but the calling 
function keeps a reference to this hash. Therefore, the reference count to the 
hash won't be zero and Perl keeps the hash in memory. (You do not have to keep it 
around, but it's nice to have it around for reference later.) 

To create an object, you make a call such as the following: 

$cup = new Cocoa;

Listing 19.2 shows you how to use this package to create the constructor. 

 



Listing 19.2. Creating the constructor.

1  #!/usr/bin/perl

2  push (@INC,'pwd');

3  use Cocoa;

4  $cup = new Cocoa;

 Line 1 refers to the location of the Perl interpreter to use. Your Perl 
interpreter may be located at /usr/local/bin/perl or wherever you installed it. 

In line 2, the local directory is added to the search path in @INC for the list of 
paths to use when looking for a package. You can create your module in a 
different directory and specify the path explicitly there. Had I created the 
package in /home/khusain/test/scripts/, line 2 would read as follows: 

push (@INC,"/home/khusain/test/scripts");

In line 3, you include the package Cocoa.pm to get all the functionality in your 
script. The use statement asks Perl to look in the @INC path for a file named 
Cocoa.pm and include it in the copy of the source file being parsed. The use 
statement is required if you want to work with a class. 

Line 4 creates the Cocoa object by calling the new function on it. Now comes the 
beauty (and confusion and power) of Perl. There is more than one way to do this. 
You can rewrite line 4 as the following: 

$cup = Cocoa->new();

If you are a C programmer, you can use the double colons (::) to force the 
function new() from the Cocoa package. As a result, line 4 could also be written as 
the following: 

$cup = Cocoa::new();

Nothing prevents you from adding more code in the constructor than what is 



shown here. For the Cocoa.pm module, you can, if you like, print a disclaimer when 
each object is created. You might want to use the constructor to initialize 
variables or set up arrays or pointers specific to the module.

DO initialize variables in your module in the 
constructor. 

DO use the my construct to create variables in a method. 

DON'T use the local construct in a method unless you 
really do want the variables to be passed down to other 
subroutines. 

DON'T use global variables in the class module. 

TIP

When you are working with instance variables, it is 
sometimes easy to visualize a Perl object as simply an 
associative array. Then it's easy to see that each index in 
the associative array is a member of that class and each 
item at the index of the associative array is a value of 
that member.

Listing 19.3 shows what the Cocoa constructor looks like. 

 

Listing 19.3. Revised constructor for Cocoa.pm. sub new {

    my $this = {};

    print "\n /* \n ** Created by Cocoa.pm \n ** Use at own risk";

    print "\n ** Did this code even get pass the javac compiler? ";

    print "\n **/ \n";

    bless $this;



    return $this;

    }

 

The following shows the output from running the test script called testme on this 
bare-bones class: 

$ testme

 /*

 ** Created by Cocoa.pm

 ** Use at own risk

 ** Did this code even get pass the javac compiler?

 **/

Regardless of which of the three methods shown here you used to create the Cocoa 
object, you should see the same output. 

 Great. Now you've created some comments at the beginning of a file with 
some print statements. You can just as easily call other functions in or outside of 
the package to get more initialization functionality. For example, as development 
progresses, you see the new() function evolve to resemble the following: 

sub new {

    my $this = {}

    bless $this;

    $this->doInitialization();

    return $this;

}



When you create any given class, you should allow it to be inherited. You should 
be able to call the new operator with the class name as the first parameter. This 
capability to parse the class name from the first argument causes the class to be 
inherited. As a result, the new function becomes more or less like the following: 

sub new {

        my $class = shift;        # Get the request class name

        my $this = {};

        bless $this, $class        # Use class name to bless() 
reference

        $this->doInitialization();

        return $this;

    }

The preceding method forces your class users to make calls in the form of one of 
three ways: 

●     Cocoa::new() 
●     Cocoa->new() 
●     new Cocoa; 

What if you wanted to use a reference to the object instead, such as $obj->new()? 
The doInitialization() method used will be whatever $class you blessed the 
object into. The following code uses the function call ref() to determine if the 
class exists per se. The ref() function returns true if the item passed to it is a 
reference and null if it is not a reference. With classes, the true value returned 
from the ref() function is the name of the class. 

sub new {

    my $this = shift;                # Get the class name

    my $class = ref($this) || $this;    

    Â# If class exists, use it  else use reference.

    my $this = {};

    bless $this, $class

    $this->doInitialization();



    return $this;

}

Within the class package, the methods typically treat the reference as an 
ordinary reference. Outside the class package, the reference is generally 
treated as an opaque value that can only be accessed through the class's methods. 
You can access the values within the package directly, but it's not a good idea to 
do so because such access defeats the whole purpose of object orientation. 

It's possible to bless a reference object more than once. However, the caveat is 
that the new class must get rid of the object at the previously blessed reference. 
For C and Pascal programmers, this is like assigning a pointer to malloced memory 
and then assigning the same pointer to another location without first freeing the 
previous location. In effect, a Perl object must belong to only one class at a time. 

What's the real difference between an object and a reference? Perl objects are 
blessed to belong to a class. References are not blessed; if they are, they belong 
to a class and are objects. Objects know to which class they belong. References do 
not have a class to which they belong. 

Instance Variables

The arguments to a new() function for a constructor are called instance variables. 
Instance variables are used to do initialization for each instance of an object as 
it's created. For example, the new() function could expect a name for each new 
instance of the object created. Using instance variables allows you to customize 
each object as it is created. 

You can use either an anonymous array or anonymous hash to hold instance 
variables. To use a hash to store the parameters coming in, the code would 
resemble the following: 

sub new {

        my $type = shift;

        my %parm = @_;

        my $this = {};

        $this->{'Name'} = $parm{'Name'};

        $this->{'x'}  = $parm{'x'};



        $this->{'y'}  = $parm{'y'};

        bless $this, $type;

}

You can also use an array instead of a hash to store the instance variables. 

sub new {

        my $type = shift;

        my %parm = @_;

        my $this = [];

        $this->[0] = $parm{'Name'};

        $this->[1] = $parm{'x'};

        $this->[2] = $parm{'y'};

        bless $this, $type;

}

To construct an object, you can pass the parameters with the new() function call. 
For example, the call to create the Cocoa object becomes the following: 

$mug = Cocoa::new( 'Name' => 'top',

'x' => 10,

'y' => 20 );

The => operator has the same function of the comma operator, but => is a bit more 
readable. You can write this code with commas instead of the => operator if you 
prefer. 

To access the variables as you would any other data members, you can use the 
following statements: 

print "Name=$mug->{'Name'}\n";

print "x=$mug->{'x'}\n";

print "y=$mug->{'y'}\n";



Methods

A method in a Perl class is simply a Perl subroutine. Perl doesn't provide any 
special syntax for method definition. A method expects its first argument to be 
the object or package on which it is invoked. Perl has two types of methods: static 
and virtual. 

A static method expects a class name as the first argument. A virtual method expects a 
reference to an object as the first argument. The way each method handles the 
first argument determines whether the method is static or virtual. 

A static method applies functionality to the entire class as a whole because it 
uses the name of the class. Functionality in static methods is therefore applicable 
to all objects of the class. Generally, static methods ignore the first argument 
because they already know which class they are in. Constructors are static 
methods. 

A virtual method expects a reference to an object as its first argument. Typically, 
the first thing a virtual method does is shift the first argument into a self or this 
variable and then use that shifted value as an ordinary reference. For example, 
consider the following code: 

1. sub nameLister {

2.     my $this = shift;

3.     my ($keys ,$value );

4.     while (($key, $value) = each (%$this)) {

5.         print "\t$key is $value.\n";

6.     }

7. }

Line 2 in the listing is where the $this variable is set to point to the object. In line 
4, the $this array is de-referenced at every $key location.

TIP

Look at the .pm files in the Perl distribution for sample 
code that will show you how methods are declared and 
used.



Exporting Methods

If you tried to invoke the Cocoa.pm package right now, you'd get an error message 
from Perl at compile time about the methods not being found. This error occurs 
because the Cocoa.pm methods have not been exported. To export these functions, 
you need the Exporter module. Add the following lines to the beginning of code in 
the package: 

require Exporter;

@ISA = qw(Exporter);

These two lines force the inclusion of the Exporter.pm module and then set the 
@ISA array with the name of the Exporter class to look for. 

To export your own class's methods, you list them in the @EXPORT array. For 
example, to export the closeMain and declareMain methods, you use the following 
statement: 

@EXPORT(declareMain, closeMain);

Inheritance in a Perl class is through the @ISA array. The @ISA array does not have 
to be defined in every package; however, when it is defined, Perl treats it as a 
special array of directory names. This array is similar to the @INC array, where 
directories are searched for files to include. The @ISA array contains the names of 
the classes (packages) to look for methods in other classes in if a method in the 
current package is not found. The @ISA array contains the names of the base classes 
from which the current class inherits. The search is done in the order that the 
classes are listed in the @ISA arrays. 

All methods called by a class must belong to the same class or the base classes 
defined in the @ISA array. If a method isn't found in the @ISA array, Perl looks for 
an AUTOLOAD() routine. This optional routine is defined as sub in the current 
package. To use the AUTOLOAD function, you call the autoload.pm package with the 
use Autoload; statement. The AUTOLOAD function tries to load the called function 
from the installed Perl libraries. If the AUTOLOAD call also fails, Perl makes one 
final try at the UNIVERSAL class, which is the catch-all for all methods not defined 
elsewhere. Perl generates an error about unresolved functions if this step also 
fails. 

Invoking Methods



There are two ways to invoke a method for an object: by making a reference to an 
object (virtual) or explicitly referring to the class name (static). You have to 
export a method to be able to call it. Add a few more methods to the Cocoa class 
to get the file to resemble the following code: 

package Cocoa;

require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(setImports, declareMain, closeMain);

#

# This routine creates the references for imports in Java functions

#

sub setImports{

    my $class = shift @_;

    my @names = @_;

    foreach (@names) {

    print "import " .  $_ . ";\n";

    }

    }

#

# This routine declares the main function in a Java script

#

sub declareMain{

    my $class = shift @_;

    my ( $name, $extends, $implements) = @_;

    print "\n public class $name";



    if ($extends) {

            print " extends " . $extends;

    }

    if ($implements) {

            print " implements " . $implements;

    }

   print " { \n";

}

#

# This routine declares the main function in a Java script

#

sub closeMain{

   print "} \n";

}

#

#  This subroutine creates the header for the file.

#

sub new {

    my $this = {};

    print "\n /* \n ** Created by Cocoa.pm \n ** Use at own risk \n */ 
\n";

    bless $this;

    return $this;

    }

1;

Now, write a simple Perl script to use the methods for this class. Because you can 



only start and close the header, examine the following code for a script to 
create a skeleton Java applet source: 

#!/usr/bin/perl

use Cocoa;

$cup = new Cocoa;

$cup->setImports( 'java.io.InputStream', 'java.net.*');

$cup->declareMain( "Msg" , "java.applet.Applet", "Runnable");

$cup->closeMain();

This script generates code for a Java applet called Msg that extends the 
java.applet.Applet applet and implements functions that are runnable. You call 
the function with the $cup->... call. The following three lines of code: 

$cup->setImports( 'java.io.InputStream', 'java.net.*');3

$cup->declareMain( "Msg" , "java.applet.Applet", "Runnable");

$cup->closeMain();

could be rewritten as functions: 

Cocoa::setImports($cup,  'java.io.InputStream', 'java.net.*');

Cocoa::declareMain($cup, "Msg" , "java.applet.Applet", "Runnable");

Cocoa::closeMain($cup);

This type of equivalence was shown in the section "Blessing a Constructor," 
earlier today. In both cases, the first parameter is the reference to the object 
itself. Running the test script shown generates the following output: 

 /*

 ** Created by Cocoa.pm



 ** Use at own risk

 */

import java.io.InputStream;

import java.net.*;

 public class Msg extends java.applet.Applet implements Runnable {

}

An important note about calling the methods: If you have any arguments in a 
method, use parentheses if you are using the -> (also known as indirect) method. 
The parentheses are required to include all the arguments with the following 
statement: 

$cup->setImports( 'java.io.InputStream', 'java.net.*');

However, the following statement: 

Cocoa::setImports($cup,  'java.io.InputStream', 'java.net.*');

can also be rewritten without parentheses as this: 

Cocoa::setImports $cup,  'java.io.InputStream', 'java.net.*' ;

The choice is yours about how you make your code readable to other 
programmers. Use parentheses if you feel that it will make the code more 
readable. 

Overrides

Sometimes you want to specify which class's method to use, such as when the same 
named method is specified in two different classes. For example, if the function 
grind is defined in both Espresso and Qava classes, you can specify which class's 
function to use by using the :: operator. The following calls would use the call 
in Espresso: 

$mess = Espresso::grind("whole","lotta","bags");



Espresso::grind($mess, "whole","lotta","bags");

The following calls would use the grind() function in the Qava class: 

$mess = Qava::grind("whole","lotta","bags");

Qava::grind($mess, "whole","lotta","bags");

You might want to call a method based on some action that the program you are 
writing has already taken. In other words, you want to use the Qava method for a 
certain condition and the Espresso method for another. In this case, you can use 
symbolic references to make the call to the required function, as in the 
following example: 

$method = $local ? "Qava::" : "Espresso::";

$cup->{$method}grind(@args);

Destructors

Perl tracks the number of links to objects. When the last reference to an object 
is freed to the memory pool, the object is automatically destroyed. This 
destruction of the object could occur after your code stops and the script is 
about to exit. For global variables, the destruction happens after the last line in 
your code executes. 

If you want to capture control just before the object is freed, you can define a 
DESTROY() method in your class. Note the use of all capital letters in the name. 
The DESTROY() method is called just before the object is released, which enables 
you to do any necessary cleanup. The DESTROY() function does not call other 
DESTROY() functions automatically; Perl doesn't do nested destruction for you. If 
your constructor re-blessed a reference from one of your base classes, your 
DESTROY() might need to call DESTROY() for any base classes. All object references 
that are contained in a given object are freed and destroyed automatically when 
the current object is freed. 

Usually, you do not have to define a DESTROY function, but when you do need it, it 
takes the following form: 

sub DESTROY {



#

# Add code here.

#

}

For most purposes, Perl uses a simple, reference-based garbage collection system. 
The number of references to any given object at the time of garbage collection 
must be greater than zero, or the memory for that object is freed. When your 
program exits, an exhaustive search-and-destroy function in Perl does garbage 
collection. Everything in the process is summarily deleted. In UNIX or UNIX-like 
systems, this might seem like a waste, but it's actually quite necessary to perform 
in embedded systems or in a multithreaded environment. 

Inheritance

Methods in classes are inherited with the paths in the @ISA array. Variables must 
be set up explicitly for inheritance. Assume you define a new class called Bean.pm 
to include some of the functionality that another class Coffee.pm will inherit. 

The example in this section demonstrates how to inherit instance variables from 
one class (also referred to as a "superclass" or "base class"). The steps in 
inheritance require calling the superclass's constructor and adding one's own 
instance variables to the new object. 

In this example, the Coffee class inherits values from the base class called Bean. 
The two files are called Coffee.pm and Bean.pm, respectively. 

Listing 19.4 is the code for Bean.pm. 

 

Listing 19.4. The code for Bean.pm. 

package Bean;

require Exporter;

@ISA = qw(Exporter);



@EXPORT = qw(setBeanType);

sub new {

    my $type = shift;

    my $this = {};

    $this->{'Bean'} = 'Colombian';

    bless $this, $type;

    return $this;

    }

#

# This subroutine sets the class name

sub setBeanType{

    my ($class, $name) =  @_;

    $class->{'Bean'} = $name;

    print "Set bean to $name \n";

    }

1;

 

Listing 19.4 has no output.

 In this listing, the $this variable sets a value in the anonymous hash for 
the 'Bean' type to be 'Colombian'. The setBeanType() method is also declared so 
that the 'Bean' type can also be changed by a program. 

The subroutine for resetting the value of 'Bean' uses the $class reference to get 
to the anonymous hash for the object. Remember that a reference to this 
anonymous hash created the reference in the first place with the new() function. 

The values in the Bean class will be inherited by the Coffee class. The Coffee.pm 



file is shown in Listing 19.5. 

 

Listing 19.5. The Coffee.pm file. 

1  #

2  # The Coffee.pm file to illustrate inheritance.

3  #

4  package Coffee;

5  require Exporter;

6  require Bean;

7  @ISA = qw(Exporter, Bean);

8  @EXPORT = qw(setImports, declareMain, closeMain);

9  #

10 # set item

11 #

12 sub setCoffeeType{

13     my ($class,$name) =  @_;

14     $class->{'Coffee'} = $name;

15     print "Set coffee type to $name \n";

16     }

17  #

18  #  constructor

19  #

20  sub new {

21      my $type  = shift;

22       my $this  = Bean->new();     ##### <- LOOK HERE!!! ####

23      $this->{'Coffee'} = 'Instant';  # unless told otherwise



24      bless $this, $type;

25      return $this;

26      }

27  1;

 

Listing 19.5 has no output.

 Note the use of the require Bean; statement in line 6. This line forces the 
inclusion of the Bean.pm file and all its related functions. Lines 12 through 16 
define a sub-routine to use when resetting the value of the local variable in 
$class->{'Coffee'}. 

Look at the new() constructor for the Coffee class in line 20. The $this reference 
points to the anonymous hash returned by Bean.pm and not a hash created locally. 
In other words, the following statement creates an entirely different hash that 
has nothing to do with the hash created in the Bean.pm constructor: 

my $this = {};  # This is not the way to do it for inheritance.

my $this = $theSuperClass->new();  # this is the way.

Listing 19.6 shows how to call these functions. 

 

Listing 19.6. Calling inherited methods.

1   #!/usr/bin/perl

2   push (@INC,'pwd');

3   use Coffee;

4   $cup = new Coffee;



5   print "\n -------------------- Initial values ------------ \n";

6   print "Coffee: $cup->{'Coffee'} \n";

7   print "Bean: $cup->{'Bean'} \n";

8   print "\n -------------------- Change Bean Type ---------- \n";

9   $cup->setBeanType('Mixed');

10  print "Bean Type is now $cup->{'Bean'} \n";

11  print "\n ------------------ Change Coffee Type ---------- \n";

12  $cup->setCoffeeType('Instant');

13  print "Type of coffee: $cup->{'Coffee'} \n";

 

 -------------------- Initial values ------------

Coffee: Instant

Bean: Colombian

 -------------------- Change Bean Type ----------

Set bean to Mixed

Bean Type is now Mixed

 ------------------ Change Coffee Type ----------

Set coffee type to Instant

Type of coffee: Instant

 The initial values for the 'Bean' and 'Coffee' indices in the anonymous 
hash for the object are printed first. The member functions are called to set the 
values to different names and then printed. 

Methods can have several types of arguments. It's how you process the arguments 



that counts. For example, you can add the following method to the Coffee.pm 
module: 

sub makeCup {

    my ($class, $cream, $sugar, $dope) = @_;

    print "\n================================== \n";

    print "Making a cup \n";

    print "Add cream \n" if ($cream);

    print "Add $sugar sugar cubes\n" if ($sugar);

    print "Making some really addictive coffee ;-) \n" if ($dope);

    print "================================== \n";

}

The function makeCup() takes three arguments but processes them only if it sees 
them. To test this functionality, consider Listing 19.7. 

 

Listing 19.7. Using the makeCup() function.

1   #!/usr/bin/perl

2   push (@INC,'pwd');

3   use Coffee;

4   $cup = new Coffee;

5   #

6   #  With no parameters

7   #

8   print "\n Calling  with no parameters: \n";

9   $cup->makeCup;

10  #

11  #  With one parameter



12  #

13  print "\n Calling  with one parameter: \n";

14  $cup->makeCup('1');

15  #

16  #  With two parameters

17  #

18  print "\n Calling  with two parameters: \n";

19  $cup->makeCup(1,'2');

20  #

21  #  With all three parameters

22  #

23  print "\n Calling  with three parameters: \n";

24  $cup->makeCup('1',3,'1');

 

Calling  with no parameters:

==================================

Making a cup

==================================

 Calling  with one parameter:

==================================

Making a cup

Add cream

==================================



 Calling  with two parameters:

==================================

Making a cup

Add cream

Add 2 sugar cubes

==================================

 Calling  with three parameters:

==================================

Making a cup

Add cream

Add 3 sugar cubes

Making some really addictive coffee ;-)

==================================

 Line 9 calls the function with no parameters. In line 14, the function call 
has one parameter. The parameters are passed either as strings or integers, 
something this particular method does not care about. Look at line 19 and line 24, 
where both strings and numbers are passed in the same function call. However, 
some methods you write in the future might require this distinction. 

In any event, you can have default values set in the function if the expected 
parameter is not passed. The behavior of the method can be different depending on 
the number of arguments you pass it. 

Overriding Methods

Inheriting functionality from another class is beneficial in that you can get all 
the exported functionality of the base class in your new class. To see an example 
of how this works, add a function in the Bean.pm class called printType. Here's the 
subroutine: 



sub printType {

    my $class =  shift @_;

    print "The type of Bean is $class->{'Bean'} \n";

}

Do not forget to update the @EXPORT array by adding the name of the function to 
export. The new statement should look like this: 

@EXPORT = qw(setBeanType, printType, printType);

Now call the printType function. The next three lines show three ways to call the 
function: 

$cup->Coffee::printType();

$cup->printType();

$cup->Bean::printType();

The output from all three lines is the same: 

The type of Bean is Mixed

The type of Bean is Mixed

The type of Bean is Mixed

Why is this so? There is no printType() function in the inheriting class, so the 
printType() function in the base class is used instead. Naturally, if you want your 
own class to have its own printType function, you have to define it. 

In the Coffee.pm file, add the following lines: 

#

# This routine prints the type of $class->{'Coffee'}

#



sub printType {

    my $class =  shift @_;

    print "The type of Coffee is $class->{'Coffee'} \n";

}

You must also modify the @EXPORT to work with this function: 

@EXPORT = qw(setImports, declareMain, closeMain, printType);

Now the output from the three lines looks like this: 

The type of Coffee is Instant

The type of Coffee is Instant

The type of Bean is Mixed

The base class function is called only when the Bean:: override is given. In the 
other cases, only the inherited class function is called. 

What if you do not know the base class name or even where the name is defined? In 
this case, you can use the SUPER:: pseudo-class reserved word. Using the SUPER:: 
override enables you to call an overridden superclass method without actually 
knowing where that method is defined. The SUPER:: construct is meaningful only 
within the class. 

If you're trying to control where the method search begins and you're executing 
in the class itself, you can use the SUPER:: pseudo class, which instructs Perl to 
start looking in your base class's @ISA list without explicitly naming it: 

$this->SUPER::function( ... argument list ... );

Instead of Bean:: we can use SUPER::. The call to the function printType() becomes 

$cup->SUPER::printType();

and the output is the following: 



The type of Bean is Mixed

A Few Comments About Classes and Objects in Perl

One advertised strength of object-oriented languages is the ease with which new 
code can use old code. Packages in Perl let you reuse code through the use of 
objects and inheritance. OOP languages use data encapsulation to let you hide the 
inner workings of complicated code. Packages and modules in Perl provide a great 
deal of data encapsulation with the use of the my construct. Perl, however, does 
not guarantee that a class inheriting your code will not attempt to access your 
class variables directly, thereby eliminating the advantage of data encapsulation. 
They can if they really want to; however, this type of procedure is considered bad 
practice, and shame on you if you do it.

DO define methods to access class variables. 

DON'T access class variables directly from outside the 
module. 

When writing a package, you should ensure that everything a method needs is 
available through the object or is passed as a parameter to the method. From 
within the package, access any global variables only through references passed 
through methods. 

For static or global data to be used by the methods, you have to define the 
context of the data in the base class using the local() construct. The subclass 
will then call the base class to get the data for it. On occasion, a subclass might 
want to override that data and replace it with new data. When this happens, the 
superclass might not know how to find the new copy of the data. In such cases, it's 
best to define a reference to the data and then have all base classes and 
subclasses modify the variable through that reference. 

Finally, you will see references to objects and classes such as the following: 

use Coffee::Bean;

This code is interpreted to mean "Look for Bean.pm in the Coffee subdirectory in 
all the directories in the @INC array." If I were to move Bean.pm into the ./Coffee 



directory, all the previous examples would work with the new use statement. The 
advantage to this approach is that you have one subclass class file in one 
directory and the base class in a lower directory. It helps keep code organized. To 
have a statement like the following: 

use Another::Sub::Menu;

you would see a directory sub-tree like this: 

./Another/Sub/Menu.pm

Summary

This chapter provides a brief introduction to object-oriented programming in 
Perl. Perl provides the OOP features of data encapsulation and inheritance using 
modules and packages. A class in Perl is simply a package. A package for a class 
provides all the methods for objects created for the class. 

An object is simply a reference to data that knows which class it belongs to. A 
method in a class is simply a subroutine. The only catch about writing such 
methods is that the name of the class is always the first argument of the method. 

The bless() function is used to tie a reference to a class name. The bless() 
function is called in the constructor function new() to create an object and then 
connect the reference to the object with the name of the class. 

With inheritance, the base class is the class from which methods (and data) are 
inherited. The base class is also called the superclass. The class that inherits 
these items from the superclass is called the subclass. Multiple inheritance is 
allowed in Perl. Data inheritance is the programmer's responsibility and requires 
using references. The subclass is allowed to know things about its immediate 
superclass; the superclass is not allowed to know anything about a subclass. 

Q&A

Q: What does the bless() function do? 

A: The bless() function takes one or two arguments. The first argument is a 
reference to an object. The second argument is optional and specifies the name of 
a class; if the name is not specified, the default is the current class. After the 
call, the reference uses the name as its class name. As a result, the reference 
becomes an object of the class whose name was specified. 



Q: What's the difference between an object and a reference? 

A: Objects are blessed; references are not. Objects belong to a class, but references 
do not have to. 

Q: What's the difference between static and virtual methods? 

A: Static methods expect a class name as the first argument. Virtual methods expect 
a reference to an object as the first argument. Static methods are class-wide; 
virtual methods are object-specific. 

Q: I just added a method to my class file, but it is never called! What's wrong? 

A: Make sure you are using the require Exporter; statement and that the name of 
the new function is in the @EXPORTER array. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of 
the material covered and exercises to give you experience in using what you've 
learned. Try and understand the quiz and exercise answers before you go on to 
tomorrow's lesson. 

Quiz

1.  Show at least three ways to create a new object of a given class, Balloon. 
2.  What's wrong the following lines of code?

{
my $x; my $y;
$x = \$y;

} 
3.  What are the three most important rules about OOP in Perl? 
4.  How do you override a call to a method to use the base class instead of the 

subclass? 

Exercises

1.  Write a simple class to print out the day of the week using the Zellers 
congruence formula to get the day of the week given a date. The following 
shows the formula in Perl code:
$zy = $year;
$zm = ($month + 10) % 12;
$zy- if ($m > 10);
$zc = int ( $y / 100 );
$yy = $year % 100;
$zeller = ( int ( (26*$zm - 2)/10) + $dayOfMonth
+ $yy + int($yy/4)

+ int ($zc/4) - 2* $zc ) % 7; 
2.  Extend the class you just created to allow specifying a date at creation 



time where the day, month, year, or all three can be optional. Hint: Use the 
date function to get the current date. 

3.  Create a class to list the entire directory tree when given a path name. 
4.  Modify the following function to print black if no parameters are passed to 

it:sub makeCup {
my ($class, $cream, $sugar, $dope) = @_;
print "\n================================== \n";
print "Making a cup \n";
print "Add cream \n" if ($cream);
print "Add $sugar sugar cubes\n" if ($sugar);
print "Making some really nice coffee ;-) \n" if ($dope);
print "================================== \n";

} 

    



Chapter 20

Miscellaneous Features of Perl

CONTENTS

●     The require Function 
❍     The require Function and Subroutine Libraries 
❍     Using require to Specify a Perl Version 

●     The $#array Variables 
❍     Controlling Array Length Using $#array 

●     Alternative String Delimiters 
❍     Defining Strings Using << 

●     Special Internal Values 
●     Using Back Quotes to Invoke System Commands 
●     Pattern Matching Using ?? and the reset Function 

❍     Using reset with Variables 
●     Other Features of the <> Operator 

❍     Scalar Variable Substitution and <> 
❍     Creating a List of Filenames 

●     Global Indirect References and Aliases 
●     Packages 

❍     Defining a Package 
❍     Switching Between Packages 
❍     The main Package 
❍     Referring to One Package from Another 
❍     Specifying No Current Package 
❍     Packages and Subroutines 
❍     Defining Private Data Using Packages 
❍     Packages and System Variables 
❍     Accessing Symbol Tables 

●     Modules 
❍     Creating a Module 
❍     Importing Modules Into Your Program 
❍     Using Predefined Modules 

●     Using Perl in C Programs 
●     Perl and CGI Scripts 
●     Translators and Other Supplied Code 



●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 
❍     Exercises 

Today's lesson describes the features of Perl that have not been covered in previous 
chapters: 

●     The require function, which retrieves code from other files 
●     The $#array variables 
●     Alternative methods of string quoting using q, qq, qw, and << 
●     The special internal values __LINE__, __FILE__, and __END__ 
●     Incorporating output from other commands using back quotes 
●     The ?? pattern-matching construct and the reset function 
●     Using <> with indirect file variables and as a filename specifier 
●     Using the *name construct globally 
●     Packages 
●     Modules 

Today's lesson also provides a brief overview of the following topics: 

●     Using Perl in C programs 
●     Using Perl in CGI scripts 
●     Translators from other languages to Perl 

The require Function 

The require function provides a way to break your program into separate files and 
create libraries of functions. For example, if you have stored Perl statements in the file 
myfile.pl, you can include them as part of your program by adding the following 
statement: 

require ("myfile.pl");

When the Perl interpreter sees this require statement, it searches the directories 
specified by the built-in array variable @INC for a file named myfile.pl. If such a file is 
found, the statements in the file are executed; if no such file exists, the program 
terminates and prints the error message 

Can't find myfile.pl in @INC



on your screen (by writing it to the standard error file STDERR). (For more details on the 
@INC array, refer to Day 17, "System Variables.") 

As in a subroutine call, the last expression evaluated inside a file included by require 
becomes the return value. The require function checks whether this value is zero, and 
terminates if it is. For example, suppose that the file myfile.pl contains the following 
statements: 

print ("hello, world!\n");

$var = 14;

If the statements in this file are executed by 

require ("myfile.pl");

the return value of myfile.pl is the following expression, which has the value 14: 

$var = 14

Because this value is not zero, the program continues execution with the statement 
following the require. 

If myfile.pl contains the following statements, the return value of myfile.pl is 0: 

print ("hello, world!\n");

$var = 0;

Because this value is zero, the Perl interpreter prints the following error message 
along with the name and current line number of your program; then it exits: 

myfile.pl did not return true value

TIP



By convention, files containing Perl statements 
normally have the suffix .pl. This makes it easy to 
determine which files in a directory contain Perl 
programs or code included in Perl programs using 
require. 

You can pass any scalar value to require, including those stored in scalar variables or 
array elements: 

@reqlist = ("file1.pl", "file2.pl", "file3.pl");

require ($reqlist[$0]);

require ($reqlist[$1]);

require ($reqlist[$2]);

Here, the successive calls to require include the contents of file1.pl, file2.pl, and 
file3.pl. 

You can also specify no filename, as in the following: 

require;

In this case, the value of the scalar variable $_ is the filename whose contents are to be 
executed.

One limitation Perl imposes on the require statement is 
that the contents of a particular file can be included 
only once in a program. To repeat a block of code many 
times, your only alternative is to put it in a separate 
program and call it using the system function or the 
eval function. 

Also, if two directories in @INC contain a file named by 
require, only the first one is included. 



The require Function and Subroutine Libraries

The require function enables you to create libraries of subroutines that can be used in 
all your Perl programs. To create a subroutine library, you need only take the 
following steps: 

1.  Decide on a directory in which to store your subroutine library. 
2.  Move your subroutines to separate files, and move these files to your subroutine 

directory. 
3.  To each file, add an executable statement that contains an expression with a 

nonzero value. This step is necessary because files executed by require must 
return a nonzero value, and an empty program is assumed to have the value zero. 
The easiest way to perform this task is to add the following statement to the 
bottom of each file:
1; 

4.  This statement is just a simple expression (the number 1) with a nonzero value. 
5.  In your main program, use require to refer to one or more of the files that 

contain your library subroutines, as needed. 
6.  When you start your main program, use the -I option to specify the name of the 

subroutine directory. Alternatively, add the subroutine directory to the @INC 
array before calling require. 

For example, suppose that the directory /u/jqpublic/perldir contains your Perl 
subroutine library and that the subroutine mysub is stored in the file mysub.pl in that 
directory. (Naming the file after the subroutine is an easy way to remember where the 
subroutine is located.) Now, to include mysub as part of your program, add the 
following statements: 

unshift (@INC, "/u/jqpublic/perldir");

require ("mysub.pl");

The call to unshift adds the directory /u/jqpublic/perldir to the @INC array, which 
ensures that any subsequent calls to require will search this directory. The call to 
require then includes the contents of mysub.pl as part of your program, which means 
that mysub now is included.

TIP



You should use unshift, not push, to add to the @INC 
array. The push function adds to the end of the list 
stored in @INC, which means that your subroutine library 
directory will be searched last. 

As a consequence, if your subroutine file has the same 
name as a file contained in /usr/local/lib/perl, your 
file will not be included, because require includes only 
the first file matching the specified name. 

You can control the search order of @INC by creating or 
reshuffling it yourself before calling require. 

Using require to Specify a Perl Version

Perl 5 enables you to use a require statement to specify the version of Perl needed to 
run your program. When Perl sees a require statement with a numeric associated value, 
it only runs the program if the version of Perl is greater than or equal to the number. 
For example, the following statement indicates that the program is to be run only if the 
Perl interpreter is version 5.001 or higher: 

require 5.001;

If it is not, the program terminates. 

This is useful if your program uses a feature of Perl that you know does not work 
properly in earlier versions of the language. 

NOTE

Because Perl 4 does not understand

require 5.001; 

it detects an error and terminates when it sees this 
statement. This is basically what you want to have 
happen

The $#array Variables 

For each array variable defined in your program, a variable named $#array, in which 



array is the name of your array, is also defined. This variable contains the subscript of 
the last element of the array. For example: 

@myarray = ("goodbye", "cruel", "world");

$lastsub = $#myarray;

Here, there are three elements in @myarray, which are referenced by the subscripts 0, 1, 
and 2. Because the subscript of the last element of the array is 2, $#myarray contains the 
value 2.

NOTE

Because the value of the maximum subscript is affected 
by the system variable $[, the value of each $#array 
variable is also affected by $[. For example: 

$[ = 1;
@myarray = ("goodbye", "cruel", "world");

$lastsub = $#myarray; 

Here, the first subscript of the array is 1, because $[ is 
set to that value. This means that the maximum subscript 
is 3 and the value of $#myarray is also 3 

Any $#array variable that does not correspond to a defined array has the value -1. For 
example: 

$sublength = $#notdefined;

Here, if the array @notdefined does not exist, $sublength is assigned -1. 

A $#array variable is also defined for each built-in array variable. This means, for 
example, that the $#ARGV variable contains the number of elements included on the 
command line. You can use this variable to check whether files have been specified on 
the command line: 

if ($#ARGV == -1) {

        die ("No files specified.\n");

}



If there are no "holes" (undefined elements) in the array, you can use a $#array variable 
in a loop. Listing 20.1 shows how you can carry out this action. 

 

Listing 20.1. A program that uses a $#array variable in a loop.

1:  #!/usr/local/bin/perl

2:  

3:  @myarray = ("testing", 98.6, "Olerud", 47);

4:  for ($i = 0; $i <= $#myarray; $i++) {

5:          print ("$myarray[$i]\n");

6:  }

 

$ program20_1

testing

98.599999999999994

Olerud

47

$

 Line 3 assigns a four-element list to the array variable @myarray. Therefore, 
the largest subscript used in the array is 3; this value is automatically assigned to the 
variable $#myarray. 

The for statement in line 4 terminates when $i is greater than $#myarray. This 
technique ensures that each element of @myarray is printed, in turn, by line 5.



Using $#myarray to terminate the loop isn't as useful if 
the array contains undefined elements as in the 
following: 

@myarray = ("test1", "test2");
$myarray[5] = "test3";
for ($i = 0; $i <= $#myarray; $i++) {
print ("$myarray[$i]\n");

} 

This loop iterates six times, because the largest subscript 
of the array is 5. Therefore, three blank lines are 
printed, because the elements of @myarray with the 
subscripts 2, 3, and 4 have not been defined. (You can get 
around this by using the defined function.) 

Controlling Array Length Using $#array 

You can use $#array to control the length of an array variable. 

If a $#array variable is assigned a value that is larger than the current largest 
subscript of the corresponding array, the missing elements are created and initialized to 
the special internal undefined value (equivalent to the null string). For example: 

@myarray = ("hi", "there");

$#myarray = 4;

This code sets the maximum subscript of $#myarray to 4. Because the subscript of the last 
defined element is 1, three empty elements are created with subscripts 2, 3, and 4. 

You can use this technique to create a large array all at once: 

$#bigarray = 9999;

This statement creates an array large enough to hold 10,000 values (or fails trying). If 
this statement executes successfully, you know that your machine has enough space to 
store @bigarray before actually assigning to all or part of it. 



In Perl 5, if the value you assign to a $#array variable is less than the current maximum 
subscript, the leftover array values are destroyed. For example: 

@myarray = ("hello", "there", "Dave!");

$#myarray = 1;

Here, @myarray is originally assigned a three-element list, which means that its maximum 
subscript is 2. Assigning 1 to $#myarray sets the maximum subscript to 1, which means that 
@myarray now contains ("hello", "there"). The third element, Dave!, is destroyed.

NOTE

This is one instance in which Perl 5 and Perl 4 behave 
differently. In Perl 4, array elements are not destroyed 
when $#array is assigned a value less than the current 
maximum subscript. 

In Perl 4, array elements that have been "removed" by 
assigning to the $#array variable can be restored to 
existence by resetting $#array to its original value. 

Alternative String Delimiters

As you've seen, Perl enables you to enclose character strings in either single quotation 
marks or double quotation marks. Strings in double quotation marks are searched for 
variable names, which are replaced with their values when found; strings in single 
quotation marks are not searched. 

Consider the following example: 

$var = 5;

print ("$var\n");

print ('$var\n');

The first call to print prints 5 followed by a newline character; the second prints the 
string $var\n as is. 

Perl enables you to use any delimiter you want in place of either single quotation 
marks or double quotation marks. To specify a string that-like a single-quoted string-is 
not searched for variable names, use q followed by the delimiter you want to use. For 



example, the following strings are equivalent: 

q!hello $there!

'hello $there'

A useful trick is to use newline characters as delimiters: 

q

this is my string

This example is equivalent to the following because the newline after the q indicates 
the beginning of the string, and the newline after string indicates the end of the 
string: 

'this is my string'

To define a string that is searched for variable names, use qq: 

qq/This string contains $var./

The / characters delimit the string 

This string contains $var.

which is then searched for variable names. This means that $var is replaced by its 
current value.

NOTE

If you use a left parenthesis as the opening delimiter for 
a string defined using q or qq, the Perl interpreter 
expects a right parenthesis as the closing delimiter. This 
method of operation enables you to treat q and qq as if 
they were functions: 

q(Here is a single quoted string);

qq(Here is a double quoted string); 

These are equivalent to both of the following:

'Here is a single quoted string'



"Here is a double quoted string" 

Be careful not to leave a space between the q or qq and 
the left parenthesis; if you do, the Perl interpreter will 
assume that the space character, not the (, is the 
delimiter 

qw, defined in Perl 5, provides a convenient way of breaking a string into words. The 
following statements are equivalent: 

@words = qw/this is a list of words/;

@words = split(' ', q/this is a list of words/);

In each case, @words is assigned the list 

("this", "is", "a", "list", "of", "words")

qw supports any alternative string delimiter supported by q and qq. 

Defining Strings Using << 

You can use << (two left angle brackets) to indicate the beginning of a string. This 
string continues until the next blank line. The following is an example: 

$longstring = <<

Here is the first part of the string.

Here is the last part of the string.

# here is the next statement

This example defines a string consisting of the two input lines 

Here is the first part of the string.

Here is the last part of the string.

and assigns it to $longstring. The newline characters are included as part of the string. 



You can specify the characters that indicate "end of string" by including them after the 
<<. For example: 

$longstring = <<END

Here is the first part of the string.

Here is the last part of the string.

END

# here is the next statement.

Here, END indicates the end of the string. 

You can enclose the end-of-string characters in either single or double quotation 
marks. Single-quoted end-of-string characters behave like normal end-of-string 
characters: 

$longstring = <<'END'

Here is the first part of the string.

Here is the last part of the string.

END

# here is the next statement

Double-quoted end-of-string characters are searched for variable names, which are 
replaced by their values if found. 

$endchars = "END";

$longstring = <<"$endchars"

Here is the first part of the string.

Here is the last part of the string.

END

# here is the next statement

Here, $endchars is replaced by its value, END, which is used to indicate the end of the 
string. 

A string created using << can be used wherever a string is expected. For example, the 
statement 



print <<END

Hello there!

This is a test!

END

writes the following to the standard output file: 

Hello there!

This is a test!

(This is one place where omitting the parentheses when you pass an argument to a 
function becomes useful.) 

You can use the x operator to write a string more than once: 

print <<END x 2

Hello there!

END

This sends the following to the standard output file: 

Hello there!

Hello there!

You can supply more than one << at a time. If you do, they are processed in the order in 
which they are received. For example, the statement 

$longstring = <<END1 <<END2

This is the first part.

END1

This is the second part.

END2

assigns the following (including the trailing newlines) to $longstring: 



This is the first part.

This is the second part.

DON'T leave a space between the << and the end-of-
string characters. (If you do, the Perl interpreter will 
terminate the string when it sees the next blank line.) 

DON'T put anything else in the line containing the end-
of-string characters. 

Special Internal Values

Perl defines three special internal values your program can use: __LINE__, __FILE__, 
and __END__. 

__LINE__ and __FILE__ contain, respectively, the current line number and current 
filename of the program you are running. These are the values that die and warn use 
when printing the line number and filename on which an error or a warning occurs. 

__END__ is a special value that indicates "end of file." Everything after __END__ is 
treated as data. If the program is contained in a file, you can read the data after 
__END__ by reading from the DATA file variable: 

$data = <DATA>;

NOTE

__LINE__ and __FILE__ cannot be substituted into double-
quoted strings. 

You can use the ^D or ^Z character (Ctrl+D or Ctrl+Z) 
in place of __END__ 



__END__ does not need to appear on a line by itself as 
long as some white space separates it from the next item 
in the file. However, the first line of the file 
represented by DATA is always the line immediately 
following the __END__. For example: 

__END__ Here is some input.

Here is some more input. 

In this case, the first line read by <DATA> is 

Here is some more input. 

The information immediately following the __END__ is 
lost. 

Using Back Quotes to Invoke System Commands

Perl provides a way to treat the value printed by a system command as a string. To do 
this, enclose the system command in back quote characters (the ` character). 

For example, here is a way to include your user name in a Perl program: 

$myname = `whoami`;

chop ($myname);

The first statement calls the system command whoami, which prints the name of the 
person logged on. This name is assigned to $myname. (The call to chop is necessary because 
whoami appends a newline character to the name, which enables it to appear on its own 
line on the screen.) 

The Perl interpreter performs variable substitution on the string enclosed in back 
quotes before treating it as a system command. 

$command = "whoami";

$myname = `$command`;

chop ($myname);

Here, the value of $command, whoami, is substituted into the string enclosed in back 
quotes, and it becomes the system command that is called. 



When a system command is executed, the return code from the command is stored in the 
system variable $?. To determine whether the system command has executed properly, 
check this system variable. (Normally, a value of zero indicates successful execution, 
and any other value indicates an error. The actual error value depends on the 
command.) 

To use a character other than a back quote as a delimiter, use qx: 

$myname = qx#whoami#;

chop ($myname);

As with q and qq, described previously, the first character after qx is treated as the 
string delimiter. The string continues until another string delimiter-in this case, #-is 
seen.

NOTE

If ( is used as an opening string delimiter, ) becomes the 
closing string delimiter: 

$myname = qx(whoami); 

Pattern Matching Using ?? and the reset Function

The ?? pattern matching operator is identical to the // pattern-matching operator you 
have been using all along, except that it matches only once, even if it is inside a loop. 
For example, the following statement loops only once, because the pattern ?abc? is not 
matched the second time it is executed: 

while ($line =~ ?abc?) {

        # stuff goes here

}

To make the ?? pattern matching operator match again, call the reset function. This 
function tells the Perl interpreter that a particular ?? operator can be used to match 
a pattern again. Listing 20.2 is an example of a program that uses ?? and reset. 

 



Listing 20.2. A demonstration of ?? and the reset function.

1:  #!/usr/local/bin/perl

2:  

3:  while ($line = <STDIN>) {

4:          last unless ($line =~ ?\bthe\b?);

5:          print ("$´$");

6:          reset;

7:  }

 

$ program20_2

this is the first line

this is  first line

the next line of input

 next line of input

last line-not matched

$

 Line 4 of this program uses the ?? pattern matching operator to check 
whether the word the appears in the current input line. If it does not, the program 
terminates. If it does, line 5 uses the $` and $_ variables to print the parts of the 
line not matched. 

Line 6 calls reset, which resets the ?? operator in line 4. If reset is not called, line 
4 will not match even if the new input line contains the word the.



The ?? operator is deprecated in Perl version 5. This 
means that the operator is still supported but is 
considered obsolete. Future versions of Perl might not 
support this operator 

Using reset with Variables

You also can use the reset function to clear all variables whose name begins with 
a specified character. The following statement assigns the null string to all 
scalar variables whose names begin with the letter w (such as, for instance, $which) 
and assigns the empty list to all array variables whose names begin with this 
letter: 

reset ("w");

The following statement assigns the null string or the empty list to all variables 
whose names begin with a or e: 

reset ("ae");

You can use ranges of letters with reset: 

reset ("a-d");

This example resets all variables whose names begin with a, b, c, or d.

Be careful with reset because it resets all variables 
whose names begin with the specified letters, including 
built-in variables such as @ARGV. 

Other Features of the <> Operator

As you've seen, the <> operator reads from the file specified by the enclosed file 
variable. For example, the following statement reads a line from the file 
represented by MYFILE: 



$line = <MYFILE>;

The following sections describe how to use <> with scalar variable substitution 
and how to use <> to create a list of filenames. 

Scalar Variable Substitution and <> 

If a scalar variable is contained in the <> operator, the value of the variable is 
assumed to be the name of a file variable. For example: 

$filename = "MYFILE";

$line = <$filename>;

Here, the value of $filename, MYFILE, is assumed to be the file variable associated 
with the input file to read from. When you change the value of $filename, you 
change the input file. 

Creating a List of Filenames

UNIX commands that manipulate files, such as mv and cp, enable you to supply a 
pattern to generate a list of filenames. Any filename matching this pattern is 
included as part of the list. For example, the following command copies every file 
whose name ends in .pl to the directory /u/jqpublic/srcdir: 

$ cp *.pl /u/jqpublic/srcdir

In Perl, if the <> operator encloses something other than a file variable or a 
scalar variable containing a file variable, it is assumed to be a pattern that 
matches a list of files. For example, the following statement assigns a list of the 
filenames ending in .pl to the array variable @filelist: 

@filelist = <*.pl>;

You can use filename patterns in loops: 

while ($line = <*.pl>) {

        print ("$line\n");

}



This code prints each filename ending in .pl on a separate line. 

Global Indirect References and Aliases

On Day 9, "Using Subroutines," you learned that you can pass the name of an array 
to a subroutine using an alias. For example: 

sub my_sub {

       local (*subarray) = @_;

       $arraylength = @subarray;

}

The *subarray definition in my_sub tells the Perl interpreter to operate on the 
actual list instead of making a copy. When this subroutine is called by a statement 
such as the following, the Perl interpreter realizes that myarray and subarray 
refer to the same array variable: 

&my_sub(*myarray);

When a name is given an alias, all variables with that name can be referred to 
using the alias. This means, in this example, that the @subarray variable and the 
@myarray variable refer to the same array. If the program also defines variables 
named $subarray and %subarray, you can use $myarray and %myarray, respectively, to 
refer to these variables. 

In the earlier example, the following two statements: 

my_sub (*myarray);

local (*subarray) = @_;

are equivalent to the assignment 

local (*subarray) = *myarray;

In each case, the name subarray is defined to be an alias of the name myarray. Because 
*subarray is contained inside a local definition in a subroutine, subarray and myarray 
are equivalent only while the subroutine is being executed. 

If desired, you can define an alias for a name that remains in force throughout 



your program. For example: 

*subarray = *myarray;

If this statement is part of your main program, subarray becomes an alias for 
myarray in all parts of your program, including all subroutines. The values of 
$subarray, @subarray, and %subarray, if they are defined, are lost. 

 

Listing 20.3 is a simple example of a program that defines and uses a 
global alias.

Listing 20.3. An example of a global alias. 

1:  #!/usr/local/bin/perl

2:  

3:  *name2 = *name1;

4:  $name1 = 14;

5:  print ("$name2\n");

 

$ program20_3

14

$

 Line 3 of this program defines name2 as an alias for name1. Every variable 
named name1 can therefore be referred to using the name name2. As a result, $name1 
and $name2 are really the same scalar variable; this means that line 5 prints the 
value assigned in line 4.



DON'T use aliases unless you absolutely must, because 
they can become very confusing. 

DO, instead, substitute the variable name into a string 
and then execute it using eval. This is a better way to 
reference a variable indirectly. For example: 

$name2 = '$name1';

eval ("$name2 = 14;"); 

The string $name1 is substituted for the variable name 
$name2, yielding the string 

$name1 = 14; 

eval then executes this statement, which assigns 14 to 
$name1. 

Packages

A Perl program keeps track of the variables and subroutines defined within it by 
storing their names in a symbol table. In Perl, the collection of names in a symbol 
table is called a package. The following sections describe packages and how to use 
them. 

Defining a Package

Perl enables you to define more than one package for a program, with each 
package contained in a separate symbol table. To define a package, use the package 
statement. 

package mypack;

This statement creates a new package named mypack. All variable and subroutine 
names defined from this point on in the program are stored in the symbol table 
associated with the new package. This process continues until another package 
statement is encountered. 

Each symbol table contains its own set of variable and subroutine names, and each 
set of names is independent. This means that you can use the same variable name in 



more than one package. 

$var = 14;

package mypack;

$var = 6;

The first statement creates a variable named $var and stores it in the main symbol 
table. The statement following the package statement creates another variable 
named $var and stores it in the symbol table for the mypack package. 

Switching Between Packages

You can switch back and forth between packages at any time. Listing 20.4 shows how 
you can carry out this action. 

 

Listing 20.4. A program that switches between packages.

1:  #!/usr/local/bin/perl

2:  

3:  package pack1;

4:  $var = 26;

5:  package pack2;

6:  $var = 34;

7:  package pack1;

8:  print ("$var\n");

 

$ program20_4

26



$

 Line 3 defines a package named pack1. Line 4 creates a variable named 
$var, which is then stored in the symbol table for the pack1 package. Line 5 then 
defines a new package, pack2. Line 6 creates another variable named $var, which is 
stored in the symbol table for the pack2 package. Two separate copies of $var now 
exist, one in each package. 

Line 7 specifies the pack1 package again. Because pack1 has already been defined, 
this statement just sets the current package to be pack1; therefore, all variable 
and subroutine references and definitions refer to names stored in the symbol 
table for this package. 

As a consequence, when line 8 refers to $var, it refers to the $var stored in the 
pack1 package. The value stored in this variable, 26, is retrieved and printed. 

The main Package 

The default symbol table, in which variable and subroutine names are normally 
stored, is associated with the package named main. If you have defined a package 
using the package statement and you want to switch back to using the normal 
default symbol table, specify the main package as shown here: 

package main;

When this statement is executed, your program resumes behaving as though no 
package statements have ever been seen. Subroutine and variable names are stored 
as they normally are. 

Referring to One Package from Another

To refer to a variable or subroutine defined in one package from inside another 
package, precede the variable name with the package name followed by a single 
quotation-mark character. For example: 

package mypack;

$var = 26;

package main;

print ("$mypack'var\n");



Here, $mypack'var refers to the variable named $var located in the package mypack.

Do not put any spaces between the quotation-mark 
character and either the package name or the variable 
name. The following examples are not correct:

$mypack ' var
$mypack' var

$mypack 'var 

NOTE

In Perl 5, the package name and variable name are 
separated by a pair of colons instead of a quotation 
mark:

$mypack::var 

The quotation-mark character is supported for now but 
might not be understood in future versions of Perl.

Specifying No Current Package

Perl 5 enables you to state that there is to be no current package. To do this, 
specify a package statement without a package name, as in the following: 

package;

This tells the Perl interpreter that all variables must have their package names 
explicitly specified in order for a statement to be valid. 

$mypack::var = 21;    # OK

$var = 21;            # error - no current package

This restriction remains in effect until a current package is explicitly defined by 
another package statement. 



Packages and Subroutines

A package definition affects all the statements in a program, including subroutine 
definitions. For example: 

package mypack;

subroutine mysub {

        local ($myvar);

        # stuff goes here

}

Here, the names mysub and myvar are both part of the mypack package. To call the 
subroutine mysub from outside the package mypack, specify &mypack'mysub. 

You can change packages in the middle of a subroutine: 

package pack1;

subroutine mysub {

        $var1 = 1;

        package pack2;

        $var1 = 2;

}

This code creates two copies of $var1, one in pack1 and one in pack2.

NOTE

Local variables that are part of packages can be 
referenced only in the subroutine or statement block in 
which they are defined. (In other words, they behave 
just like ordinary local variables do.)

Defining Private Data Using Packages

The most common use of packages is in files containing subroutines and global 
variables that are used in these subroutines. By defining a package for these 
subroutines, you can ensure that the global variables used in the subroutines are 



used nowhere else; such variables are called private data. 

Better still, you can ensure that the package name itself is used nowhere else. 
Listing 20.5 is an example of a file containing a package name and variable names 
that are used nowhere else. 

 

Listing 20.5. A file that contains private data.

1:  package privpack;

2:  $valtoprint = 46;

3:  

4:  package main;

5:  # This function is the link to the outside world.

6:  sub printval {

7:          &privpack'printval();

8:  }

9:

10: package privpack;

11: sub printval {

12:         print ("$valtoprint\n");

13: }

14:

15: package main;

16: 1;   # return value for require

 

This subroutine, by itself, cannot generate its output until printval is called.



 This file can be divided into two parts: the part that communicates with 
the outside world and the part that does the work. The part that communicates is 
in the main or default package, and the part that does the work is in a special 
package named privpack. This package is defined only in this file. 

The subroutine printval, defined in lines 6-8, is designed to be called from 
programs and subroutines defined elsewhere. Its only task is to call the version 
of printval defined in the privpack package. 

The version of printval in the privpack package prints the number by retrieving it 
from the scalar variable $valtoprint. This variable is also part of the privpack 
package, and it is defined only inside it. 

Lines 15 and 16 ensure that this file behaves properly if it is included in a program 
by require. Line 15 sets the current package to the default package, and line 16 is a 
nonzero return value to ensure that require does not generate an error. 

Packages and System Variables

The following variables are assumed to be in the main package, even when 
referenced from inside another package: 

●     The file variables STDIN, STDOUT, STDERR, and ARGV 
●     The %ENV, %INC, @INC, $ARGV, and @ARGV variables 
●     Any system variable with a special character in its name (such as, for 

example, $_ and $%) 

Accessing Symbol Tables

To actually look in a symbol table from within a program, use the associative 
array %_package, in which package is the name of the package whose symbol table 
you want to access. For example, the variable %_main contains the default symbol 
table. 

Normally, you will not need to look in the symbol table yourself. 

Modules

Most large programs are divided into components, each of which performs a 
specific task or set of tasks. Each component normally contains one or more 
executable functions, plus the variables needed to make these functions work. The 
collection of functions and variables in a component is known as a program module. 
One module can appear in a variety of programs. 



Creating a Module

Perl 5 enables you to use packages to define modules. To define a module in Perl 5, 
create the package and store it in a file of the same name. For example, a package 
named Mymodule would be stored in the file Mymodule.pm. (The .pm suffix indicates 
that the file is a Perl module.) 

Listing 20.6 creates a module named Mymodule, containing subroutines myfunc1 and 
myfunc2, and variables $myvar1 and $myvar2. This code should be stored in the file 
Mymodule.pm. 

 

Listing 20.6. Code that creates a Perl module.

1:  #/usr/local/bin/perl

2:

3:  package Mymodule;

4:  require Exporter;

5:  @ISA = qw(Exporter);

6:  @EXPORT = qw(myfunc1 myfunc2);

7:  @EXPORT_OK = qw($myvar1 $myvar2);

8:

9:  sub myfunc1 {

10:     $myvar1 += 1;

11: }

12:

13: sub myfunc2 {

14:     $myvar2 += 2; 

15: }



 Lines 3-7 use the standard Perl module definition conventions. Line 3 
defines the package. Line 4 includes a built-in Perl module, Exporter, which 
provides information about these definition conventions. Lines 6 and 7 define the 
subroutines and variables that are to be made available to the outside world. 

Line 6 creates a special array named @EXPORT. This array lists the subroutines that 
can be called by other programs. Here, the subroutines myfunc1 and myfunc2 are 
accessible. Any subroutine defined inside a module that is not included in the list 
assigned to @EXPORT is a private subroutine, and can only be called inside the 
module. 

Line 7 creates another special array, called @EXPORT_OK, that lists the variables 
that can be accessed by other programs. Here, the variables $myvar1 and $myvar2 
are accessible from the outside world. 

Importing Modules Into Your Program

To import a module into your Perl program, use the use statement. For example, 
the following statement imports the Mymodule module into a program: 

use Mymodule;

The subroutines and variables in Mymodule can now be used in your program. 

To undefine a previously imported module, use the no statement. For example, the 
following statement undefines the Mymodule module: 

no Mymodule;

Listing 20.7 is an example of a program that imports and undefines a module. The 
integer module referenced here specifies that all arithmetic operations are to be 
on integers. Floating-point numbers are converted to integers before the 
arithmetic operations are performed. 

 

Listing 20.7. A program that uses the use and no statements.

1:  #/usr/local/bin/perl



2:

3:  use integer;

4:  $result = 2.4 + 2.4;

5:  print ("$result\n");

6:

7:  no integer;

8:  $result = 2.4 + 2.4;

9:  print ("$result\n");

 

$ program20_7

4

4.8

$

 Line 3 of this program imports the integer module. As a consequence, Line 
4 converts 2.4 to 2 before performing the addition, yielding the result 4. 

Line 7 undefines the integer module. This tells the Perl interpreter to revert to 
using floating-point numbers in arithmetic operations.



If a use or no statement appears inside a statement block, 
it remains in effect only for the duration of that block. 
For example: 

use integer;
$result1 = 2.4 + 2.4;
if ($result1 == 4) {
no integer;
$result2 = 3.4 + 3.4;
}

$result3 = 4.4 + 4.4; 

Here, the no statement is only in effect inside the if 
statement. In the statement after the if, the integer 
module is still in use, which means that 4.4 is converted 
to 4 before the addition is performed. 

Using Predefined Modules

Perl 5 provides a variety of predefined modules that perform useful tasks. Each 
module can be imported by the use statement and removed by the no statement. 

The following are some of the most useful modules in this library: 

integer As you have seen, this module tells Perl to use integer 
arithmetic instead of floating-point arithmetic. 

Diagnostics Tells the Perl interpreter to print more diagnostic 
messages (warnings) when running your program. 

English Allows the use of English names as synonyms for system 
variables. 

Env A Perl module that imports environment variables. 

POSIX The Perl interface to the POSIX standard (IEEE 1003.1). 

Socket Loads the C programming language's socket handling 
mechanisms. 

A complete list of the predefined modules included with Perl 5 can be found in 
your Perl documentation.

TIP



Perl 5 users all over the world write useful modules 
and make them available to the Perl community through 
the Internet. The Comprehensive Perl Archive Network 
(CPAN) of Perl archives provides a complete list of these 
modules. More information on the CPAN network is 
available at the Web site located at 
http://www.perl.com/perl/CPAN/README.html. 

Using Perl in C Programs

Perl 5 enables you to call Perl subroutines from within C programs. To add this 
capability, you need to do two things: add references to Perl to your program 
source, and then link the Perl library when you compile your program. 

See the Perl documentation for more details on how to use Perl subroutines in C 
programs. 

Perl and CGI Scripts

The Common Gateway Interface (CGI) is a standard for interfacing external 
applications with information servers (such as those found on the World Wide 
Web). 

For more information on CGI, go to the Web page located at 
http://hoohoo.ncsa.uiuc.edu/cgi. A library of CGI scripts written in Perl can be 
found at http://www.bio.cam.ac.uk/web/cgi-lib.pl.txt. 

Translators and Other Supplied Code

The Perl distribution provides programs that translate the following items into 
Perl: 

●     Programs written in the awk programming language 
●     Scripts written for the sed command 
●     Commands sent to the find command 
●     Include files written in the C programming language 

For information on these translation programs, refer to the documentation 
supplied with your Perl distribution. 

Summary

http://www.perl.com/perl/CPAN/README.html
http://hoohoo.ncsa.uiuc.edu/cgi
http://www.bio.cam.ac.uk/web/cgi-lib.pl.txt


Today you learned about features of Perl that were not discussed on previous 
days. 

●     require, which includes code from other files 
●     The $#array variable, which returns the largest subscript of an array 
●     Alternative methods of enclosing strings using q, qq, qw, <<, and qx 
●     The special internal values __LINE__, __FILE__, and __END__, which retrieve 

the current filename and line number and end the program 
●     Using back quotes to treat the output from a command as a scalar value 
●     Using ?? to match a pattern once, and using reset to reset ?? and variables 
●     Using <> with indirect file variables and file lists 
●     Global aliasing using * 
●     Packages and modules 
●     Using Perl in C programs 

Q&A

Q: Why does a file included by require need to execute a statement? Why does 
require check a return code? 

A: Because files included by require can contain statements that are immediately 
executed, checking for a return code enables programs to determine whether 
code included by require generated any errors. 

Q: Is a $#array variable defined for system array variables such as @ARGV? 

A: Yes. For example, $#ARGV contains the largest subscript of the @ARGV array; you 
can test this to determine whether your program was passed enough arguments. 

Q: Are $#array variables defined for associative arrays? 

A: No, because there is no concept of a "largest subscript" in associative arrays. 

Q: What happens to system variables when reset is called? For example, is 
@ARGV reset when reset is passed "A"? 

A: The reset function affects all variables, including system variables. For this 
reason, you should be careful when you use reset. 

Workshop

The Workshop provides quiz questions to help you solidify your understanding of 
the material covered, and exercises to give you experience in using what you've 
learned. Try and understand the quiz and exercise answers before you go on to 
tomorrow's lesson. 

Quiz

1.  What do these constants contain? 



a.  __LINE__ 
b.  __FILE__ 
c.  __END__ 

2.  What is the value of each of the following strings? (Assume that $var has 
the value hello.) 

1.  q(It's time to say $var) 
2.  qq "It's time to say $var"; # a comment 
3.  qx/echo $var/ 

2.  What is stored in @array after the following statements have been executed?
@array = ("one", "two", "three", "four");
$#array = 2;

$array[4] = "five"; 
3.  How can you include code from another file in your program? 

Exercises

1.  Write a program that uses the <> operator to list all the files in a 
directory in alphabetical order. 

2.  Write a program that uses a subroutine named sum to add the numbers in a 
list and return the total. Read the list from standard input (one per line). 
Assume that the subroutine is contained in the file 
/u/jqpublic/perlfiles/sum.pl. Print the total returned by sum. 

3.  Write a program that creates two packages named pack1 and pack2. For each 
package, read a line from standard input and assign it to the variable $var. 
Assume that each $var contains a number, add the two numbers together, and 
print the total. 

4.  BUG BUSTER: What is wrong with the following statements? 
print ("Perl files in this directory:\n");
$filepattern = "*.pl";
while ($name = <$filepattern>) {
print ("$name\n");

} 
5.  BUG BUSTER: What is wrong with the following statement? 

print << EOF
Here is part of my string.
Here is the rest of my string.

EOF 

    





Chapter 21

The Perl Debugger

CONTENTS

●     Entering and Exiting the Perl Debugger 
❍     Entering the Debugger 
❍     Exiting the Debugger 

●     Listing Your Program 
❍     The l command 
❍     The - Command 
❍     The w Command 
❍     The // and ?? Commands 
❍     The S Command 

●     Stepping Through Programs 
❍     The s Command 
❍     The n Command 
❍     The f command 
❍     The Carriage-Return Command 
❍     The r Command 

●     Displaying Variable Values 
❍     The X Command 
❍     The V Command 

●     Breakpoints 
❍     The b Command 
❍     The c Command 
❍     The L Command and Breakpoints 
❍     The d and D Commands 

●     Tracing Program Execution 
●     Line Actions 

❍     The a Command 
❍     The A Command 
❍     The < and > Commands 
❍     Displaying Line Actions Using the L Command 

●     Other Debugging Commands 
❍     Executing Other Perl Statements 
❍     The H Command: Listing Preceding Commands 



❍     The ! Command: Executing Previous Commands 
❍     The T Command: Stack Tracing 
❍     The p Command: Printing an Expression 
❍     The = Command: Defining Aliases 
❍     Predefining Aliases 
❍     The h Command: Debugger Help 

●     Summary 
●     Q&A 
●     Workshop 

❍     Quiz 

Today's lesson describes the Perl debugging facility. You'll learn the following: 

●     How to enter and exit the Perl debugger 
●     How to list parts of your program 
●     How to execute one statement at a time 
●     How to set breakpoints and trace program execution 
●     How to perform line actions 
●     About other useful debugging commands 

Entering and Exiting the Perl Debugger

The following sections describe how to start the Perl debugger and how to exit. 

Entering the Debugger

To debug a Perl program, specify the -d option when you run the program. For example, 
to debug a program named debugtest, specify the following command: 

$ perl -d debugtest

You can supply other options along with -d if you want to. 

When the Perl interpreter sees the -d option, it starts the Perl debugger. The debugger 
begins by displaying a message similar to the following one on your screen: 

Loading DB routines from $RCSfile: perldb.pl,v  $$Revision: 4.0.1.3

$$Date: 92/06/08 13:43:57 $



Emacs support available.

Enter h for help.

main::(debugtest:3):        $dircount = 0;

  DB<1>

The first few lines display the date on which this version of the debugger was created. 
The only lines of interest are the last two. 

The second-to-last line in this display lists the line that the debugger is about to 
execute. When the debugger starts, the first executable line of the program is 
displayed. 

When the debugger displays a line that it is about to execute, it also provides the 
following information about the line: 

●     The package in which the line is contained (in this case, the default package, 
which is main) 

●     The name of the file containing the line (here, the file is named debugtest) 
●     The current line number (which, in this example, is 3) 

The last line of the display prompts you for a debugging command. The number enclosed 
in angle brackets indicates the command number; in this case, the number is 1, because 
you are about to specify the first debugging command. 

Later today you will learn how to use the debugging command number to re-enter 
debugging commands you have previously executed.

NOTE



To enter the debugger without supplying a program, 
supply the -e option with the -d option: 

$ perl -d -e "1;" 

This line starts the debugger with a "program" consisting 
of the single statement

1; 

(which is an expression that doesn't do anything 
meaningful).

Starting the debugger without a program enables you to 
examine the predefined system variables or supply 
statements to be executed. You will learn how to 
perform both of these tasks later in today's lesson

Exiting the Debugger

To exit the debugger, enter the debugging command q: 

DB<1> q

This command halts program execution immediately and returns you to the command 
shell. 

Listing Your Program

You can list any part of your program from within the debugger. The following sections 
describe debugging commands that perform the display operations. 

The l command 

The simplest way to list part of your program is with the l command, which lists the next 
few statements in your program: 

  DB<1> l

3:      $dircount = 0;



4:      $curdir = "";

5:      while (1) {

6:              # if we don't have a current directory, get one

7:              if ($curdir eq "") {

8:                      print ("Enter directory to list:\n");

9:                      $curdir = <STDIN>;

10:                     $curdir =~ s/^\s+|\s+$//g;

11:                     $curdir = &followlink($curdir);

12:                     &readsubdirs($curdir);

The l command lists a window of executable statements, which is a group of statements 
small enough to be easily displayed on your screen. A window usually consists of about 
ten statements. The line number of each statement is displayed at the beginning of its 
line.

NOTE

The statements displayed in today's lesson are taken 
from the program presented in "Week 2 in Review."

Entering the l command again displays the window of statements immediately following 
the last displayed line, which in this example is line 12: 

  DB<1> l

13:             }

14:             $curdir = &menudir($curdir);

15:     }

16:

17:

18:     # Find all subdirectories of the given directory,

19:     # and store them in an associative array.

20:     #

21:     # The associative array subscripts and values are:



22:     # <directory name>:       1

You can specify the lines displayed by the l command. If you specify a single line number 
with the l command, it displays that line: 

  DB<1> l 10

10:                      $curdir =~ s/^\s+|\s+$//g;

To display a range of lines, specify the first and last line number, and separate them 
with a hyphen: 

  DB<1> l 10-15

10:                      $curdir =~ s/^\s+|\s+$//g;

11:                      $curdir = &followlink($curdir);

12:                      &readsubdirs($curdir);

13:             }

14:             $curdir = &menudir($curdir);

15:     }

To display a specified number of lines starting at a certain point, supply the starting line 
number, a + character, and a number of additional lines to display: 

  DB<1> l 10+5

10:                      $curdir =~ s/^\s+|\s+$//g;

11:                      $curdir = &followlink($curdir);

12:                      &readsubdirs($curdir);

13:             }

14:             $curdir = &menudir($curdir);

15:     }

You also can use the l command to specify a subroutine to display. To do this, provide the 
name of the subroutine to display: 



  DB<1> l readsubdirs

26:     sub readsubdirs {

27:             local ($dirname) = @_;

28:             local ($dirvar, $subdircount, $name, $index);

29:

30:             # open the current directory;

31:             # $dircount ensures that each file variable is unique

32:             $dirvar = "DIR" . ++$dircount;

33:             if (!opendir ($dirvar, $dirname)) {

34:                     warn ("Can't open $dirname\n");

35:                     return;

This command lists the statements in the subroutine. If the subroutine is too large to fit 
in a single window, only the first few statements are listed; you can list subsequent 
statements by entering l with no arguments. 

The - Command 

You can display the lines immediately preceding the last displayed line by entering the - 
command. For example, the following - command lists the window of lines immediately 
preceding the subroutine readsubdirs. 

  DB<1> -

16:

17:

18:     # Find all subdirectories of the given directory,

19:     # and store them in an associative array.

20:     #

21:     # The associative array subscripts and values are:

22:     # <directory name>:       1

23:     #       (indicates that directory has been read)

24:     # <directory name>.<num>  the <num>th subdirectory



25:

Subsequent - commands go back further in the file. 

The w Command 

To list a window of lines containinga specified line, use the w command, and specify the 
number of the line to be included: 

  DB<1> w 7

4:      $curdir = "";

5:      while (1) {

6:              # if we don't have a current directory, get one

7:              if ($curdir eq "") {

8:                      print ("Enter directory to list:\n");

9:                      $curdir = <STDIN>;

10:                     $curdir =~ s/^\s+|\s+$//g;

11:                     $curdir = &followlink($curdir);

12:                     &readsubdirs($curdir);

13:             }

The w command displays the three lines before the specified line and fills the window 
with the lines following it. 

The // and ?? Commands

You can search for a line containing a particular pattern by enclosing the pattern in 
slashes: 

  DB<1> /Find/

18:     # Find all subdirectories of the given directory,

The debugger searches forward from the last displayed line for a line matching the 
specified pattern. If it finds such a line, the line is displayed. 



To search backward for a particular pattern, enclose the pattern in question marks: 

  DB<1> ?readsubdirs?

12:                      &readsubdirs($curdir);

This command starts with the last displayed line and searches backward until it finds a 
line matching the specified pattern. 

NOTE

Patterns specified by // and ?? can contain any special 
character understood by the Perl interpreter. 

You optionally can omit the final / or ? character when 
you match a pattern. 

The S Command 

The S command lists all the subroutines in the current file, one subroutine per line: 

  DB<> S

main::display

main::followlink

main::menudir

main::readsubdirs

Each subroutine name is preceded by the package name and a single quotation mark. 

Stepping Through Programs

One of the most useful features of the Perl debugger is the capability to execute a 
program one statement at a time. The following sections describe the statements that 
carry out this action. 

The s Command 

To execute a single statement of your program, use the s command: 



  DB<2> s

main::(debugtest:4):        $curdir = "";

This command executes one statement of your program and then displays the next 
statement to be executed. If the statement executed needs to read from the standard 
input file, the debugger waits until the input is provided before displaying the next line 
to execute. 

TIP

If you have forgotten which line is the next line to 
execute (because, for example, you have displayed lines 
using the l command), you can list the next line to 
execute using the L command: 

DB<2> L 

3: $dircount = 0; 

The L command lists the last lines executed by the 
program. It also lists any breakpoints and line actions 
that have been defined for particular lines. Breakpoints 
and line actions are discussed later today. 

If the statement executed by the s command calls a subroutine, the Perl debugger 
enters the subroutine but does not execute any statements in it. Instead, it stops at the 
first executable statement in the subroutine and displays it. For example, if the 
following is the current line: 

main::(debugtest:12):                      &readsubdirs($curdir);

specifying the s command tells the Perl debugger to enter readsubdirs and display the 
following, which is the first executable line of readsubdirs: 

main::readsubdirs(debugtest:27):      local ($dirname) = @_;

The s command assumes that you want to debug the subroutine you have entered. If you 
know that a particular subroutine works properly and you don't want to step through 
it one statement at a time, use the n command, described in the following section. 



The n Command 

The n command, like the s command, executes one line of your program and displays the 
next line to be executed: 

  DB<2> n

main::(debugtest:5):        while (1) {

The n statement, however, does not enter any subroutines. If the statement executed by 
n contains a subroutine call, the subroutine is executed in its entirety. After the 
subroutine is executed, the debugger displays the line immediately following the call. 

For example, if the current line is 

main::(debugtest:12):                      &readsubdirs($curdir);

the n command tells the debugger to execute readsubdirs and then display the next 
line in the program, which is 

main::(debugtest:13:):             }

Combining the use of s and n ensures that the debugger examines only the subroutines 
you want to see.

NOTE

The Perl debugger does not enable you to enter any 
library functions. You can enter only subroutines that 
you have created yourself or that have been created 
previously and added to a subroutine library

The f command 

The f command tells the Perl debugger to execute the remainder of the statements in 
the current subroutine and then display the line immediately after the subroutine call. 
This is useful when you are looking for a bug and have determined that the current 
subroutine does not contain the problem. 



The Carriage-Return Command

If you are stepping through a program using s or n, you can save yourself some typing by 
just pressing Enter when you want to execute another statement. When you press 
Enter, the debugger repeats the last s or n command executed. 

For example, to step from line 5 to line 7, you can use the s command as usual: 

  DB<3> s

main::(debugtest:7):              if ($curdir eq "") {

(Line 6 is skipped because it contains no executable statements.) To execute line 7, you 
can now just press Enter: 

  DB<2>

main::(debugtest:8):              print ("Enter directory to 
list:\n");

NOTE

Pressing Enter has no effect if you have not specified any 
s or n commands. 

The r Command 

If you are inside a subroutine and decide that you no longer need to step through it, you 
can tell the Perl debugger to finish executing the subroutine and return to the 
statement after the subroutine call. To do this, use the r command: 

  DB<4> r

main::(debugtest:13:):             }

The statement displayed by the debugger is the first statement following the call to 
the subroutine. 

Displaying Variable Values



Another powerful feature of the Perl debugger is the capability to display the value of 
any variable at any time. The following sections describe the commands that perform 
this action. 

The X Command 

The X command displays variables in the current package (which is main if no other 
package has been specified). If the X command is specified by itself, it lists all the 
variables in the current package, including the system-defined variables and the 
variables used by the Perl interpreter itself. Usually, you won't want to use the X 
command by itself, because there are a lot of system-defined and internal variables 
known to the Perl interpreter. 

To print the value of a particular variable or variables, specify the variable name or 
names with the X command: 

  DB<5> X dircount

$dircount = '0'

This capability often is useful when you are checking for errors in your program.

You must not supply the $ character with the variable 
name when you use the X command. If you supply the $ 
character (or the @ or % characters for arrays), the 
debugger displays nothing. 

You can use X to display the values of array variables and associative array variables. 

  DB<6> X regarray

@regarray = (

  0     14

  1     'hello'

  2     36



)

  DB<7> X assocarray

%assoc_array = (

  'hi'  1

  'there' 2

)

Each command prints the subscripts of the array and their values. Regular arrays are 
printed in order of subscript; associative arrays are printed in no particular order.

NOTE

If you have an array variable and a scalar variable with 
the same name, the X command prints both variables: 

DB<8> X var
$var = '0'
@var = (
0 'test1'
1 'test2'

) 

There is no way to use X to display one variable but not 
the other. 

The V Command 

The V command is identical to the X command except that it prints the values of 
variables in any package. If you specify just a package name, as in the following, this 
command displays the values of all variables in the package (including system-defined 
and internal variables): 

DB<9> V mypack

If you specify a package name and one or more variable names, as in the following, the 
debugger prints the values of the variables (if they are defined in that package): 

  DB<10> V main dircount



$dircount = '0'

Breakpoints

As you have seen, you can tell the Perl debugger to execute one statement at a time. 
Another way of controlling program execution is to tell the debugger to execute up to 
a certain specified point in the program, called a breakpoint. 

The following sections describe the commands that create breakpoints, and the command 
that executes until a breakpoint is detected. 

The b Command 

To set a breakpoint in your program, use the b command. This command tells the 
debugger to halt program execution whenever it is about to execute the specified line. 
For example, the following command tells the debugger to halt when it is about to 
execute line 10: 

DB<11> b 10

(If the line is not breakable, the debugger will return Line 10 is not breakable.)

NOTE

You can have as many breakpoints in your program as you 
want. The debugger will halt program execution if it is 
about to execute any of the statements at which a 
breakpoint has been defined.

The b command also accepts subroutine names: 

DB<12> b menudir

This sets a breakpoint at the first executable statement of the subroutine menudir. 

You can use the b command to tell the program to halt only when a specified condition 
is true. For example, the following command tells the debugger to halt if it is about to 
execute line 10 and the variable $curdir is equal to the null string: 



DB<12> b 10 ($curdir eq "")

The condition specified with the b statement can be any legal Perl conditional 
expression.

If a statement is longer than a single line, you can set a 
breakpoint only at the first line of the statement:

71: print ("Test", 
72: " here is more output"); 

Here, you can set a breakpoint at line 71, but not line 72.

The c Command 

After you have set a breakpoint, you can tell the debugger to execute until it reaches 
either the breakpoint or the end of the program. To do this, use the c command: 

  DB<13> c

main::(debugtest:10):                  $curdir =~ s/^\s+|\s+$//g;

  DB<14>

When the debugger detects that it is about to execute line 10-the line at which the 
breakpoint was set-it halts and displays the line. (Recall that the debugger always 
displays the line it is about to execute.) 

The debugger now prompts you for another debugging command. This action enables you 
to start executing one statement at a time using n or s, continue execution using c, set 
more breakpoints using b, or perform any other debugging operation. 

You can specify a temporary (one-time-only) breakpoint with the c command by supplying 
a line number: 

  DB<15> c 12

main::(debugtest:12):                      &readsubdirs($curdir);



The argument 12 supplied with the c command tells the debugger to define a temporary 
breakpoint at line 12 and then resume execution. When the debugger reaches line 12, it 
halts execution, displays the line, and deletes the breakpoint. (The line itself still 
exists, of course.) 

Using c to define a temporary breakpoint is useful if you want to skip a few lines 
without wasting your time executing the program one statement at a time. Using c also 
means that you don't have to bother defining a breakpoint using b and deleting it using 
d (described in the following section). 

TIP

If you intend to define breakpoints using c or b, it is a 
good idea to ensure that each line of your program 
contains at most one statement. If you are in the habit of 
writing lines that contain more than one statement, 
such as 

$x++; $y++; 

you won't get as much use out of the debugger, because 
it can't stop in the middle of a line

The L Command and Breakpoints

To list all of your breakpoints, use the L command. This command lists the last few lines 
executed, the current line, the breakpoints you have defined, and the conditions under 
which the breakpoints go into effect. 

  DB<16> L

3:      $dircount = 0;

4:      $curdir = "";

5:      while (1) {

7:              if ($curdir eq "") {

10:                      $curdir =~ s/^\s+|\s+$//g;

  break if (1)

Here, the program has executed lines 3-7, and a breakpoint is defined for line 10. (Line 6 



is not listed because it is a comment.) You can distinguish breakpoints from executed 
lines by looking for the breakpoint conditional expression, which immediately follows 
the breakpoint. Here, the conditional expression is (1), which indicates that the 
breakpoint is always in effect. 

The d and D Commands

When you are finished with a breakpoint, you can delete it using the d command. 

DB<16> d 10

This command tells the debugger to delete the breakpoint at line 10. The line itself 
remains in the program. 

If you do not specify a breakpoint to delete, the debugger assumes that a breakpoint is 
defined for the next line to be executed, and deletes it. 

main::(debugtest:12):                      &readsubdirs($curdir);

  DB<17> d

Here, line 12 is the next line to be executed, so the debugger deletes the breakpoint at 
line 12. 

To delete all your breakpoints, use the D command. 

DB<18> D

This command deletes all the breakpoints you have defined with the b command. 

Tracing Program Execution

When you run a program using the Perl debugger, you can tell it to display each line as 
it is executed. When the debugger is doing this, it is said to be in trace mode. 

To turn on trace mode, use the T command. 

  DB<18> t

Trace = on



When a statement is executed in trace mode, the statement is displayed. For example, if 
the current line is line 5 and the command c 10 (which executes up to line 10) is entered, 
the following is displayed: 

  DB<18> c 10

main::(debugtest:5):      while (1) {

main::(debugtest:7):              if ($curdir eq "") {

main::(debugtest:10):                      $curdir =~ s/^\s+|\s+$//g;

  DB<19>

The debugger prints and executes line 5 and line 7, then displays line 10 and waits for 
further instructions. 

To turn off trace mode, specify the t command again. 

  DB<19> t

Trace = off

At this point, trace mode is turned off until another t command is entered. 

Line Actions

The Perl debugger enables you to specify one or more statements to be executed 
whenever the program reaches a specified line. Such statements are known as line 
actions. The most common line actions are printing the value of a variable and resetting 
a variable containing an erroneous value to the value you want. 

The following sections describe the debugging commands that define line actions. 

The a Command 

To specify a line action for a particular line, use the a command. 

DB<19> a 10 print ("curdir is $curdir\n");



This command tells the debugger to execute the statement 

print ("curdir is $curdir\n");

whenever it is about to execute line 10 of the program. The debugger performs the 
action just after it displays the current line and before it asks for the next debugging 
command. 

To create a line action containing more than one statement, just string the statements 
together. If you need more than one line for the statements, put a backslash at the end 
of the first line. 

  DB<20> a 10 print ("curdir is $curdir\n"); print \

("this is a long line action\n");

In this case, when the debugger reaches line 10, it executes the following statements: 

print ("curdir is $curdir\n");

print ("this is a long line action\n");

The A Command 

To delete the line actions defined using the a command, use the A command. 

DB<21> A

This command deletes all line actions currently defined.

NOTE

The A command does not affect the < and > commands, 
described in the following section. 

The < and > Commands

To define a line action that is to be executed before the debugger executes any further 



statements, use the > command. 

DB<21> > print ("curdir before execution is $curdir\n");

This command tells the debugger to print the value of $curdir before continuing. 

Similarly, the < command defines a line action that is to be performed after the 
debugger has finished executing statements and before it asks for another debugging 
command: 

DB<22> < print ("curdir after execution is $curdir\n");

This command tells the debugger to print the value of $curdir before halting execution 
again. 

The < and > commands are useful when you know that one of your variables has the 
wrong value, but you don't know which statement assigned the wrong value to the 
variable. By single-stepping through the program using s or n, and printing the variable 
either before or after executing each statement, you can determine where the variable 
was given its incorrect value.

NOTE

To delete a line action defined by the < command, enter 
another < command with no line action defined. 

DB<23> < 

Similarly, the following command undoes the effects of 
a > command: 

DB<24> > 

Displaying Line Actions Using the L Command

The L command prints any line actions you have defined using the a command (as well as 
breakpoints and executed lines). For example, suppose that you have defined a line 
action using the following command: 

DB<25> a 10 print ("curdir is $curdir\n");



The L command then displays this line action as shown here: 

main::(debugtest:10):                      $curdir =~ s/^\s+|\s+$//g;

  action:  print ("curdir is $curdir\n");

The line action is always displayed immediately after the line for which it is defined. 
This method of display enables you to distinguish lines containing line actions from 
other lines displayed by the L command. 

Other Debugging Commands

The following sections describe the debugging commands not previously covered. 

Executing Other Perl Statements

In the debugger, anything that is not a debugging command is assumed to be a Perl 
statement and is performed right away. For example: 

DB<4> @array = (1, 2, 3);

You can use statements such as this to alter values in your program as it is being 
executed. This capability is useful when you are testing your code.

NOTE

If you wish, you can omit the semicolon at the end of the 
statement.

The H Command: Listing Preceding Commands

The H (for "history") command lists the preceding few commands you have entered. 

  DB<4> H

3: b 7

2: b 14



1: b 13

The commands are listed in reverse order, with the most recently executed command 
listed first. Each command is preceded by its command number, which is used by the ! 
command (described in the following section).

NOTE

The debugger saves only the commands that actually 
affect the debugging environment. Commands such as l 
and s, which perform useful work but do not change how 
the debugger behaves, are not listed by the H command. 

This is not a significant limitation because you can enter 
the letter again if needed.

The ! Command: Executing Previous Commands

Each command that is saved by the debugger and can be listed by the H command has a 
command number. You can use this command number to repeat a previously executed 
command. For example, to repeat command number 5, make the following entry: 

  DB <11> !5

b 8

  DB <12>

The debugger displays command number 5-in this case, the command b 8- and then 
executes it. 

If you omit the number, the debugger repeats the last command executed. 

  DB <12> $foo += $bar + 1

  DB <13> !

$foo += $bar + 1

  DB <14>

If you specify a negative number with !, the debugger skips back that many commands: 



  DB <14> $foo += $bar + 1

  DB <15> $foo *= 2

  DB <16> ! -2

$foo += $bar + 1

  DB <17>

Here, the ! -2 command refers to the command $foo += $bar + 1.

You can use ! only to repeat commands that are 
actually repeatable. Use the H command to list the 
commands that the debugger has saved and that can be 
repeated 

The T Command: Stack Tracing

The T command enables you to display a stack trace, which is a collection of all the 
subroutines that have been called, listed in reverse order. Here is an example: 

  DB <16> T

$ = &main::sub2('hi') from file debug1 line 7

$ = &main::sub1('hi') from file debug1 line 3

Here, the T command indicates that the program is currently inside subroutine sub2, 
which was called from line 7 of your program; this subroutine is part of the main 
package. The call to sub2 is passed the argument 'hi'. 

The $ = preceding the subroutine name indicates that the subroutine call is expecting a 
scalar return value. If the call is expecting a list to be returned, the characters @ = 
appear in front of the subroutine name. 

The next line of the displayed output tells you that sub2 was called by another 
subroutine, sub1. This subroutine was also passed the argument 'hi', and it was called 
by line 3 of the program. Because the stack trace lists no more subroutines, line 3 is part 
of your main program.



NOTE

The list of arguments passed to a subroutine that is 
displayed by the stack trace is the list of actual values 
after variable substitution and expression evaluation 
are performed. This procedure enables you to use the 
stack trace to check whether your subroutines are being 
passed the values you expect.

The p Command: Printing an Expression

An easy way to print the value of an expression from inside the debugger is to use the p 
command. 

  DB <17> p $curdir + 1

1

The p command evaluates the expression and displays the result.

NOTE

The p command writes to the screen even when the 
program has redirected STDOUT to a file. 

The = Command: Defining Aliases

If you find yourself repeatedly entering a long debugging command and you want to 
save yourself some typing, you can define an alias for the long command by using the = 
command. For example: 

  DB <15> = pc print ("curdir is $curdir\n");

= pc print ("curdir is $curdir\n");

The = command prints the alias you have just defined and then stores it in the 
associative array %DB'alias (package DB, array name alias) for future reference. From 
here on, the command 



DB <16> pc

is equivalent to the command 

DB <16> print ("curdir is $curdir\n");

To list the aliases you have defined so far, enter the = command by itself: 

  DB <17> =

pc =  print ("curdir is $curdir\n")

This command displays your defined aliases and their equivalent values. 

Predefining Aliases

You can define aliases that are to be created every time you enter the Perl debugger. 

When the debugger starts, it first searches for a file named .perldb in your home 
directory. If the debugger finds this file, it executes the statements contained there. 

To create an alias, add it to the .perldb file. For example, to add the alias 

= pc print ("curdir is $curdir\n");

add the following statement to your .perldb file: 

$DB'alias{"pc"} = 's/^pc/print ("curdir is $curdir\n");/';

Here's how this works: when the Perl debugger creates an alias, it adds an element to 
the $DB'alias associative array. The subscript for this element is the alias you are 
defining, and the value is a substitution command that replaces the alias with the 
actual command you want to use. In the preceding example, the substitution takes any 
command starting with pc and replaces it with 

print ("curdir is $curdir\n");



Be careful when you define aliases in this way. For 
example, your substitution should match only the 
beginning of a command, as in /^pc/. Otherwise, the alias 
will replace any occurrence of the letters pc with your 
print command, which is not what you want. 

The h Command: Debugger Help

The h (for help) command provides a list of each of the debugger commands listed in 
today's lesson, along with a one-line explanation of each. This is handy if you are in the 
middle of debugging a program and forget the syntax of a particular command. 

Summary

Today, you have learned about the Perl debugger. This debugger enables you to perform 
the following tasks, among others: 

●     List any part of your source file 
●     Step through your program one statement at a time 
●     Display any variables you have defined 
●     Set breakpoints, which tell the debugger when to stop and request further 

commands 
●     Set line actions, which are statements to be executed when the program reaches a 

particular line 
●     Trace program execution as it happens 
●     Print a stack trace, which lists the current subroutine you are in and the 

subroutines that called it 

Q&A

Q: Is it possible to enter more than one debugging command at a time? 

A: No; however, there's no real need to do so. If you want to perform several single 
steps at once, use the c command to skip ahead to a specified point. If you want to 
both step ahead and print the value of a variable, use the < or > command. 

Q: Is it possible to examine variables in one package while inside another? 

A: Yes. Use the V command or the standard Perl package/variable syntax. 



Q: If I discover that my program works and I want to turn off debugging, what 
do I do? 

A: You cannot exit the debugger in the middle of a program. However, if you delete 
all breakpoints and line actions and then enter the c command, the program 
begins executing normally and is no longer under control of the debugger. 

Q: How can I convert to a reusable breakpoint a one-time breakpoint created 
using c? 

A: By default, the b command sets a breakpoint at the line that is about to be 
executed. This is the line at which c has set its one-time breakpoint. 

Q: How can I execute other UNIX commands from inside the debugger? 

A: Enter a statement containing a call to the Perl system function. For example, to 
display the contents of the current directory, enter the following command: 
DB <11> system ("ls");

To temporarily escape from the debugger to a UNIX shell, enter the following 
command:
DB <12> system ("sh");

When you are finished with the shell, enter the command exit, and you will 
return to the debugger. 

Q: What special built-in variables can be accessed from inside the debugger? 

A: All of them.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the 
material covered. 

Quiz

1.  Define the following terms: 
1.  trace mode 
2.  stack trace 
3.  breakpoint 
4.  line action 

2.  Explain the differences between the X and V commands. 
3.  Explain the differences between the // and ?? commands. 
4.  Explain the differences between the < and > commands. 
5.  Explain the differences between the s and n commands. 
6.  What do the following commands do? 

1.  l 
2.  l 26 
3.  l 5-7 
4.  l 5+7 



5.  w 

    



Week
3

Week 3 in Review

In the final week of teaching yourself how to use Perl, you've learned about the 
extensive Perl function library and about built-in system variables and options. The pair 
of programs in Listings R3.1 and R3.2 use some of the features you've learned about 
during this week. 

These programs provide a simple "chat" service. The first program, the chat server, 
establishes connections with clients and passes messages back and forth. The second 
program, the chat client, enables users to establish connections to this server and send 
messages to the other users running the chat program. 

Each message that a user enters is sent to all the clients currently running the chat 
program. To quit chatting, the user enters quit. 

The server program can be called with the -m (for monitor) option. When -m is specified, 
each message sent by a client is displayed by the server as it is sent. 

 

Listing R3.1. The chat server program.

1:   #!/usr/local/bin/perl -s

2:   

3:   # get port from command line, or use 2000 as default

4:   if ($#ARGV == -1) {

5:           $port = 2000;

6:   } else {



7:           $port = $ARGV[0];

8:   }

9:   if (getservbyport($port, "tcp")) {

10:          die ("can't access port $port\n");

11:  }

12:  

13:  # initialization stuff

14:  $nextport = $port + 1;

15:  $maxclient = 0;

16:  

17:  # establish main socket connection:  clients use this to

18:  # get ports for their own connections

19:  ($d1, $d2, $prototype) = getprotobyname ("tcp");

20:  $hostname = 'hostname';

21:  chop ($hostname);

22:  ($d1, $d2, $d3, $d4, $serverraddr) = gethostbyname ($hostname);

23:  $serveraddr = pack ("Sna4x8", 2, $port, $serverraddr);

24:  socket (SSOCKET, 2, 1, $prototype) ||

25:          die ("No main server socket\n");

26:  bind (SSOCKET, $serveraddr) ||

27:          die ("Can't bind main server socket\n");

28:  listen (SSOCKET, 5) ||

29:          die ("Can't listen on main server socket\n");

30:  select (STDOUT);

31:  $| = 1;

32:  

33:  while (1) {

34:          # listen for clients

35:          ($clientaddr = accept (SOCKET, SSOCKET)) ||

36:                  die ("Can't accept connection to main socket\n");



37:          select (SOCKET);

38:          $| = 1;

39:          # find ports for new client

40:          $recvport = $nextport;

41:          while (getservbyport($recvport, "tcp")) {

42:                  $recvport++;

43:          }

44:          $nextport = $recvport + 1;

45:          print SOCKET ("$recvport\n");

46:          $sendport = $nextport;

47:          while (getservbyport($sendport, "tcp")) {

48:                  $sendport++;

49:          }

50:          $nextport = $sendport + 1;

51:          # send ports to client

52:          print SOCKET ("$sendport\n");

53:          print SOCKET ("$$\n");

54:          close (SOCKET);

55:          # now connect for this client: first receive, then send

56:          socket (C1SOCKET, 2, 1, $prototype) ||

57:                  die ("No receive client socket\n");

58:          $msgaddr = pack ("Sna4x8", 2, $recvport, $serverraddr);

59:          bind (C1SOCKET, $msgaddr) ||

60:                  die ("Can't bind receive client\n");

61:          listen (C1SOCKET, 1) ||

62:                  die ("Can't listen for receive client\n");

63:          $rsockname = "CRSOCKET" . $maxclient;

64:          ($clientaddr = accept ($rsockname, C1SOCKET)) ||

65:                  die ("Can't accept receive client\n");



66:          socket (C2SOCKET, 2, 1, $prototype) ||

67:                  die ("No send client socket\n");

68:          $msgaddr = pack ("Sna4x8", 2, $sendport, $serverraddr);

69:          bind (C2SOCKET, $msgaddr) ||

70:                  die ("Can't bind send client\n");

71:          listen (C2SOCKET, 1) ||

72:                  die ("Can't listen for send client\n");

73:          $ssockname = "CSSOCKET" . $maxclient;

74:          ($clientaddr = accept ($ssockname, C2SOCKET)) ||

75:                  die ("Can't accept send client\n");

76:          select ($ssockname);

77:          $| = 1;

78:          # when a new client is created, we have to kill all the

79:          # existing children and start new ones, so that all

80:          # of the sockets are known to all of the clients

81:          for ($i = 0; $i <= $maxclient-1; $i++) {

82:                  kill (2, $procids[$i]);

83:          }

84:          for ($i = 0; $i <= $maxclient; $i++) {

85:                  if ($child = fork()) {

86:                          # parent: continue forking

87:                          $procids[$i] = $child;

88:                  } else {

89:                          # child: communicate with this client

90:                          &talk_to_client ($i, $maxclient);

91:                          exit(0);

92:                  }

93:          }

94:          # once we're done forking, go back and listen for

95:          # more clients



96:          $maxclient += 1;

97:  }

98:  

99:  sub talk_to_client {

100:         local ($clientnum, $maxclient) = @_;

101:         local ($msg, $i, $count, $rsockname, $sockname);

102: 

103:         # get read socket for this client

104:         $rsockname = "CRSOCKET" . $clientnum;

105:         while (1) {

106:                 $msg = <$rsockname>;

107:                 last if ($msg eq "quit");

108:                 if ($m) {

109:                         select (STDOUT);

110:                         print ("$msg");

111:                 }

112: 

113:                 # send message to all other clients

114:                 for ($i = 0; $i <= $maxclient; $i++) {

115:                         $sockname = "CSSOCKET" . $i;

116:                         select ($sockname);

117:                         print ("$msg");

118:                 }

119:         }

120: }

 This program starts off by obtaining the number of the port to be used for the 
main socket connection. This port number is assumed to be the first argument on the 



command line; if no port number is supplied, 2000 is used. Lines 9-11 call getservbyport to 
check whether this port number is mentioned in the /etc/services file. If it is, the port 
number is reserved for use by some other program and can't be used here. 

Next, lines 17-29 define a socket using the specified port number. Client programs use this 
socket to establish connections to the server. Note, in particular, that lines 20-21 read 
the machine name by calling the UNIX hostname command. This enables you to move this 
program to another machine without having to edit it. 

Once the main socket has been established, the server is ready to listen for clients. 
When a client establishes a connection, the server finds two unused port numbers and 
sends them to the client. These ports will be used to establish two new socket 
connections-one for reading and one for writing-which will be used by the server and 
this particular client. This leaves the main socket free to establish connections with 
other clients. Lines 44-54 handle the task of obtaining the ports and sending them to 
the client; lines 55-77 then establish connections to the client using the sockets. (Note 
that line 53 also sends the process ID of the chat server to the client. This enables the 
client to kill off the server if something horrible happens.) 

The chat server communicates with a client by spawning a child process that handles 
the task of receiving a message from that client and sending it to the other clients. One 
child process is defined for each client. The call to fork in line 85 creates a child 
process. 

When a child process is created, it knows the names of the file variables corresponding 
to the sockets defined for each of the existing clients. However, if a new client appears, 
the existing child processes cannot send messages to the new client because they cannot 
access its sockets (because they are created after the children were spawned). To ensure 
that the existing clients can send messages to the new clients, the server program does 
the following: 

1.  It kills all the child processes that communicate with clients. Lines 81-83 
accomplish this task by calling kill. 

2.  The server creates a new child process for each client. Lines 84-93 perform this 
task. 

At this point, each client can talk to every other client because all of the socket 
connections are known by each child. (Recall that when a program splits into parent 
and child processes, each process has a copy of all the variables that have been defined 
to this point.) 

The chat server uses the global variable $maxclient to keep track of how many clients 
are on the machine. This ensures that the correct number of child processes are created. 

Each child process created by fork calls the subroutine talk_to_client, which reads 



messages from the client and then sends them to all the other clients via the "send" 
socket connections. Line 106 reads a message from the client. Line 107 checks whether 
the message is in fact quit; if it is, the subroutine (and the process) terminates. Lines 108-
111 then print the message if the -m option is specified. Finally, lines 113-118 send the 
message to the other clients. 

NOTE

The chat server does not make any attempt to clean up 
after itself or to reuse sockets closed by clients. This 
means that this particular program can't be used by too 
many clients at a time, or by too many different clients.

If you are looking for a challenging exercise, try 
modifying this program to close sockets when clients are 
finished with them. (This is a challenging exercise 
because the child process somehow has to tell the main 
server that the socket can be closed. You can do it, but 
it's not easy!)

Now that you've seen how the chat server works, Listing R3.2 shows the chat client 
program. Users run this program to establish a connection with the chat server and to 
chat with other users. 

 

Listing R3.2. The chat client program.

1:   #!/usr/local/bin/perl

2:   

3:   # obtain the server port from the command line;

4:   # use 2000 as the default

5:   if ($#ARGV == -1) {

6:           $servport = 2000;

7:   } else {

8:           $servport = $ARGV[0];



9:   }

10:  

11:  # obtain the server machine name from the command line;

12:  # use "silver" as the default

13:  if ($#ARGV < 1) {

14:          $servname = "silver";

15:  } else {

16:          $servname = $ARGV[1];

17:  }

18:  # establish socket connection with server to obtain

19:  # ports for this client

20:  if (getservbyport($servport, "tcp")) {

21:          die ("can't access port $servport\n");

22:  }

23:  ($d1, $d2, $prototype) = getprotobyname ("tcp");

24:  $hostname = 'hostname';

25:  chop ($hostname);

26:  ($d1, $d2, $d3, $d4, $clientraddr) = gethostbyname ($hostname);

27:  ($d1, $d2, $d3, $d4, $serverraddr) = gethostbyname ($servname);

28:  $clientaddr = pack ("Sna4x8", 2, 0, $clientraddr);

29:  $serveraddr = pack ("Sna4x8", 2, $servport, $serverraddr);

30:  socket (SOCKET, 2, 1, $prototype) ||

31:          die ("No server socket\n");

32:  bind (SOCKET, $clientaddr) ||

33:          die ("Can't bind server socket\n");

34:  connect (SOCKET, $serveraddr) ||

35:          die ("Can't connect to server\n");

36:  $sendport = <SOCKET>;

37:  $recvport = <SOCKET>;

38:  $serverid = <SOCKET>;



39:  close (SOCKET);

40:  chop ($sendport);

41:  chop ($recvport);

42:  

43:  # use returned ports to create sockets for this client:

44:  # first socket is send, the second is receive

45:  $conncaddr = pack ("Sna4x8", 2, 0, $clientraddr);

46:  $connsaddr = pack ("Sna4x8", 2, $sendport, $serverraddr);

47:  socket (SSOCKET, 2, 1, $prototype) ||

48:          &nuke ("No send socket");

49:  bind (SSOCKET, $conncaddr) ||

50:          &nuke ("Can't bind send socket");

51:  connect (SSOCKET, $connsaddr) ||

52:          &nuke ("Can't connect to send socket");

53:  $connraddr = pack ("Sna4x8", 2, $recvport, $serverraddr);

54:  socket (RSOCKET, 2, 1, $prototype) ||

55:          &nuke ("No receive socket");

56:  bind (RSOCKET, $conncaddr) ||

57:          &nuke ("Can't bind receive socket");

58:  connect (RSOCKET, $connraddr) ||

59:          &nuke ("Can't connect to receive socket");

60:  select (SSOCKET);

61:  $| = 1;

62:  select (STDOUT);

63:  $| = 1;

64:  

65:  # now, we're ready to go:  prompt for user name

66:  select (STDOUT);

67:  print ("Welcome to chat!  Who are you? ");



68:  $username = <STDIN>;

69:  chop ($username);

70:  print ("Type 'quit' to exit chat.\n");

71:  $child = fork();

72:  if ($child == 0) {

73:          # child: receive messages

74:          &receive_msgs();

75:          exit(0);

76:  }

77:  # parent: send messages

78:  while (1) {

79:          # prompt for message

80:          select (STDOUT);

81:          $msg = <STDIN>;

82:          chop ($msg);

83:          # send message to server

84:          select (SSOCKET);

85:          if ($msg eq "quit") {

86:                  print ($msg);

87:                  last;

88:          }

89:          if ($msg !~ /^\s*$/) {

90:                  print ($username . ": " . $msg . "\n");

91:          }

92:  }

93:  kill (9, $child);

94:  close (RSOCKET);

95:  close (SSOCKET);

96:  

97:  sub receive_msgs {



98:          local ($msg);

99:  

100:         while (1) {

101:                 $msg = <RSOCKET>;

102:                 select (STDOUT);

103:                 print ("$msg");

104:         }

105: }

106: 

107: sub nuke {

108:         local ($errmsg) = @_;

109: 

110:         kill (-9, $serverid);

111:         die ("$errmsg\n");

112: }

 This program starts off by obtaining the port number of the main socket 
connection employed by the chat server. This port number can be supplied on the 
command line; if it is not, the chat program uses 2000 as the port number. 

The chat program then obtains the name of the machine on which the chat server is 
running. This name also can be supplied on the command line; if it isn't, the chat program 
assumes the machine is a local machine named silver. 

Lines 23-41 establish a connection to the main server socket and receive the port 
numbers for the sockets to be used by this particular client-server connection. The 
client also receives the process ID of the server. 

Once the port numbers have been received, the chat program can connect to the chat 
server by establishing two socket connections with the server: one to send messages and 
another to receive them. Lines 43-63 accomplish this task. 

When these socket connections have been established, the chat program is ready to send 



messages. Lines 67-68 ask for a name by which you can identify yourself to the other 
users on the system. Once this name has been read in, the chat program splits itself in 
two by calling fork. The parent process handles the sending of messages, and the child 
handles messages received by other clients. This ensures that sending and receiving can 
take place at the same time. 

Lines 77-95 send messages to the chat server. Line 81 prompts for a line of input. If the 
line of input is the message quit, the client program kills off its child, closes its socket 
connection, and exits. Otherwise, the message-along with the name of the user sending 
it-is transmitted to the chat server via the "write" socket. The server then sends it to 
all of the clients on the system. 

The child process calls the subroutine receive_msgs, which handles the task of 
receiving messages from the other clients. Messages are received via the "read" socket 
and are printed as they are received. 

If something goes radically wrong, the chat program calls the subroutine nuke, which 
kills both itself and the server program. 

    



Appendix A

Answers

CONTENTS

●     Answers for Day 1, "Getting Started" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 2, "Basic Operators and Control Flow" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 3, "Understanding Scalar Values" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 4, "More Operators" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 5, "Lists and Array Variables" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 6, "Reading from and Writing to Files" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 7, "Pattern Matching" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 8, "More Control Structures" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 9, "Using Subroutines" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 10, "Associative Arrays" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 11, "Formatting Your Output" 
❍     Quiz 



❍     Exercises 
●     Answers for Day 12, "Working with the File System" 

❍     Quiz 
❍     Exercises 

●     Answers for Day 13, "Process, String, and Mathematical Functions" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 14, "Scalar-Conversion and List-Manipulation Functions" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 15, "System Functions" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 16, "Command-Line Options" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 17, "System Variables" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 18, "References in 
Perl 5" 

❍     Quiz 
❍     Exercises 

●     Answers for Day 19, "Object-Oriented Programming in Perl" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 20, "Miscellaneous Features of Perl" 
❍     Quiz 
❍     Exercises 

●     Answers for Day 21, "The Perl Debugger" 
❍     Quiz 

Answers for Day 1, "Getting Started"

Quiz

1.  Perl has the power of a high-level programming language such as C, and the ease 
of use of simple languages such as shell scripts. 

2.  The Perl interpreter executes your Perl program (starting from the beginning, 



and continuing one statement at a time). 
3.  The answers are as follows: 

1.  A statement is one particular task or instruction (usually corresponding to 
a line of code). A statement is terminated by a semicolon (;). 

2.  A token is the smallest unit of information understood by the Perl 
interpreter. A statement consists of several tokens. 

3.  An argument is an item passed to a library function (such as $inputline to 
print). 

4.  Error recovery occurs when the Perl interpreter detects an error in your 
program. The interpreter tries to deduce what you meant to write and 
attempts to continue detecting errors in the program. 

5.  The standard input file is the file that stores the characters you enter at 
the keyboard. 

4.  A comment is any text that is preceded by a #. A comment can appear anywhere in 
your program. Everything after the # character is assumed to be part of the 
comment. 

5.  Perl usually is located in the file /usr/local/bin/perl. 
6.  The header comment is the special comment that tells the system that this is a 

Perl program. It appears as the first line of every Perl program. 
7.  A library function is defined as part of the Perl interpreter and performs a specific 

task. 

Exercises

1.  The following is one possible solution:
#!/usr/local/bin/perl
$inputline = <STDIN>;

print ($inputline, $inputline); 
2.  The following is one possible solution:

#!/usr/local/bin/perl
$inputline = <STDIN>;
print ($inputline);
$inputline = <STDIN>;

print ($inputline); 
3.  The following is one possible solution:

#!/usr/local/bin/perl
$inputline = <STDIN>;
$inputline = <STDIN>; # this throws away the previous input line

print( $inputline ); 
4.  The third line of the program is missing a semicolon at the end of the statement:

#!/usr/local/bin/perl
$inputline = <STDIN>;

print ($inputline); 
5.  The print($inputline) line is ignored because the entire third line is being 

treated as a comment. You want the following instead:
#!/usr/local/bin/perl
$inputline = <STDIN>;



print($inputline); # print my line! 
6.  This program reads two lines of input and prints them in reverse order (second line 

first). 

Answers for Day 2, "Basic Operators and Control Flow" 

Quiz

1.  The answers are as follows: 
1.  An expression is a collection of operators and the values on which they 

operate. 
2.  An operand is a value associated with an operator. 
3.  A conditional statement is a statement that is executed only when its 

conditional expression is true. 
4.  A statement block is a collection of statements contained inside the braces 

of a conditional statement. The statement block is executed only when the 
conditional expression associated with its conditional statement is true. 

5.  An infinite loop is a conditional statement whose conditional expression is 
always true. 

2.  A while statement stops looping when its conditional expression is false. 
3.  An until statement stops looping when its conditional expression is true. 
4.  The == operator compares its two operands. If they are numerically equal, the == 

operator yields a result of true; otherwise, it yields false. 
5.  27. 
6.  The legal ones are a, c, and f. 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl

print ("Enter a number to be multiplied by 2:\n");
$number = <STDIN>;
chop ($number);
$number = $number * 2;

print ("The result is ", $number, "\n"); 
2.  Here is one possible solution:

#!/usr/local/bin/perl

print ("Enter the dividend (number to divide):\n");
$dividend = <STDIN>;
chop ($dividend);
print ("Enter the divisor (number to divide by):\n"); 
$divisor = <STDIN>;
chop ($divisor);
if ($divisor == 0) {
print ("Error: can't divide by zero!\n");



} elsif ($dividend == 0) {
$result = $dividend;
} elsif ($divisor == 1) {
$result = $dividend;
} else {
$result = $divisor / $dividend;
}
if ($divisor == 0) {
# skip the print, since we detected an error
} else {
print ("The result is ", $result, "\n"); 

} 
3.  Here is one possible solution:

#!/usr/local/bin/perl

$count = 1;
$done = 0;
while ($done == 0) {
print ($count, "\n");
if ($count == 10) {
$done = 1;
}
$count = $count + 1;

} 
4.  Here is one possible solution:

#!/usr/local/bin/perl

$count = 10;
until ($count == 0) {
print ($count, "\n");
$count = $count - 1;

} 
5.  There are, in fact, three separate bugs in this program: 

1.  You must call chop to get rid of the trailing newline character in $value 
before comparing it to 17. 

2.  The conditional expression should read $value == 17, not $value = 17. 
3.  There should be a closing brace } before the else. 

6.  This program contains an infinite loop. To fix it, add the following statement just 
before the closing brace }: 
$input = $input + 1;

Also, the statement
$input = $terminate + 5;

should read
$terminate = $input + 5; 

Answers for Day 3, "Understanding Scalar Values" 

Quiz

1.  The answers are as follows: 



1.  A round-off error is the difference between the floating-point number that 
appears in a program and the number as it is represented in the machine. 

2.  Octal notation is another way of referring to base-8 notation: Each digit 
can be a number from 0 to 7 and is multiplied by 8 to the exponent n, where n 
is the number of digits to skip. 

3.  The precision of a floating-point representation on a machine is the number 
of significant digits it can hold. 

4.  Scientific notation is a way of writing floating-point numbers. It consists of 
one digit before the decimal point, as many digits as required after the 
decimal point, and an exponent. 

2.  The answers are as follows: 
1.  255 (the ASCII end-of-file character) 
2.  6 
3.  601 

3.  The answers are as follows: 
1.  255 
2.  17 
3.  48813 

4.  This line prints I am bored, and then backspaces over bored and replaces it with 
happy!. (I don't know a lot of practical uses for the \b escape character, but it's 
fun to watch.) 

5.  The answers are as follows: 
1.  This string contains 21. 
2.  \21 is my favorite number. 
3.  Assign \$num to this string. 

6.  The answers are as follows: 
1.  4.371e01 
2.  6.0e-08 (the .0 is optional) 
3.  3.0e+00 (actually, 3 by itself is acceptable) 
4.  -1.04e+00 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl

$count = 1;
$number = 0.1;
until ($count == 10) {
print ("$number\n");
$number = $number + 0.1;
$count = $count + 1;

} 
2.  Here is one possible solution:

#!/usr/local/bin/perl

$inputline = <STDIN>;
chop ($inputline);



if ($inputline == 0) {
print ("0\n");
} else {
print ("1\n");

} 
3.  Here is one possible solution:

#!/usr/local/bin/perl

print ("Enter a number:\n"); 
$number = <STDIN>;
chop ($number);
until ($number == 47) {
print ("Wrong! Try again!\n");
$number = <STDIN>;
chop ($number);
}

print ("\aCorrect!\n"); 
4.  The first string in the print statement is not terminated properly, because there is 

a backslash \ before the final '. To fix this, add another quote:
print ('here is the value of \$inputline\'', ": $inputline"); 

5.  This code fragment does not produce the expected result because of a round-off 
error. Try subtracting $num3 from $num1 before adding $num2 and $num4. 

6.  "0xce" converts to 0, not to the hexadecimal constant 0xce. To fix this, leave off 
the quotes. 

Answers for Day 4, "More Operators"

Quiz

1.  The answers are as follows: 
1.  An operator is a character or string of characters that represents a 

particular Perl operation. 
2.  An operand is a value used by an operator. In Perl, operators require one, 

two, or three operands. 
3.  An expression is a collection of operators and operands, yielding a final 

result. 
4.  Operator precedence is the order in which different types of operations are 

performed. 
5.  Operator associativity is the order in which operations of the same 

precedence are performed. 
2.  The answers are as follows: 

1.  logical AND 
2.  bitwise AND 
3.  bitwise XOR 
4.  string inequality 
5.  string concatenation 

3.  The answers are as follows: 



1.  eq 
2.  % 
3.  x 
4.  | 
5.  >= 

4.  The answers are as follows: 
1.  0000000010101011 
2.  0000010001010001 
3.  0 (or 00000000) 

5.  The answers are as follows: 
1.  100 
2.  15 
3.  65 

6.  The answers are as follows: 
1.  4 
2.  0 (I hope you didn't calculate all of the expression! Once you see the first 0, 

you should know that the result is 0.) 
3.  1819 
4.  "abcdede" 

Exercises

1.  The following is just one of many possible answers:
#!/usr/local/bin/perl

$value = 1;
$counter = 0;
while ($counter < 16) {
print ("2 to the power $counter is $value\n"); 
$value = $value << 1;
$counter++;
} 

2.  The answer is as follows:
$result = $var1 == 5 || $var2 == 7 ?
$var1 * $var2 + 16.5 :

(print("condition is false\n"), 0); 
3.  The answer is as follows:

if ($var1 <= 26) {
$result = ++$var2;
} else {
$result = 0;

} 
4.  The following is just one of many possible answers:

#!/usr/local/bin/perl

print("Enter the integer to be divided:\n"); 
$dividend = <STDIN>;
print("Enter the integer to divide by:\n");
$divisor = <STDIN>;



# check for division by zero
if ($divisor == 0) {
print("error: can't divide by zero\n");
} else {
$quotient = $dividend / $divisor;
$remainder = $dividend % $divisor;
print("The result is $quotient\n");
print("The remainder is $remainder\n");

} 
5.  Adding 100005.2 and then subtracting it causes round-off errors, which means 

that the final value isn't exactly the same as 5.1. 
6.  ($result = ((($var1 * 2) << (5 + 3)) || ($var2 ** 3))), $var3; 
7.  81 
8.  Here is the corrected program, with the fixed errors listed: 

#!/usr/local/bin/perl

$num = <STDIN>;
chop ($num);
$x = "";
$x .= "hello"; # += is for integers
if ($x ne "goodbye" || $x eq "farewell") { 
# the previous line had two problems:
# the operators were numeric, not string;
# the or operator was bitwise, not logical.
$result = $num == 0 ? 43 : 0;
# the : and third operand were missing in the previous 
# line; eq replaced by ==
} else {
$result = ++$num; # can't have ++ on both sides
}

print("the result is $result\n"); 

Answers for Day 5, "Lists and Array Variables"

Quiz

1.  The answers are as follows: 
1.  A list is an ordered collection of scalar values. 
2.  An empty list is a list with zero elements in it. 
3.  An array variable is a variable that can store a list. 
4.  A subscript is a scalar value that refers to an element of a list. The 

subscript 0 refers to the first element, the subscript 1 refers to the second, 
and so on. 

5.  An array slice is a list consisting of some elements of an array variable. 
(Notice that the elements do not have to be in order.) 

2.  The answers are as follows: 
1.  (1, 2, 3) 
2.  (3, 2) 
3.  ("hello", 2, 2) 



4.  (2, 3) 
5.  ("", 3, 2, 2) 
6.  The contents of the standard input file, one line per list element. 

3.  The answers are as follows: 
1.  2 
2.  4 
3.  "one" 
4.  2 
5.  "three" 
6.  "" (Only three elements in the list are stored in @list2.) 

4.  A list is a collection of scalar values. An array variable is a place where you can 
store a list. 

5.  The brackets [] enclosing the subscript distinguish an array element from a scalar 
variable. 

6.  You can do this in many ways. The two easiest are 
❍     Use single-quoted strings, which do not allow substitutions. 
❍     Put a backslash \ before the character that you want left as is. 

7.  You can obtain the length of a list stored in an array variable by assigning the 
array variable to a scalar variable. 

8.  All undefined array elements are assumed to contain the null string "". 
9.  When you assign to an array element that is larger than the current length of 

the array, the array grows to include the new element. 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl

$thecount = 0;
$line = <STDIN>;
while ($line ne "") {
chop ($line);
@words = split(/ /, $line);
$wordindex = 1;
while ($wordindex <= @words) {
if ($words[$wordindex-1] eq "the") { 
$thecount += 1;
}
$wordindex++;
}
$line = <STDIN>;
}

print ("Total occurrences of \"the\": $thecount\n"); 
2.  Here is one possible solution:

#!/usr/local/bin/perl

$grandtotal = 0;
$line = <STDIN>;
while ($line ne "") {



$linetotal = 0;
@numbers = split(/ /, $line);
$numbercount = 1;
while ($numbercount <= @numbers) {
$linetotal += $numbers[$numbercount-1];
$numbercount++;
}
print("line total: $linetotal\n");
$grandtotal += $linetotal;
$line = <STDIN>;
}

print("grand total: $grandtotal\n"); 
3.  Here is one possible solution:

#!/usr/local/bin/perl

@lines = <STDIN>;
chop (@lines);
$longlongline = join(" ", @lines);
@words = split(/ /, $longlongline);
@words = reverse sort (@words);
$index = 0;
print("Words sorted in reverse order:\n");
while ($index < @words) {
# note that the first time through, the following
# comparison references $words[-1]. This is all
# right, as $words[-1] is replaced by the null
# string, and we want the first word to be printed
if ($words[$index] ne $words[$index-1]) {
print ("$words[$index]\n");
}
$index++;

} 
4.  The array element reference should be $array[4], not @array[4]. 
5.  There are four separate bugs in this program: 

1.  You must call chop to remove the newline characters from the input lines 
stored in @input. Otherwise, they make your output unreadable. 

2.  Similarly, you have to append a newline when calling join: 
$input[$currline] = join(" ", @words, "\n"); 

3.  The conditional expression should read
$currline <= @input

instead of
$currline < @input

to make sure that the last line of the input file is read. 
4.  Your subscripts should read [$currline-1], not [$currline]. (This bug will 

keep coming up in your programs because it's easy to forget that subscripts 
start with zero.) 

Answers for Day 6, "Reading from and Writing to Files" 

Quiz



1.  The answers are as follows: 
1.  A file variable is a name that represents an open file. 
2.  A reserved word is a word that can't be used as a variable name because it 

has a special meaning in Perl (such as if). 
3.  The file mode specifies how you want to access a file when you open it (read, 

write, or append). 
4.  Append mode indicates that you want to open the file for writing and 

append anything you write to the existing contents of the file. 
5.  A pipe is a connection between output from one program and input to 

another. 
2.  The <> operator reads its data from the files specified on the command line. 
3.  The answers are as follows: 

1.  -r tests whether you have permission to read a file. 
2.  -x tests whether you have permission to execute a file (and whether the file 

is executable). 
3.  -s indicates the size of a file in bytes. 

4.  @ARGV contains the following list:
("file1", "file2", "file3") 

5.  The answers are as follows: 
1.  To open a file in write mode, put a > character in front of the filename. 
2.  To open a file in append mode, put two > characters (>>) in front of the 

filename. 
3.  To open a file in read mode, just specify the filename. By default, files are 

opened in read mode. 
4.  To open a pipe, put a | character in front of the command to be piped to. 

6.  The <> operator reads data from the files whose names are stored in the array 
variable @ARGV. When the <> operator runs out of data in one file, it opens the file 
named in $ARGV[0] and then calls shift to move the elements of @ARGV over. 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl

$total = 0;
$count = 1;
while ($count <= @ARGV) {
$total += $ARGV[$count-1];
$count++;
}

print ("The total is $total.\n"); 
2.  Here is one possible solution:

#!/usr/local/bin/perl

$count = 1;
while ($count <= @ARGV) {
if (-e $ARGV[$count-1] && -s $ARGV[$count-1] > 10000) {



print ("File $ARGV[$count-1] is a big file!\n"); 
}
$count++;

} 
3.  Here is one possible solution:

#!/usr/local/bin/perl
open (INFILE, "file1") ||
die ("Can't open file1 for reading\n");
open (OUTFILE, ">file2") ||
die ("Can't open file2 for writing\n");
# the following only works if file1 isn't too big
@contents = <INFILE>;
print OUTFILE (@contents);
# we don't really need the call to close, but they
# make things a little clearer
close (OUTFILE);
open (OUTFILE, ">>file2") ||
die ("Can't append to file2\n");

print OUTFILE (@contents); 
4.  Here is one possible solution:

#!/usr/local/bin/perl

$wordcount = 0;
while ($line = <>) {
# this isn't the best possible pattern to split with, 
# but it'll do until you've finished Day 7
@words = split(/ /, $line);
$wordcount += @words;
}
open (MESSAGE, "| mail dave") ||
die ("Can't mail to userid dave.\n");
print MESSAGE ("Total number of words: $wordcount\n"); 

close (MESSAGE); 
5.  Here is one possible solution:

#!/usr/local/bin/perl

$count = 1;
while ($count <= @ARGV) {
print ("File $ARGV[$count-1]:");
if (!(-e $ARGV[$count-1])) {
print (" does not exist\n");
} else {
if (-r $ARGV[$count-1]) {
print (" read");
}
if (-w $ARGV[$count-1]) {
print (" write");
}
if (-x $ARGV[$count-1]) {
print (" execute");
}
print ("\n");
}



$count++;

} 
6.  This program is opening outfile in read mode, not write mode. To open in write 

mode, change the call to open to
open (OUTFILE, ">outfile"); 

Answers for Day 7, "Pattern Matching"

Quiz

1.  The answers are as follows: 
1.  Either the letter a or b, followed by zero or more occurrences of c. 
2.  One, two, or three digits. 
3.  The words cat, cot, and cut. (This pattern does not match these letters if 

they are in the middle of a word.) 
4.  The first part of this pattern matches a subpattern consisting of x, one or 

more of y, and z. The rest of the pattern then matches a period, followed by 
the subpattern first matched. 

5.  This matches an empty line (the null string). 
2.  The answers are as follows: 

1.  /[a-z]{5,}/ 
2.  /1|one/ 
3.  /\d+\.?\d+/ 
4.  /([A-Za-z])[aeiou]\1/ 
5.  /\++/ 

3.  Items a, b, c, and f are true; d and e are false. 
4.  The answers are as follows: 

1.  "def123abc" 
2.  "X123X" 
3.  "aWc123abc" 
4.  "abd" 
5.  "abc246abc" 

5.  The answers are as follows: 
1.  "ABC123ABC" 
2.  "abc456abc" 
3.  "abc456abc" 
4.  "abc abc" 
5.  "123" 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl

while ($line = <STDIN>) {
$line =~ tr/aeiou/AEIOU/;



print ($line);

} 
2.  Here is one possible solution:

#!/usr/local/bin/perl

while ($inputline = <STDIN>) { 
$inputline =~ tr/0-9/ /c;
$inputline =~ s/ +//g;
@digits = split(//, $inputline);
$total += @digits;
$count = 1;
while ($count <= @digits) {
$dtotal[$digits[$count-1]] += 1;
$count++;
}
}
print ("Total number of digits found: $total\n");
print ("Breakdown:\n");
$count = 0;
while ($count <= 9) {
if ($dtotal[$count] > 0) {
print ("\tdigit $count: $dtotal[$count]\n"); 
}
$count++;

} 
3.  Here is one possible solution:

#!/usr/local/bin/perl

while ($line = <STDIN>) {
$line =~ s/(\w+)(\s+)(\w+)(\s+)(\w+)/$5$2$3$4$1/;
print ($line);

} 
4.  Here is one possible solution:

#!/usr/local/bin/perl

while ($line = <STDIN>) {
$line =~ s/\d+/$&+1/eg;
print ($line);

} 
5.  There are two problems. The first is that the pattern matches the entire line, 

including the closing newline. You do not want to put a quotation mark after 
the closing newline of each line. In this case, it causes the program to omit the s 
operator, which specifies substitution.
The second problem is that the replacement string should contain $1, not \1. \1 is 
defined only inside the search pattern. 

6.  The pattern uses the * special character, which matches zero or more occurrences 
of any digit. This means the pattern always matches.
The pattern should use the + special character, which matches one or more 
occurrences of any digit. 

Answers for Day 8, "More Control Structures"



Quiz

1.  7 
2.  11 
3.  5 
4.  6 
5.  last if ($x eq "done"); 
6.  redo if ($list[0] == 26); 
7.  next LABEL if ($scalar eq "#"); 
8.  print ("$count\n") while ($count++ < 10); 
9.  The continue statement defines a block of code to be executed each time a while 

or until statement loops. 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

$count = 1;

do {

        print ("$count\n");

        $count++;

} while ($count <= 10);

2.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($count = 1; $count <= 10; $count++) {

        print ("$count\n");

}

3.  Here is one possible solution: 



#!/usr/local/bin/perl

for ($count = 1; $count <= 5; $count++) {

        $line = <STDIN>;

        last if ($line eq "");

        print ($line);

}

4.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($count = 1; $count <= 20; $count++) {

        next if ($count % 2 == 1);

        print ("$count\n");

}

5.  Here is one possible solution: 

#!/usr/local/bin/perl

$linenum = 0;

while ($line = <STDIN>) {

        $linenum += 1;

        $occurs = 0;

        $line =~ tr/A-Z/a-z/;

        @words = split(/\s+/, $line);

        foreach $word (@words) {

                $occurs += 1 if ($word eq "the");

        }

        if ($occurs > 0) {



                print ("line $linenum: $occurs occurrences\n");

        }

}

6.  Here is one possible solution: 

#!/usr/local/bin/perl

$count = 10;

while ($count >= 1) {

        print ("$count\n");

}

continue {

        $count-;

}

7.  You can't use the last statement inside a do statement. To get around this 
problem, use another loop construct such as while or for, or put the conditional 
expression in the while statement at the bottom. 

Answers for Day 9, "Using Subroutines"

Quiz

1.  The answers are as follows: 
1.  A subroutine is a separate body of code designed to perform a particular 

task. 
2.  An invocation is a statement that tells the Perl interpreter to execute a 

particular subroutine. 
3.  An argument is a value that is passed to a subroutine when it is invoked. 
4.  A single-exit module is a subroutine whose return value is calculated by 

the final statement in the subroutine. 
5.  Aliasing occurs when one name is defined to be equivalent to another. 

2.  The answers are as follows: 
1.  0 
2.  (4, 5, 6) 
3.  (4, 5, 6) 



3.  False (or zero), because the conditional expression $count <= 10 is the last 
expression evaluated in the subroutine. 

4.  (1, 5, 3) 

Exercises

1.  Here is one possible solution: 

sub add_two {

        local ($arg1, $arg2) = @_;

        $result = $arg1 + $arg2;

}

2.  Here is one possible solution: 

sub count_t {

        local ($string) = @_;

        # There are a couple of tricks you can use to do this.

        # This one splits the string into words using "t" as

        # the split pattern. The number of occurrences of "t"

        # is one less than the number of words resulting from

        # the split.

        @dummy = split(/t/, $string);

        $retval = @dummy - 1;

}

3.  Here is one possible solution: 

sub diff {

        local ($file1, $file2) = @_;



        # return false if we can't open a file

        return (0) unless open (FILE1, "$file1");

        return (0) unless open (FILE2, "$file2");

        while (1) {

                $line1 = <FILE1>;

                $line2 = <FILE2>;

                if ($line1 eq "") {

                        $retval = ($line2 eq "");

                        last;

                }

                if ($line2 eq "" || $line1 ne $line2) {

                        $retval = 0;

                        last;

                }

        }

        # you should use close here, as this subroutine may

        # be called many times

        close (FILE1);

        close (FILE2);

        # ensure that the return value is the last evaluated

        # expression

        $retval;

}

4.  Here is one possible solution: 

sub dieroll {

        $retval = int (rand(6)) + 1;

}



5.  Here is one possible solution: 

# assume that the first call to printlist passes the argument

# 0 as the value for $index

sub printlist {

        local ($index, @list) = @_;

        if ($index + 1 < @list) {

                &printlist ($index+1, @list);

        }

        # the conditional handles the case of an empty list

        print ("$list[$index]\n") if (@list > 0);

}

6.  The subroutine print_ten overwrites the value stored in the global variable 
$count. To fix this problem, define $count as a local variable. (You also should 
define $printval as a local variable, in case someone adds this variable to the 
main program at a later time.) 

7.  The local statement in the subroutine assigns both the list and the search word 
to @searchlist, which means that $searchword is assigned the empty string. To fix 
this problem, switch the order of the arguments, putting the search word first. 

8.  If split produces a nonempty list, the last expression evaluated in the subroutine 
is the conditional expression, which has the value 0 (false):
@words == 0

Therefore, the return value of this subroutine is 0, not the list of words.
To get around this problem, put the following statement after the if statement:
@words;

This ensures that the list of words is always the return value. 

Answers for Day 10, "Associative Arrays"

Quiz

1.  The answers are as follows: 
1.  An associative array is an array whose subscripts can be any scalar value. 
2.  A pointer is an associative array element whose value is the subscript of 

another associative array element. 
3.  A linked list is an associative array in which each element of the array 



points to the next. 
4.  A binary tree is a data structure in which each element points to (at most) 

two other elements. 
5.  A node is an element of a binary tree. 
6.  A child is an element of a binary tree that is pointed to by another element. 

2.  This statement creates an associative array containing three elements: 
❍     An element with subscript 17.2 whose value is hello 
❍     An element with subscript there whose value is 46 
❍     An element with subscript e+6 whose value is 88 

3.  When you assign an associative array to an ordinary array variable, the value of 
the array variable becomes a list consisting of all of the subscript/value pairs of 
the associative array (in the order in which they were stored in the associative 
array, which is random). 

4.  Define a scalar variable containing the value of the list's first element. Then, use 
the value of one associative array element as the subscript for the next. 

5.  This is a trick question: Because the associative array %list stores its elements in 
random order, it is not clear how many times the foreach loop iterates. It could be 
one, two, or three. 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

while ($line = <STDIN>) {

         $line =~ s/^\s+|\s+$//g;

         ($subscript, $value) = split(/\s+/, $line);

         $array{$subscript} = $value;

}

2.  Here is one possible solution: 

#!/usr/local/bin/perl

$linenum = 0;

while ($line = <STDIN>) {

        $linenum += 1;



        $line =~ s/^\s+|\s+$//g;

        @words = split(/\s+/, $line);

        if ($words[0] eq "index" &&

                $index{$words[1]} eq "") {

                $index{$words[1]} = $linenum;

        }

}

foreach $item (sort keys (%index)) {

        print ("$item: $index{$item}\n");

}

3.  Here is one possible solution: 

#!/usr/local/bin/perl

$linenum = 0;

while ($line = <STDIN>) {

        $linenum += 1;

        $line =~ s/^\s+|\s+$//g;

        @words = split(/\s+/, $line);

        # This program uses a trick: for each word, the array

        # item $index{"word"} stores the number of occurrences

        # of that word. Each occurrence is stored in the

        # element $index{"word#n"}, where[]is a

        # positive integer.

        if ($words[0] eq "index") {

                if ($index{$words[1]} eq "") {

                        $index{$words[1]} = 1;

                        $occurrence = 1;

                } else {



                        $index{$words[1]} += 1;

                        $occurrence = $index{$words[1]};

                }

                $index{$words[1]."#".$occurrence} = $linenum;

        }

}

# The loop that prints the index takes advantage of the fact

# that, when the list is sorted, the elements that count

# occurrences are always processed just before the

# corresponding elements that store occurrences. For example:

# $index{word}

# $index{word#1}

# $index{word#2}

foreach $item (sort keys (%index)) {

        if ($item =~ /#/) {

                print ("\n$item:");

        } else {

                print (" $index{$item}");

        }

}

print ("\n");

4.  Here is one possible solution: 

#!/usr/local/bin/perl

$student = 0;

@subjects = ("English", "history", "mathematics",

             "science", "geography");



while ($line = <STDIN>) {

        $line =~ s/^\s+|\s+$//g;

        @words = split (/\s+/, $line);

        @students[$student++] = $words[0];

for ($count = 1; $count <= 5; $count++) {

                $marks{$words[0].$subjects[$count-1]} =

                     $words[$count];

        }

}

# now print the failing grades, one student per line

foreach $student (sort (@students)) {

       $has_failed = 0;

        foreach $subject (sort (@subjects)) {

                if ($marks{$student.$subject} < 50) {

                        if ($has_failed == 0) {

                                $has_failed = 1;

                                print ("$student failed:");

                        }

                        print (" $subject");

                }

        }

        if ($has_failed == 1) {

                print ("\n");

        }

}

5.  This program has one problem and one unwanted feature.
The problem: Adding a new element to %list in the middle of a foreach loop that 
uses the function keys yields unpredictable results.
The unwanted feature: The foreach loop doubles the size of the associative array 



because the original elements Fred, John, Jack, and Mary are not deleted. 

Answers for Day 11, "Formatting Your Output"

Quiz

1.  The answers are as follows: 
1.  @<<<<<<<<< 
2.  @>>>> 
3.  @| 
4.  @####.### 
5.  ~~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

2.  The answers are as follows: 
1.  Five left-justified characters. 
2.  Seven centered characters. 
3.  One character. 
4.  Multiple (unformatted) lines of text. 
5.  Ten right-justified characters, with the line being printed only if the line is 

not blank. 
3.  The answers are as follows: 

1.  An integer (base 10) in a field of at least five digits. 
2.  A floating-point number with a total field width of 11 characters, four of 

which are to the right of the decimal point. 
3.  A base-10 integer in a field of at least 10 digits. Empty characters in the 

field are filled with zeroes. 
4.  A character string of at least 12 characters, left-justified. 
5.  An integer in hexadecimal (base-16) form. 

4.  Numbers with rounding problems are numbers that normally round up but cannot 
be exactly stored on the machine. The closest equivalent that can be stored 
rounds down. 

5.  To create a page header for an output file, define a print format named 
filename_TOP, where filename is the file variable associated with the file. (Or, 
you can create a print format of any name and assign the name to the system 
variable $^.) 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($count = 1; $count <= 9; $count += 3) {



        $num1 = 2 ** $count;

        $num2 = 2 ** ($count + 1);

        $num3 = 2 ** ($count + 2);

        write;

}

$num1 = 2 ** 10;

$num2 = $num3 = "";

write;

format STDOUT =

^>>> ^>>> ^>>>

$num1 $num2 $num3

.

2.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($count = 1; $count <= 10; $count++) {

        printf ("%4d", 2 ** $count);

        if ($count % 3 == 0) {

                print ("\n");

        } else {

                print (" ");

        }

}

print ("\n");

3.  Here is one possible solution: 

#!/usr/local/bin/perl



@text = <STDIN>;

$line = join("", @text);

write;

format STDOUT =

******************************************

~~^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$line

******************************************

.

4.  Here is one possible solution: 

#!/usr/local/bin/perl

$total1 = $total2 = 0;

while (1) {

        $num1 = <STDIN>;

        last if ($num1 eq "");

        chop ($num1);

        $num2 = <STDIN>;

        last if ($num2 eq "");

        chop ($num2);

        $~ = "LINE";

        write;

        $total1 += $num1;

        $total2 += $num2;

}

$~ = "TOTAL";

write;

$~ = "GRAND_TOTAL";

write;



format LINE =

                    @####.##   @####.##

                    $num1      $num2

.

format TOTAL =

   column totals:  @#####.##  @#####.##

                    $total1    $total2

.

format GRAND_TOTAL =

grand total:                  @#####.##

                    $total1 + $total2

.

5.  When print writes a line to the page, the $- variable is not automatically 
updated. This means that the line count is off. To fix this, subtract one from the $- 
variable yourself.
Also, you must specify what is to be printed by the STDOUT print format:
format STDOUT = 
@*
$line

. 

Answers for Day 12, "Working with the File System" 

Quiz

1.  The answers are as follows: 
1.  The tell function returns the current location in the file being read (the 

location of the next line to read). 
2.  The mkdir function creates a directory. 
3.  The link function creates a hard link (defines a second name that refers to 

a particular file). 
4.  The unlink function destroys a hard link (the connection between the 

filename and the file). If no additional hard links have been defined (using 
link), unlink deletes the file. 

5.  The truncate function reduces the size of a file to the length specified. 



2.  lstat assumes that the name it is working with is a symbolic link. stat assumes it is 
working with an actual file. 

3.  tell retrieves the location of the next line to be read in a file. telldir retrieves 
the location of the next name to be read in a directory. 

4.  The answers are as follows: 
1.  file1 is open for reading only. 
2.  file2 is actually a pipe that is sending the output from a command to this 

program (where it is treated as input). 
3.  file3 is open for reading and writing. (+<file3 is equivalent.) 
4.  MYFILE is being treated as identical to STDOUT (the two file variables now 

refer to the same file). 
5.  The answers are as follows: 

1.  Read and write permissions for everybody. 
2.  Read, write, and execute permissions for everybody. 
3.  Read, write, and execute permissions for the owner only. 
4.  Read and write permissions for the owner; read permissions for everybody 

else. 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

opendir (MYDIR, "/u/jqpublic") ||

        die ("Can't open directory");

while ($file = readdir (MYDIR)) {

        next if ($file =~ /^\.{1,2}$|^[^.]/);

        print ("$file\n");

}

closedir (MYDIR);

2.  Here is one possible solution: 

#!/usr/local/bin/perl

$filecount = 1;

&print_dir ("/u/jqpublic");



sub print_dir {

        local ($dirname) = @_;

        local ($file, $subdir, $filevar);

        $filevar = "MYFILE" . $filecount++;

        opendir ($filevar, $dirname) ||

                die ("Can't open directory");

        # first pass: read and print file names

        print ("\ndirectory $dirname:\n");

        while ($file = readdir ($filevar)) {

                next if ($file eq "." || $file eq "..");

                next if (-d ($dirname . "/" . $file));

                print ("$file\n");

        }

        # second pass: recursively print subdirectories

        rewinddir ($filevar);

        while ($subdir = readdir ($filevar)) {

                next unless (-d ($dirname . "/" . $subdir));

                next if ($subdir eq "." || $subdir eq "..");

                &print_dir ($dirname . "/" . $subdir);

        }

        closedir ($filevar);

}

3.  Here is one possible solution: 

#!/usr/local/bin/perl

opendir (MYDIR, "/u/jqpublic") ||

        die ("Can't open directory");

# the following is a trick: "." is alphabetically less than



# anything we want to print, so it makes a handy

# initial value

$lastfile = ".";

until (1) {

        rewinddir (MYDIR);

        $currfile = "";

        while ($file = readdir (MYDIR)) {

                next if ($file =~ /^\./);

                if ($file gt $lastfile &&

                   ($currfile eq "" || $file lt $currfile)) {

                        $currfile = $file;

                }

        }

        last if ($currfile eq "");

        print ("$currfile\n");

        $lastfile = $currfile;

}

closedir (MYDIR);

4.  Here is one possible solution: 

#!/usr/local/bin/perl

@digits = ("zero", "one", "two", "three",

           "four", "five", "six", "seven",

           "eight", "nine");

&start_hot_keys;

while (1) {

        $char = getc(STDIN);

        last if ($char eq "\033");



        next if ($char =~ /[^0-9]/);

        print ("$digits[$char]\n");

}

&end_hot_keys;

sub start_hot_keys {

        system ("stty cbreak");

        system ("stty -echo");

}

sub end_hot_keys {

        system ("stty -cbreak");

        system ("stty echo");

}

5.  Here is one possible solution: 

#!/usr/local/bin/perl

$dir = "/u/dave/newperl/testdir";

opendir (MYDIR, $dir) ||

        die ("Can't open directory");

chdir ($dir);

while ($file = readdir (MYDIR)) {

        next if (-d $file);

        next if ($file eq "." || $file eq "..");

        if ($file =~ /\.pl$/) {

                @stat = stat($file);

                chmod (($stat[2] | 0700), $file);

        } else {



                chmod (0400, $file);

        }

}

closedir (MYFILE);

6.  This program is trying to use eof() to test for the end of a particular input file. In 
Perl, eof() tests for the end of the entire set of input files, and eof (with no 
parentheses) tests for the end of a particular input file. 

Answers for Day 13, "Process, String, and Mathematical Functions"

Quiz

1.  The answers are as follows: 
1.  srand provides a seed for the random number generator. 
2.  pipe creates an input file variable and output file variable that are linked 

together. This is most frequently used by fork to allow processes to 
communicate with one another. 

3.  atan2 calculates the arctangent for a particular value (in the range -p to 
p). 

4.  sleep suspends the program for a specified number of seconds. 
5.  gmtime returns the current Greenwich Mean Time (in machine-readable 

format). 
2.  fork starts an identical copy of the program currently running. system starts a 

completely different program that runs concurrently (at the same time as the 
current program). exec terminates the current program and starts a new one. 

3.  wait waits for any child process to terminate. waitpid waits for a particular child 
process to terminate. 

4.  The easiest way to obtain the value of p is with the following statement:
$pi = atan2(1, 1) * 4;

This normally produces as close an approximation of p as is possible on your system. 
5.  You can obtain e with this statement: $e = exp(1); 
6.  The answers are as follows: 

1.  %x 
2.  %o 
3.  %e 
4.  %f 

7.  The answers are as follows: 
1.  "abc" 
2.  "efgh" 
3.  "gh" 
4.  The null string (a length of 0 is being specified) 

8.  The answers are as follows: 



1.  1 
2.  -1 
3.  1 
4.  6 
5.  5 

9.  The answers are as follows: 
1.  4 
2.  9 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

$child = fork();

if ($child == 0) {

        print ("This line goes first\n");

        exit (0);

} else {

        $child2 = fork();

        if ($child2 == 0) {

                waitpid ($child, 0);

                print ("This line goes second\n");

                exit (0);

        } else {

                waitpid ($child2, 0);

                print ("This line goes third\n");

        }

}

2.  Here is a program that reads from temp:
#!/usr/local/bin/perl

open (INFILE, "temp") || die ("Can't open input");
while ($line = <INFILE>) {



print ($line);
}
close (INFILE);

Here is a program that writes to temp and calls the first program (which is assumed 
to be named ch13.2a): 

#!/usr/local/bin/perl

open (OUTFILE, ">temp") || die ("Can't open output");

while ($line = <STDIN>) {

        print OUTFILE ($line);

}

close (OUTFILE);

exec ("ch13.2a");

3.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($val = 1; $val <= 100; $val++) {

        print ("log of $val is ", log($val), "\n");

}

4.  Here is one possible solution: 

#!/usr/local/bin/perl

for ($i = 1; $i <= 6; $i++) {

        &sum(10 ** $i);

}

sub sum {

        local($limit) = @_;



        local(@startval, @stopval);

        local($i, $count);

        $count = 0;

        @startval = times();

        for ($i = 1; $i <= $limit; $i++) {

                $count += $i;

        }

        @stopval = times();

        print ("sum $limit: ", $stopval[0]-$startval[0], "\n");

}

5.  Here is one possible solution: 

#!/usr/local/bin/perl

$degrees = <STDIN>;

chop ($degrees);

$radians = $degrees * atan2(1,1) / 45;

$sin = sin ($radians);

$cos = cos ($radians);

print ("sin of $degrees is ", $sin, "\n");

print ("cos of $degrees is ", $cos, "\n");

print ("tan of $degrees is ", $sin/$cos, "\n");

6.  The output specified by the first call to print might get jumbled because the call 
to system defines its own standard output buffers. To get around this problem, set 
the system variable $| to 1 before calling system. 

7.  Here is one possible solution: 

#!/usr/local/bin/perl



@searchletters = ("a", "e", "i", "o", "u");

$inputline = <STDIN>;

foreach $letter (@searchletters) {

        printf("searching for $letter...\n");

        $location = 0;

        while (1) {

                $location = index ($inputline, $letter,

                            $location);

                last if ($location == -1);

                print("\tfound at location $location\n");

                $location += 1;

        }

}

8.  Here is one possible solution: 

#!/usr/local/bin/perl

@searchletters = ("a", "e", "i", "o", "u");

$inputline = <STDIN>;

foreach $letter (@searchletters) {

        printf("searching for $letter...\n");

        $location = length ($inputline);

        while (1) {

                $location = rindex ($inputline, $letter,

                                    $location);

                last if ($location == -1);

                print("\tfound at location $location\n");

                $location -= 1;



        }

}

9.  Here is one possible solution: 

#!/usr/local/bin/perl

@searchletters = ("a", "e", "i", "o", "u");

$inputline = <STDIN>;

$len = length ($inputline);

foreach $letter (@searchletters) {

        print ("searching for $letter...\n");

        $currpos = 0;

        while ($currpos < $len) {

                $substring = substr ($inputline, $currpos, 1);

                if ($letter eq $substring) {

                       print("\tfound at location $currpos\n");

                }

                $currpos++;

        }

}

10.  Here is one possible solution: 

#!/usr/local/bin/perl

$_ = <STDIN>;   # reads to $_ by default

print ("number of a's found: ", tr/a/a/, "\n");

print ("number of e's found: ", tr/e/e/, "\n");

print ("number of i's found: ", tr/i/i/, "\n");

print ("number of o's found: ", tr/o/o/, "\n");



print ("number of u's found: ", tr/u/u/, "\n");

11.  Here is one possible solution: 

#!/usr/local/bin/perl

$number = <STDIN>;

if ($number =~ /\.|[eE]/) {

        printf ("in exponential form: %e\n", $number);

        printf ("in fixed-point form: %f\n", $number);

} else {

        printf ("in decimal form: %d\n", $number);

        printf ("in octal form: 0%o\n", $number);

        printf ("in hexadecimal form: 0x%x\n", $number);

}

12.  This program goes into an infinite loop if index actually finds the substring xyz. 
To get around this problem, increment $lastfound (at the bottom of the loop) 
before calling index again. 

Answers for Day 14, "Scalar-Conversion and List-Manipulation 
Functions"

Quiz

1.  The answers are as follows: 
1.  A character string, padded with null characters if necessary. 
2.  A character string, padded with blanks if necessary. 
3.  A floating-point number (double-precision). 
4.  A pointer to a string (as in the C programming language). 
5.  Skip to the position specified. 

2.  The answers are as follows: 
1.  Unpack a character string (unstripped). 
2.  Skip four bytes, unpack a 10-character string (stripping null characters and 

blanks), and then treat the rest of the packed string as integers. 
3.  Skip to the end of the packed string, back up four bytes, and unpack four 



unsigned characters. 
4.  Unpack the first integer, skip four bytes, unpack an integer, skip back eight 

bytes, and unpack another integer. (This, effectively, unpacks the first, 
third, and second integers in that order.) 

5.  Unpack a string of bits in low-to-high order, back up to the beginning, and 
unpack the same string of bits in high-to-low order. 

3.  The answers are as follows: 
1.  1 
2.  3 

4.  defined tests whether a particular value is equivalent to the special "undefined" 
value. undef sets a scalar variable, array element, or array variable to be equal 
to the special undefined value. 

5.  The answers are as follows: 
1.  ("new", "2", "3", "4", "5") 
2.  ("1", "2", "test1", "test2", "3", "4", "5") 
3.  ("1", "2", "3", "4", "test1", "test2") 
4.  ("1", "2", "4", "5") 
5.  ("1", "2", "3") 

6.  The answers are as follows: 
1.  This returns every list element that does not start with an exclamation 

mark. 
2.  This returns every list element that contains a word that consists entirely 

of digits. 
3.  This returns every nonempty list element. 
4.  This returns every list element. 

7.  unshift adds one or more elements to the left end of a list. shift removes an 
element from the left end of a list. 

8.  The answers are as follows: 
1.  splice (@array, 0, 1); 
2.  splice (@array, @array-1, 1); 
3.  splice (@array, scalar(@array), 0, @sublist); 
4.  splice (@array, 0, 0, @sublist); 

9.  You can create a stack using push to add elements and pop to remove them (or by 
using shift and unshift in the same way). 

10.  You can create a queue using push to add elements and shift to remove them (or 
by using unshift and pop in the same way). 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

$string1 = <STDIN>;

chop ($string1);



$len1 = length ($string1);

$string2 = <STDIN>;

chop ($string2);

$len2 = length ($string2);

if ($len1 % 8 != 0) {

        $string1 = "0" x (8 - $len1 % 8) . $string1;

        $len1 += 8 - $len1 % 8;

}

if ($len2 % 8 != 0) {

        $string2 = "0" x (8 - $len2 % 8) . $string2;

        $len2 += 8 - $len2 % 8;

}

if ($len1 > $len2) {

        $string2 = "0" x ($len1 - $len2) . $string2;

} else {

        $string1 = "0" x ($len2 - $len1) . $string1;

        $len1 += ($len2 - $len1);

}

$bytes1 = pack ("b*", $string1);

$bytes2 = pack ("b*", $string2);

$carry = 0;

$count = $len1 - 1;

while ($count >= 0) {

        $bit1 = vec ($bytes1, $count, 1);

        $bit2 = vec ($bytes2, $count, 1);

        $result = ($bit1 + $bit2 + $carry) & 1;

        $carry = ($bit1 + $bit2 + $carry) >> 1;

        vec ($bytes1, $count, 1) = $result;

        $count-;



}

$resultstring = unpack ("b*", $bytes1);

$resultstring = $carry . $resultstring if ($carry > 0);

print ("$resultstring\n");

2.  Here is one possible solution: 

#!/usr/local/bin/perl

$string1 = <STDIN>;

chop ($string1);

$len1 = length ($string1);

$string2 = <STDIN>;

chop ($string2);

$len2 = length ($string2);

if ($len1 % 8 != 0) {

        $string1 = "0" x (8 - $len1 % 8) . $string1;

        $len1 += 8 - $len1 % 8;

}

if ($len2 % 8 != 0) {

        $string2 = "0" x (8 - $len2 % 8) . $string2;

        $len2 += 8 - $len2 % 8;

}

if ($len1 > $len2) {

        $string2 = "0" x ($len1 - $len2) . $string2;

} else {

        $string1 = "0" x ($len2 - $len1) . $string1;

        $len1 += ($len2 - $len1);

}

$bytes1 = pack ("h*", $string1);

$bytes2 = pack ("h*", $string2);



$carry = 0;

$count = $len1 - 1;

while ($count >= 0) {

        $nybble1 = vec ($bytes1, $count, 4);

        $nybble2 = vec ($bytes2, $count, 4);

        $result = ($nybble1 + $nybble2 + $carry) & 15;

        $carry = ($nybble1 + $nybble2 + $carry) >> 4;

        vec ($bytes1, $count, 4) = $result;

        $count-;

}

$resultstring = unpack ("h*", $bytes1);

$resultstring = $carry . $resultstring if ($carry > 0);

print ("$resultstring\n");

3.  Here is one possible solution: 

#!/usr/local/bin/perl

$value = <STDIN>;

$value *= 100;

$value = int ($value + 0.5);

$value = sprintf ("%.2f", $value / 100);

print ("$value\n");

4.  Here is one possible solution: 

#!/usr/local/bin/perl

$passwd = crypt ("bluejays", "ez");

$try = 1;

while (1) {



        print ("Enter the secret password:\n");

        system ("stty -echo");

        $guess = <STDIN>;

        system ("stty echo");

        if (crypt ($guess, substr ($passwd, 0, 2))

                eq $passwd) {

                print ("Correct!\n");

                last;

        }

        if ($try == 3) {

                die ("Sorry! Goodbye!\n");

        }

        print ("Try again - ");

        $try++;

}

5.  This program is actually reading the low-order bit of the bit vector. To read the 
high-order bit, use vec ($packed, 7, 1). 

6.  Here is one possible solution: 

#!/usr/local/bin/perl

# This program uses a very dumb sorting algorithm.

@list = (41, 26, 11, 9, 8);    # sample list to sort

for ($outer = 0; $outer < @list; $outer++) {

        for ($inner = 0; $inner < @list; $inner++) {

                if ($list[$inner] > $list[$inner+1]) {

                        $x = splice (@list, $inner, 1);

                        splice (@list, $inner+1, 0, $x);

                }



        }

}        

7.  Here is one possible solution: 

#!/usr/local/bin/perl

# assume %oldarray is assigned here

while (($subscript, $value) = each (%oldarray)) {

        if (defined ($newarray{$value})) {

                print STDERR ("$value already defined\n");

        } else {

                $newarray{$value} = $subscript;

        }

}

8.  Here is one possible solution: 

#!/usr/local/bin/perl

while ($line = <STDIN>) {

        @words = split (/\s+/, $line);

        @shortwords = grep (/^.{1,5}$/, @words);

        print ("@shortwords\n");

}

9.  Here is one possible solution: 

#!/usr/local/bin/perl

$line = <STDIN>;



$line =~ s/^\s+//;

while (1) {

        last if ($line eq "");

        ($word, $line) = split (/\s+/, $line, 2);

        print ("$word\n");

}

10.  This subroutine is trying to remove an element from a list using unshift. The 
subroutine should use shift, not unshift. 

Answers for Day 15, "System Functions"

Quiz

1.  The answers are as follows: 
1.  endpwent, getpwent, getpwnam, getpwuid, and setpwent. 
2.  endhostent, gethostbyaddr, gethostbyname, gethostent, and sethostent. 
3.  endnetent, getnetbyaddr, getnetbyname, getnetent, and setnetent. 
4.  endservent, getservbyname, getservbyport, getservent, and setservent. 

2.  Server processes call socket, bind, listen, and accept, in that order. Client 
processes call socket, bind, and connect, in that order. 

3.  The answers are as follows: 
1.  getpwuid searches for an entry in /etc/passwd that matches a specific user 

ID. 
2.  setprotoent rewinds the /etc/protocols file. 
3.  gethostbyaddr searches the /etc/hosts file for a particular network 

(Internet) address. 
4.  getgrent retrieves the next entry from the /etc/group file. 
5.  getservbyport searches the /etc/services file for an entry corresponding 

to a particular port number. 
4.  To send information using a socket, use an output function such as print or 

printf, and specify the file variable associated with the socket. 
5.  You can obtain all the user IDs on your system by using getpwent to read the 

/etc/passwd file. This file contains one entry per user ID, and the user ID is part of 
the entry. 

Exercises

1.  Here is one possible solution: 



#!/usr/local/bin/perl

while (($gname, $password, $groupid, $userids)

        = getgrent()) {

        $garray{$gname} = $userids;

}

foreach $gname (sort keys (%garray)) {

        print ("Group $gname:\n");

        @userids = split (/\s+/, $garray{$gname});

        foreach $userid (sort (@userids)) {

                print ("\t$userid\n");

        }

}

2.  Here is one possible solution: 

#!/usr/local/bin/perl

while (($name, $d1, $d2, $d3, $d4, $d5, $d6, $homedir) =

        getpwent()) {

        $dirlist{$name} = $homedir;

}

foreach $name (sort keys (%dirlist)) {

        printf ("userid %-15s has home directory %s\n",

                $name, $dirlist{$name});

}

3.  Here is one possible solution: 

#!/usr/local/bin/perl



while (@retval = getpwent()) {

         $retval[8] = "<null>" if ($retval[8] eq "");

         $shellarray{$retval[8]} += 1;

}

foreach $shell (sort count keys (%shellarray)) {

        printf ("%-25s %5d %s\n", $shell, $shellarray{$shell},

                ($shellarray{$shell} == 1 ?

                "occurrence" : "occurrences"));

}

sub count {

        $shellarray{$b} <=> $shellarray{$a};

}

4.  Here is one possible solution: 

#!/usr/local/bin/perl

$otherid = fork();

if ($otherid == 0) {

        # child process

        $otherid = getppid();

}

$| = 1;  # eliminate print buffers

print ("The process id of the other process is $otherid.\n");

5.  Here is one possible solution: 

#!/usr/local/bin/perl

$port = 2000;



while (getservbyport($port, "tcp")) {

        $port++;

}

($d1, $d2, $prototype) = getprotobyname ("tcp");

# in the following, replace "silver" with the name

# of your machine

($d1, $d2, $d3, $d4, $rawaddr) = gethostbyname ("silver");

$serveraddr = pack ("Sna4x8", 2, $port, $rawaddr);

socket (SSOCKET, 2, 1, $prototype) || die ("No socket");

bind (SSOCKET, $serveraddr) || die ("Can't bind");

listen (SSOCKET, 5) || die ("Can't listen");

while (1) {

        ($clientaddr = accept (SOCKET, SSOCKET))

        || die ("Can't accept");

        if (fork() == 0) {

                select (SOCKET);

                $| = 1;

                open (MYFILE, "/u/jqpublic/testfile");

                while ($line = <MYFILE>) {

                        print SOCKET ($line);

                }

                close (MYFILE);

                close (SOCKET);

                exit (0);

        }

}

6.  getnetent returns an address as an array of four bytes, not as a readable address. 
To convert the address returned by getnetent to readable form, call unpack. 

Answers for Day 16, "Command-Line Options"



Quiz

1.  The answers are as follows: 
1.  The -0 option specifies the end of file character for the input line. 
2.  The -s option enables you to specify options for your program. 
3.  The -w option tells the Perl interpreter to warn you if it sees something 

that it thinks is erroneous. 
4.  The -x option tells the Perl interpreter that your program is to be 

extracted from a file. 
5.  The -n option indicates that each line of the files specified on the command 

line is to be read. 
2.  The answers are as follows: 

1.  The input end-of-line character becomes either newline or the character 
specified by -l. The output end-of-line character becomes either null or the 
character specified by -0. 

2.  The input end-of-line character becomes either the character specified by -l 
or the character specified by -0; if neither option has a value supplied with 
it, the input line character becomes null. The output end-of-line character 
becomes either null or the character specified by -0. 

3.  The -n option tells the Perl interpreter to read each line of the input file, but 
does not explicitly tell it to write out its input. The -i option copies the input file 
to a temporary file, and then opens the input file for writing. If you do not 
explicitly write to the file yourself, nothing gets written to it. 

4.  This is a trick question: It doesn't. You'll have to make sure that your Perl 
comments are not C preprocessor commands. 

5.  The options for the interpreter appear before the Perl program name in the 
command line, or in the header comment for the program. The options for the 
program appear after the program name. 

Exercises

1.  Here is one possible solution:
$ perl -i -p -l072 -e ";" testfile

Note that -e ";" indicates an empty program. (Otherwise, the Perl interpreter 
would assume that testfile was the program, not the input file.) 

2.  Here is one possible solution: 

$ perl -ne "print if (/\bthe\b/);" file1 file2 ...

3.  Here is one possible solution: 

$ perl -nae 'print ("$F[1]\n");' file1 file2 ...



4.  Here is one possible solution: 

#!/usr/local/bin/perl -s

print ("Hello\n") if ($H == 1);

print ("Goodbye\n") if ($G == 1);

5.  Here is one possible solution: 

$ perl -i -pe "tr/a-z/A-Z/;" file1 file2 ...

6.  This command line wipes out all of your input files. Use the -p option instead of 
the -n option. 

7.  The -i option can be specified with a value (for creating a backup version of the 
file). The Perl interpreter thinks that pe is the suffix to append to the filename, 
and does not realize that these are supposed to be options. (I get tripped up by this 
problem all the time.) 

Answers for Day 17, "System Variables"

Quiz

1.  The pattern-matching operator, the substitution operator, the translation 
operator, the <> operator (if it appears in a while or for conditional expression), 
the chop function, the print function, and the study function. 

2.  The answers are as follows: 
1.  The $= variable contains the page length of a particular output file. 
2.  The $/ variable contains the input end-of-line character. 
3.  The $? variable contains the return code returned by a command called by 

the system function or enclosed in back quotes. 
4.  The $! variable contains the error code generated by a system library 

routine. 
5.  The @_ variable contains the list of arguments passed to a subroutine by the 

calling program or calling subroutine. 
3.  ARGV is the file variable used by the <> operator to read from the list of input files 

specified on the command line. $ARGV is the name of the current file being read by 
the <> operator. @ARGV is the list of arguments (or files) specified on the command 
line. 

4.  @INC contains the directories to search when looking for files to be included. %INC 
lists the files requested by the require function that have already been found. 



5.  $0 is the name of the program you are running. $1 is defined when a pattern is 
matched, and is the first subpattern enclosed in parentheses in the matched 
pattern. 

Exercises

1.  Here is one possible solution:
#!/usr/local/bin/perl -i

while (<>) {
s/[ \t]+/ /g;
tr/A-Z/a-z/;
print;
}

All of these statements use the system variable $_ by default. 
2.  Here is one possible solution: 

#!/usr/local/bin/perl -i

while ($line = <>) {

        while ($line =~ /  +/g) {

                $line = $' . " " . $';

        }

        print ($line);

}

3.  Here is one possible solution:
#!/usr/local/bin/perl

@dirlist = split (/:/, $ENV{"PATH"}); 
foreach $dir (@dirlist) {
print ("$dir\n");
}

Note that if your machine uses a character other than : to separate entries in the 
value of your PATH environment variable, you should use this character instead. 

4.  Here is one possible solution: 

#!/usr/local/bin/perl

$SIG{"INT"} = stopnum;



$num = 1;

while (1) {

        print ("$num\n");

        $num++;

}

sub stopnum {

        print ("\nInterrupted.\n");

        exit (0);

}

5.  Here is one possible solution: 

#!/usr/local/bin/perl

$total = 0;

while ($line = <DATA>) {

        @nums = split (/\s+/, $line);

        foreach $num (@nums) {

                $total += $num;

        }

}

print ("The total is $total.\n");

__END__

4 17  26

11

9     5

6.  The substitution operator matches a pattern, so it overwrites the value of $'. To 
fix this, copy $' into a scalar variable of your own before searching for extra 
spaces. 



Answers for Day 18, "References in 
Perl 5"

Quiz

1.  The correct way to write this is $pointer->{$i}. You are dereferencing more than 
once in the line shown in the question. 

2.  Make the line 
my($a,$b) 

look like this:
my (\$a,\$b)

Then use @$a and @$b to access these arrays by reference. 
3.  There is no difference as far as accessing the variable in $i is concerned. 
4.  The word Help. 
5.  The ${variable} can be used to create symbolic references. The three lines could 

be rewritten by eliminating ${} constructs and using the values instead. 

Exercises

1.  Here is one possible solution: 

$p1 = @a;

$p2 = %a;

$p3 = sub { return @_ ; };

printf "\n Array reference = $p1"; 

printf "\n Hash reference = $p2"; 

printf "\n Subroutine reference = $p3"; 

2.  Use the code in the given hint to construct your function with one exception: you 
use an array for @list. Then you can call each function by using the index in the 
@list: 

&$list[$index](); 

3.  Hard links are maintained by Perl and have to be greater than zero for a variable 
to exist. Soft links can point to nothing and are created by a user program. 

4.  Add the following lines to the end of the code: 
printf "\n Address = $this, $that";
printf "\n Difference of Address = %f \n" $this - $that";



The addresses are not different because they point to the same function. 

Answers for Day 19, "Object-Oriented Programming in Perl" 

Quiz

1.  The following is correct:
Balloon::new();
Balloon->new();

new Balloon; 
2.  This causes a memory leak. The memory allocated for $y has an extra reference. 

The reference count for $y is set when $x is set to it. After the block of code ends, 
the $y reference count remains nonzero. As a result, the memory $y hangs around 
until the program exits. 

3.  A class is only a package that provides methods, an object is a reference, and a 
method is a subroutine with the first argument as the name of the class. 

4.  Use BaseClassName:: explicitly in front of the function name to force Perl to use 
the base class. 

Exercises

1.  Create a file called Zeller.pm like this: 

package Zeller; 

require Exporter;

@EXPORT = (Zeller);

sub Zeller {

my ($month,$day,$year) = @_;

<<< Insert code from sample here>>>

}

1; 

2.  Then use the file in your Perl script like this: 



use Zeller; 

$z = Zeller(7,21,1962);

print "\n Day of the week = $z";

3.  Check if the number of incoming parameters is not three. Use the call to 'date 
+\%D'. The answer will return in mm/dd/yy format. Split the response on '/' to get 
the month. 

$count = scalar (@_);

if ($count != 3) {

    $dt = 'date +\%D'; 

    ($month,$day,$year) = split($_,'/');

else {

   my ($month,$day,$year) = @_;

}

$z =  Zeller($month,$day,$year);

4.  Here is one possible solution: 

#!/usr/bin/perl

print 'find . -depth -print ';

5.  Add the following lines of code to the beginning of the function: 

if (scalar(@_) == 0)  {

     print "\n ================================= \n";

     print " Making a black cup of coffee. ";

     print "\n ================================= \n";

return;

}



Answers for Day 20, "Miscellaneous Features of Perl" 

Quiz

1.  The answers are as follows: 
1.  __LINE__ contains the current line number of the executing program or 

subroutine. 
2.  __FILE__ contains the current file being executed. 
3.  __END__ indicates the end of the Perl program. 

2.  The answers are as follows: 
1.  It's time to say $var 
2.  "It's time to say hello"; (including the quotes and the semicolon) 
3.  hello 

3.  ("one", "two", "three", "", "five") 
4.  There are two ways: 

❍     With the #include preprocessor command. 
❍     Adding the file's directory to @INC and then passing the filename to require. 

Exercises

1.  Here is one possible solution: 

#!/usr/local/bin/perl

@filelist = <*>;

foreach $file (sort (@filelist)) {

        print ("$file\n");

}

2.  Here is one possible solution: 

#!/usr/local/bin/perl

unshift (@INC, "/u/jqpublic/perlfiles");

require ("sum.pl");

@numlist = <STDIN>;

chop (@numlist);



$total = &sum (@numlist);

print ("The total is $total.\n"); 

3.  Here is one possible solution: 

#!/usr/local/bin/perl

package pack1;

$var = <STDIN>;

chop ($var);

package pack2;

$var = <STDIN>;

chop ($var);

package main;

$total = $pack1'var + $pack2'var;

print ("The total is $total.\n");

4.  In this case, <$filepattern> is treated as a scalar variable containing the name of 
a file variable, not as a scalar variable containing a file list pattern. (To obtain 
the latter, use <${filepattern}>.) 

5.  There should be no space between the << and the EOF. The space after the << means 
that the end-of-string character string is assumed to be null; therefore, print 
only prints the first of the two lines in the string. 

Answers for Day 21, "The Perl Debugger"

Quiz

1.  The answers are as follows: 
1.  Trace mode controls whether lines are displayed as they are executed. If 

trace mode is on, lines are displayed; if it is off, they are not. 
2.  A stack trace is a display of the current subroutine being executed, plus a 

listing of the subroutine that called this one, and so on back to the 
original main program. 

3.  A breakpoint is a line in the program before which execution is halted and 
further debugging commands are requested. 



4.  A line action is a statement that is executed whenever a particular line of 
the program is reached. 

2.  The X command displays only variables in the current package. The V command can 
display variables in any package. 

3.  The // command searches forward in the file for a line matching the specified 
pattern; the ?? command searches backward. 

4.  The > command defines a line action that is to be executed before the debugger 
executes any further statements. The < command defines a line action that is to be 
performed after the debugger has finished executing the next statement or group 
of statements. 

5.  The s command steps into a subroutine when it encounters one; the n command 
executes the subroutine without stepping into it, stopping at the statement 
following the subroutine. 

6.  The answers are as follows: 
1.  This displays the next window of statements, continuing where the last l 

command left off. 
2.  This displays just line 26. 
3.  This displays lines 5-7. 
4.  This displays lines 5-12. 
5.  This displays the window of statements surrounding the current line. 

    



Appendix B

ASCII Character Set

●     Page 1 
●     Page 2 
●     Page 3 
●     Page 4 
●     Page 5 

  




































	Perl Book
	Table of Contents
	Week 1 -- At a Glance
	Day 1 -- Getting Started
	Day 2 -- Basic Operators and Control Flow
	Day 3 -- Understanding Scalar Values
	Day 4 -- More Operators
	Day 5 -- Lists and Array Variables
	Day 6 -- Reading from and Writing to Files
	Day 7 -- Pattern Matching
	Week 1 -- In Review
	Week 2 -- At a Glance
	Day 8 -- More Control Structures
	Day 9 -- Using Subroutines
	Day 10 -- Associative Arrays
	Day 11 -- Formatting Your Output
	Day 12 -- Working with the File System
	Day 13 -- Process, String, and Mathematical Functions
	Day 14 -- Scalar-Conversion and List-Manipulation Functions 
	Week 2 -- In Review
	Week 3 -- At a Glance
	Day 15 -- System Functions
	Day 16 -- Command-Line Options
	Day 17 -- System Variables
	Day 18 -- References in Perl 5
	Day 19 -- Object-Oriented Programming in Perl
	Day 20 -- Miscellaneous Features of Perl
	Day 21 -- The Perl Debugger
	Week 3 -- In Review
	Appendices
	Appendix A -- Answers
	Appendix B -- ASCII Character Set





